MCM-D Technology for Silicon Strip Hybrids

L. Eklund^a, T. Affolder^c, G. Casse^c, A. Chilingarov^b, A. Greenall^c, ^aD.Hynds, J. Matheson^d, M. Tyndel^d

> aUniversity of Glasgow bLancaster University cUniversity of Liverpool dSTFC Rutherford Appleton Laboratory

Outline of the Talk

- Introducing the concept
	- Building a hybrid directly on the silicon sensor
- First prototype run
	- Single ground plane on a silicon sensor
	- Electrical measurements
	- Irradiation results
	- CCE & beam test results
- Second prototype run
	- Fully functional hybrid on a blank wafer
	- Production/yield issues
	- Electrical performance
- Conclusions

ISSH: Integrated Silicon Strip Hybrid

- Traditional silicon module build (electrical parts)
	- Sensors, flex circuit, substrate, pitch adaptor, wire bonds, FE-chips, passive components
- A novel approach:
	- Multi-Chip Module Deposited (MCM-D)
	- Deposit dielectric and metal layers directly on the silicon sensor
	- Layout concepts similar to PCBs
	- All-in-one: Sensor, hybrid, pitch-adaptor and strip connections
- Commercially available technology
	- Semi-industrial partner

Acreo Contract R&D in electronics, optics, and communication technology

Based in Stockholm and Norrköping, Sweden (http://www.acreo.se/)

Current ATLAS/SCT module

Benefits and concerns

Potential benefits

- Reduced material
	- Thinner layers, no hybrid substrate
- Reduced build complexity
	- Single object from industry
- Increased integration
	- Higher interconnect density
	- Bump bonding of FE chips possible

Points to prove

- Electrical performance
	- Sensor
	- Hybrid (e.g. power distribution)
- Radiation hardness
- Mechanical integrity
- Production yields
- Cost

Connecting vias to sensor pads

Technology description – MCM-D on Si wafers

- Dielectric layers: Benzocyclobutene (BCB)
	- Deposited in layers of 3-15 µm thickness
	- Dielectric constant of 2.65
- Conducting layers: sputtered Cu/Ti
	- Standard thickness 1-2 µm
- Connecting vias: etched through BCB before curing
	- To the sensor
	- Between metal layers
- Feature sizes
	- Lithographic resolution: 10 µm
	- Good yield at 30 µm track width/spacing
	- Minimal via size at 15 µm thickness: 65 µm

First prototype run

Single dielectric and metal layer on sensor wafers

Single Layer Prototypes

- To evaluate the influence on sensor performance
- Single dielectric & metal layer on a sensor wafer
	- First two layers of a hybrid
- 26 mini-sensors per wafer
	- 6 different GNP plane configuration

- No GND plane
- Solid GND plane
- **Triangular GND plane**
- Meshed GND plane
	- 50% fill, 30 μ m line
	- 50% fill, 80 μ m line
	- 25% fill, 30 μ m line

Cross-section of first prototype

I/V Measurement: pre-irradiation

- 2 x 26 mini-sensors measured
	- 50 have less than 1 μ A current @ 400 V

C/V Measurement: pre-irradiation

– Depletion voltage 30 - 40V

Post-processed sensor irradiations

- Irradiation with 26 MeV protons in Karlsruhe
- Range of sLHC fluences:
	- 10¹³, 10¹⁴, 10¹⁵ & 10¹⁶ [1 MeV n_{eq}/cm²]
	- Corresponding to 1.4 1400 MRad dose

Capacitive Load on the Front-End

Total capacitance of one strip

- Normally dominated by coupling to nearest neighbours
- The GND plane add a new capacitive load
	- C_{1S} = 2 $^{\ast}C_{ss}$ (central strip to two nearest neighbours)
	- $-$ C_{sG} measured separately
	- $-$ C_{SBP} comes from C/V

 C_{IS} + C_{SG} + C_{SBP} is a good estimate of the total capacitance

Inter-strip Capacitance

- Depends on the GND plane type (and dielectric thickness)
	- Lower Cis with more solid GND plane
	- Compensation of surface charge
- Unaffected by irradiation

Capacitance to GND plane

- Measured by two different methods
	- Bias rail to GND plane capacitance (low frequency)
	- 3 strips + edge capacitance (high frequency)

Summary: Capacitive load on the front-end

- Total strip capacitance depends on the GND plane type and dielectric thickness
- No evidence of increase after irradiation
	- Possibly a modest increase at 1016

thicknesses

WIT 2012, 4 May 2012 L. Eklund, University of Glasgow 15

Pre-irradiation values

Inter-strip resistance

- Apply voltage U_0 on one implant
	- Measure current I_0 and induced voltage U_1
- Dominated by stray resistances
	- Measurement gives a lower limit

$$
R_{is} \ll \sqrt{\frac{R_b^3}{R_{GND}}} \approx 10^9 \,\Omega
$$

Measured inter-strip resistance sets a limit of R_{is} > 250 M Ω

Limit not changed by irradiation

Charge Collection Efficiency (CCE)

