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OUTLINE

e Motivation

e Needs for wire-less in HEP (ATLAS@LHC)
e Introduction of MilliMeter-Wave (MM-Wave)

* Proposed 60 GHz Transceiver System
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Motivation

® The ATLAS and CMS experiments@LHC consists of several million channels
® Data Transfer rate 1s today limited by the available:

. Muon Detectors Tile Calorimeter Liquid Argon Calorimeter
® Bandwidth

limited by
® Power budget (Gbps/W)

10° to 108 channels
50 kHz to 1 MHz readout rate
« Trigger system limited by readout bandwidth

. of (Tb/s) needed

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker
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Motivation cont.

Use of the MilliMeter Wave (MM-Wayve) technology at 60 GHz

Offers:

e Wireless unlicensed spectrum of 7-9 GHz bandwidth available world-wide
e Able to send Gigabits/s (5-10 Gbps) of information over short distances (10 m)

e High transmit power: 40 dBm EIRP (Effective Isotropic Radiated Power)
e Largely unused today: low interference probability

® 60 GHz does not penetrate (walls, silicon, etc): security
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Readout path (ideally)

Wireless readout
architecture?
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Proposed

60 GHz Transceiver




Proposed 60 GHz
Transceiver System

OSCILLATOR

POWER
AMPLIFIER
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Antenna

Transmitter:

e Deliver necessary output power
e High power etficiency
e High gain and stability

Receiver:




Link-budget

Required Bit-Error-Rate (BER): 10-12

OOK Modulation: (E,/Nog) = 17 dB —> SNR_. = (

P, =SNR. -N,-BW -F =—56dBm

* Ex/No: Energy per bit to noise power spectral density
* R: Data bit rate
* BW:  Bandwidth
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Lmk-budget cont.

Py=Py—Gy—Gup+Ly+PL(R)+ Ly, +FM

Prx = 'Transmitted output power (dBm)

Prx = Required Power (-56 dBm)

G7x = Transmitter antenna gain (8 dBi)

Grx = receiver antenna gain (8 dBi)

L1x = Transmitter losses (connections, other losses) (2 dB)
Lrx = Receiver losses (connections, other losses) (2 dB)
FM = Fading Margin (20 dBm)

47R
PL(R) = Free space loss = 20log ’; [dB] = 68 dB@1m, 28 dB@10 cm
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Key Challenges for
MM-Wave Design

¢ [ ossy/conductive substrate —» poor isolation and lower Q components
e . NA and VCO challenging

e High dielectric constant &,.=11.7

e For on-chip antenna: Most of the electromagnetic energy would be drawn into the

substrate |
Top-Side

Air, e=1 <5 %

Silicon, g,=11.7 . >95%
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SiGe HBT BIiCMQS
versus CMQS

® For equal performance, S1Ge requires less aggressive lit.(2gen.)

® S1Ge |
® S1Ge |
e S1Ge |

nas Higher Breakdown Voltage at fixed performance
has much larger gm/um? (need big MOSFETS for high fiax)

has much lower 1/1 Noise

® Modeling of S1Ge HBTs 1s easier for high frequency design (first time pass)

e Matching of the bipolar devices 1s superior compared to the CMOS devices
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Why ON-Chip Antennas?

e MM-Wave signals have small wavelengths at 60 GHz (5 mm)

¢ Possible to integrate receive and transmit antenna(s) on chip.

e Multiple metal layers on ICs available
e Can be used to fabricate MM-wave antennas.

e Eliminate cable/connectors loss
® No need for ESD

e Reduces integration cost
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Low Noise Amplifier

Design metrics
e Large gain to reduce NFy,
e Reduced Noise Figure NF i,
e Handle large signals without distortion I aE

¢ [nput, output impedance matching 20 dBm

e [solation between input and output
® | OW POWE 01 mptior -60 dB
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LNA Circuit
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LNA Simulations

