MCM-D Technology for Silicon Strip Hybrids

L. Eklund^a, T. Affolder^c, G. Casse^c, A. Chilingarov^b, A. Greenall^c, ^aD.Hynds, J. Matheson^d, M. Tyndel^d

> ^aUniversity of Glasgow ^bLancaster University ^cUniversity of Liverpool ^dSTFC Rutherford Appleton Laboratory

Outline of the Talk

- Introducing the concept
 - Building a hybrid directly on the silicon sensor
- First prototype run
 - Single ground plane on a silicon sensor
 - Electrical measurements
 - Irradiation results
 - CCE & beam test results
- Second prototype run
 - Fully functional hybrid on a blank wafer
 - Production/yield issues
 - Electrical performance
- Conclusions

ISSH: Integrated Silicon Strip Hybrid

- Traditional silicon module build (electrical parts)
 - Sensors, flex circuit, substrate, pitch adaptor, wire bonds, FE-chips, passive components
- A novel approach:
 - Multi-Chip Module Deposited (MCM-D)
 - Deposit dielectric and metal layers directly on the silicon sensor
 - Layout concepts similar to PCBs
 - All-in-one: Sensor, hybrid, pitch-adaptor and strip connections
- Commercially available technology
 - Semi-industrial partner

Acreo Contract R&D in electronics, optics, and communication technology

Current ATLAS/SCT module

Based in Stockholm and Norrköping, Sweden (http://www.acreo.se/)

WIT 2012, 4 May 2012

Benefits and concerns

Potential benefits

- Reduced material
 - Thinner layers, no hybrid substrate
- Reduced build complexity
 - Single object from industry
- Increased integration
 - Higher interconnect density
 - Bump bonding of FE chips possible

Points to prove

- Electrical performance
 - Sensor
 - Hybrid (e.g. power distribution)
- Radiation hardness
- Mechanical integrity
- Production yields
- Cost

Connecting vias to sensor pads

Technology description - MCM-D on Si wafers

- Dielectric layers: Benzocyclobutene (BCB)
 - Deposited in layers of 3-15 µm thickness
 - Dielectric constant of 2.65
- Conducting layers: sputtered Cu/Ti
 - Standard thickness 1-2 µm
- Connecting vias: etched through BCB before curing
 - To the sensor
 - Between metal layers
- Feature sizes
 - Lithographic resolution: 10 µm
 - Good yield at 30 µm track width/spacing
 - Minimal via size at 15 μm thickness: 65 μm

First prototype run

Single dielectric and metal layer on sensor wafers

WIT 2012, 4 May 2012

Single Layer Prototypes

- To evaluate the influence on sensor performance
- Single dielectric & metal layer on a sensor wafer
 - First two layers of a hybrid
- 26 mini-sensors per wafer
 - 6 different GNP plane configuration

- No GND plane
- Solid GND plane
- Triangular GND plane
- Meshed GND plane
 - 50% fill, 30 μ m line
 - 50% fill, 80 μ m line
 - 25% fill, 30 μ m line

WIT 2012, 4 May 2012

Cross-section of first prototype

I/V Measurement: pre-irradiation

- 2 x 26 mini-sensors measured
 - 50 have less than 1 μ A current @ 400 V

C/V Measurement: pre-irradiation

- Depletion voltage 30 - 40V

WIT 2012, 4 May 2012

Post-processed sensor irradiations

- Irradiation with 26 MeV protons in Karlsruhe
- Range of sLHC fluences:
 - 10¹³, 10¹⁴, 10¹⁵ & 10¹⁶ [1 MeV n_{eq}/cm²]
 - Corresponding to 1.4 1400 MRad dose

Capacitive Load on the Front-End

Total capacitance of one strip

- Normally dominated by coupling to nearest neighbours
- The GND plane add a new capacitive load
 - $C_{IS} = 2^*C_{ss}$ (central strip to two nearest neighbours)
 - C_{sG} measured separately
 - C_{sBP} comes from C/V

GND plane

 $C_{IS} + C_{SG} + C_{SBP}$ is a

total capacitance

good estimate of the

Inter-strip Capacitance

- Depends on the GND plane type (and dielectric thickness)
 - Lower Cis with more solid GND plane
 - Compensation of surface charge
- Unaffected by irradiation

Capacitance to GND plane

- Measured by two different methods
 - Bias rail to GND plane capacitance (low frequency)
 - 3 strips + edge capacitance (high frequency)

Depends on GND plane type

Depends on dielectric thickness

Unaffected by irradiation

• Small increase at 10¹⁶?

WIT 2012, 4 May 2012

Summary: Capacitive load on the front-end

- Total strip capacitance depends on the GND plane type and dielectric thickness
- No evidence of increase after irradiation
 - Possibly a modest increase at 10¹⁶

Sensor type		C_{is}	C_{sG}	C_{sBP}	C_{tot}
Solid GNDP	$6 \mu m$	0.63	1.84	0.20	2.7
	$12 \mu m$	0.75	1.03	0.20	2.0
	$6 \mu m$	0.71	1.30	0.20	2.2
M $30 \mu m / 50\%$	$12 \mu m$	0.82*	0.82	0.20	1.8
M $80 \mu m / 50\%$	$6 \mu m$	0.75	1.14	0.20	2.1
	$12 \mu m$	0.84	0.68	0.20	1.7
	$6 \mu m$	0.83	0.76	0.20	1.8
M $30 \mu m/25\%$	$12 \mu m$	0.89*	0.48	0.20	1.6
	$9\mu m$	1.02	N/A	0.20	1.2
BCB only	$15 \mu m$	1.05	N/A	0.20	1.3
Bare sensor		0.90	N/A	0.20	1.1