- ϵ CCE measured with a β -source vs. bias voltage
	- Using analogue SCT128A chip
- Results as expected for 500 μ m thick sensor
	- Compared to non-processed 300 and 140 μ m sensors

Beam Test: CERN SPS

- Using the Timepix telesocpe
- Sensor with triangular GND plane
	- Compare area with and w/o GND plane

Beam Test – preliminary results

• No difference observed between the two areas – Detailed analysis in progress

Mechanical Measurements

- Wafer flatness measured, interleaved with
	- 54 thermal cycles **(1-2 °C/min)**
	- 7 thermal chocks **(1 °C/s down, 4 °C up)**
- No sign of de-lamination

Second Prototype Run

Fully functional front-end hybrid on blank silicon wafers

Fully functional FE hybrid

- Design based on Atlas SCT upgrade kapton hybrid
	- Hosts 20 ABCDN chips
	- Layout adjusted to MCM-D design rules
- Processed on blank silicon wafers
	- Design portable to sensor wafers

Layer Stack

- 5 metal layers (11 masks)
	- Shield, GND, VDD, Signal 1, Signal 2
	- Top metallisation for bonding and SMD
- Layer thicknesses carefully considered
	- Performance vs. yield

Initial tests & yield

- 4 wafers with 3 hybrids produced
	- OK apart from one common problem (see next slide)
- No de-lamination during production or testing

Power plane short

- VDD and GND planes shorted
	- Probably due to local defects
	- Requires process development
- All shorts 'cured': using power supply in CC-mode

Thermal image @ 3A **After 'curing' the short**

Electrical measurements

- One hybrid fully mounted with SMDs & 20 FE chips
	- Digitally fully functional
	- Noise and Gain same as the 'standard' kapton hybrid

Summary

- MCM-D makes it possible to build front-end hybrids directly on the silicon sensor
- The first prototype evaluated the influence on the sensor
	- Increased FE load: as expected
	- No other differences observed
	- Radiation hardness verified
- The second prototype implements a fully functional hybrid
	- Performance identical to kapton hybrid
	- Power plane short requires process development

Back-up slides

Inter-strip capacitance (C_{TS}) – bare & BCB covered

- Bare sensors show decrease in C_{IS} over time due to surface charge-up
	- Compensates for trapped charges
	- Need high voltage and long time to reach final value
	- Environmentally dependent

 C_{1S} vs. time for bare and BCB covered (9 µm) sensors at 100 kHz

• BCB is a very good insulator: no charge compensation

TIPP09, 12 March 2009 29 L. Eklund, University of Glasgow

Inter-strip capacitance (C_{TS}) – adding the GND plane

- Four different GND plane configurations covering the sensor
	- Solid and meshed with 25% or 50% fill, 30 or 80 µm line width

- Adding the GND plane decrease the 'pure' C_{IS}
	- The metal plane facilitates the compensation of interface charges
	- Solid GND plane compensates better than meshed planes

TIPP09, 12 March 2009 L. Eklund, University of Glasgow 30

Capacitance to GND plane - $C_{\rm sg}$

- Capacitance from strip to GND plane measured separately
	- Measure between bias rail and GND plane in R_S-C_S mode

$$
-
$$
 R_S = R_{bias} / N_{strips}, C_S = C_{sG} * N_{strips}

Inter-strip resistance

- Measure R_{is} by applying a voltage on one implant: U_0
	- dU₀/dI₀ gives bias resistance: R_b
	- Assuming all R_b identical and R_{GND} is small

 \triangleright solve for R_{is}

- Layout constraints only allowed connection to every second implant
	- $-$ R_{GND} limits the measurement
	- $-$ R_{is} only visible if:

$$
R_{is} \ll \sqrt{\frac{R_b^3}{R_{GND}}} \approx 10^9 \,\Omega
$$

Measured inter-strip resistance sets a limit of R_{is} > 250 M Ω

Punch-through voltage

- Relevant in case of large charge deposition in the sensor
	- Implant shorts to the back-plane
	- Potentially catastrophic for the front-end
- Punch-through from strip-end to bias rail
	- Built in protection from this effect
- Apply a voltage between implant and bias rail
	- Measure dV/dI: sudden drop at onset of punch-through

Measured punch-through onset at 12-14 V.

Similar to values for nonprocessed sensors

Punch-through voltage: post-irradiation

- Degradation with irradiation
	- Increase in onset voltage
	- Increase in channel resistance
- No special punch-through structure implemented for these devices
	- Perhaps needed if feature required in high radiation