Load in pF/cm

WIT 2012, 4 May 2012

Two dielectric

thicknesses

L. Eklund, University of Glasgow

Pre-irradiation values

Inter-strip resistance

- Apply voltage U₀ on one implant
 - Measure current I_0 and induced voltage U_1
- Dominated by stray resistances
 - Measurement gives a lower limit

$$R_{is} << \sqrt{\frac{R_b^3}{R_{GND}}} \approx 10^9 \,\Omega$$

Measured inter-strip resistance sets a limit of R_{is} > 250 $M\,\Omega$

Limit not changed by irradiation

Charge Collection Efficiency (CCE)

- CCE measured with a β -source vs. bias voltage
 - Using analogue SCT128A chip
- Results as expected for 500 μ m thick sensor
 - Compared to non-processed 300 and 140 μ m sensors

Beam Test: CERN SPS

- Using the Timepix telesocpe
- Sensor with triangular GND plane
 - Compare area with and w/o GND plane

Beam Test - preliminary results

No difference observed between the two areas

- Detailed analysis in progress

WIT 2012, 4 May 2012

Mechanical Measurements

- Wafer flatness measured, interleaved with
 - 54 thermal cycles (1-2 °C/min)
 - 7 thermal chocks (1 °C/s down, 4 °C up)
- No sign of de-lamination

Second Prototype Run

Fully functional front-end hybrid on blank silicon wafers

WIT 2012, 4 May 2012

Fully functional FE hybrid

- Design based on Atlas SCT upgrade kapton hybrid
 - Hosts 20 ABCDN chips
 - Layout adjusted to MCM-D design rules
- Processed on blank silicon wafers
 - Design portable to sensor wafers

Layer Stack

- 5 metal layers (11 masks)
 - Shield, GND, VDD, Signal 1, Signal 2
 - Top metallisation for bonding and SMD
- Layer thicknesses carefully considered
 - Performance vs. yield

Initial tests & yield

- 4 wafers with 3 hybrids produced
 - OK apart from one common problem (see next slide)
- No de-lamination during production or testing

Power plane short

- VDD and GND planes shorted
 - Probably due to local defects
 - Requires process development
- All shorts 'cured': using power supply in CC-mode

Thermal image @ 3A

WIT 2012, 4 May 2012

L. Eklund, University of Glasgow

After 'curing' the short

Electrical measurements

- One hybrid fully mounted with SMDs & 20 FE chips
 - Digitally fully functional
 - Noise and Gain same as the 'standard' kapton hybrid

WIT 2012, 4 May 2012

Summary

- MCM-D makes it possible to build front-end hybrids directly on the silicon sensor
- The first prototype evaluated the influence on the sensor
 - Increased FE load: as expected
 - No other differences observed
 - Radiation hardness verified
- The second prototype implements a fully functional hybrid
 - Performance identical to kapton hybrid
 - Power plane short requires process development

Back-up slides

WIT 2012, 4 May 2012

Inter-strip capacitance (C_{IS}) - bare & BCB covered

- Bare sensors show decrease in C_{IS} over time due to surface charge-up
 - Compensates for trapped charges
 - Need high voltage and long time to reach final value
 - Environmentally dependent

C_{IS} vs. time for bare and BCB covered (9 µm) sensors at 100 kHz

BCB is a very good insulator: no charge compensation

TIPP09, 12 March 2009

Inter-strip capacitance (C_{IS}) - adding the GND plane

- Four different GND plane configurations covering the sensor
 - Solid and meshed with 25% or 50% fill, 30 or 80 μm line width

- Adding the GND plane decrease the 'pure' C_{IS}
 - The metal plane facilitates the compensation of interface charges
 - Solid GND plane compensates better than meshed planes

TIPP09, 12 March 2009

Capacitance to GND plane - C_{sG}

- Capacitance from strip to GND plane measured separately
 - Measure between bias rail and GND plane in R_S-C_S mode

$$- R_{S} = R_{bias} / N_{strips}, C_{S} = C_{sG} * N_{strips}$$

Inter-strip resistance

- Measure R_{is} by applying a voltage on one implant: U₀
 - dU₀/dI₀ gives bias resistance: R_b
 - Assuming all R_b identical and R_{GND} is small
 Solve for R_{is}
- Layout constraints only allowed connection to every second implant
 - R_{GND} limits the measurement
 - R_{is} only visible if:

$$R_{is} \ll \sqrt{\frac{R_b^3}{R_{GND}}} \approx 10^9 \,\Omega$$

Measured inter-strip resistance sets a limit of R_{is} > 250 $M\,\Omega$

Punch-through voltage

- Relevant in case of large charge deposition in the sensor
 - Implant shorts to the back-plane
 - Potentially catastrophic for the front-end
- Punch-through from strip-end to bias rail
 - Built in protection from this effect
- Apply a voltage between implant and bias rail
 - Measure dV/dI: sudden drop at onset of punch-through

Measured punch-through onset at 12-14 V.

Similar to values for nonprocessed sensors

TIPP09, 12 March 2009

Punch-through voltage: post-irradiation

- Degradation with irradiation
 - Increase in onset voltage
 - Increase in channel resistance
- No special punch-through structure implemented for these devices
 - Perhaps needed if feature required in high radiation