File Edit Frame GCraph Axis Trace Marker Zoom Tools Measurements Help cadence
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LNA Simulations

A Active : LNA ®_Single_end_CE schematic : Apr 24 18:29:19 2012 7
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Power Amplifier

¢ [Last amplifying stage in the transmitter chain
¢ Drive the Antenna(s)

¢ Output power

e Efficiency

¢ Linearity
e PAE (Power added Efficiency)
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Power Amplifier
Simulations

~
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Power Amplifier
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Power Amplifier
Simulations

A (+) Active : PA b _PA_2stac schema Apr 2 10816 2012 @
File Edit Frame Craph Axis Trace Marker Zoom Tools Measurements Help cadence
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MIXER Stage

5 GHz

IF

LO

Metrics

® Noise Figure
® Linearity
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Voltage Controlled
Oscillator

Leeson’s equation VCO metrics:
_ e Accuracy of oscillation

FET 1 | f, 2 * Phase noise
A 80/ \ f, e Tuning sensitivity and linearity

L., =10log

Where:

Bi :
Lpy = Single Side Band, Phase Noise density [dBc/Hz] R N > OUTP
A =LO output power -] —=
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Modulation

Method used to convert analog or digital information to signals at RF
frequency suitable for transmission.

Modulation technique is a key consideration, since it determines:

e System bandwidth
e Power efficiency

e Sensitivity
e Complexity

Modulation
format

Theoretical bandwidth
efficiency limits
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OOK

BPSK

SPSK
16 QAM

0.5 bit/second/Hz
1 bit/second/Hz
2 bit/second/Hz
3 bit/second/Hz




On-Off Keying (OOK)
Modulation

e Relatively Simple design

e Non-Coherent modulation
e No phase reference

® Do not requirer linear PA

Modulating signal —‘
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Current Timeline

LNA Started.

To be finished
by the
end January 2013

OOK
Mixer
VCO
PA
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What are the Drivers for
3D integration

Better electrical performance
Lower power consumption and noise

e Smaller wire-length will decrease the average load capacitance and resistance.

* [ower wire to wire capacitance reduce noise coupling between signal lines.
Form factor improvement " . .
igh Power consumption Low Power consumption

Lower COSt Long Connection Short Connection

Low Density High Density

Poor Heat Good Heat
Dissipation Dissipation

RC Delays Reduced RC Delays

High Impedance Low Impedance

Large Area Smallest Area

Challenging Interposers Simple Interposers

VO Pitch limitations Less /O Pitch limitations
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3D IC for HEP

Move from horizontal 2-D chip layouts to 3-D chip stacking.
Increased performance - Outscaling Moores’s law(More than Moore).

Decreasing system risk.

e E.¢. Stacking a 130 nm analog die with a 65 nm digital die, rather then trying to
build a 65 nm mixed signal SOC.

Reducing cost: at some point, 3-D integration will be cheaper than
shrinking further the 2-D design.

Wafer Brid&Via Plug Via (a) (b)

Level AN

r |Dielectric e > X
:

g Device
3rd 9 ' surface

Antenna and
High Q Passives,

e i o Ly |(Face-to-back) |
i |
s

(o S < Device SiGe BiCMOS
1 5 Transceiver, A/D

CMOS Processor,
and Memory

Multi-level on-chip interconnects

Device
<+« surface

Substrate
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3D IC for HEP

Move from horizontal 2-D chip layouts to 3-D chip stacking.

Increased performance - Outscaling Moores’s law(More than Moore).

Decreasing system risk.
e E.g. Stacking a 130 nm analog die with a 65 nm digital die, rather then trying to
build a 65 nm mixed signal SOC.
Reducing cost: at some point, 3-D integration will be cheaper than
shrinking further the 2-D design.

ntenna
(b) High Q GaAs

FEESIIEE SiGe BICMOS
(ion @ Paacivas SiGe BiCMOS 130 nm

Al |
< Device SiGe BiCMOS T
surface %ansceiver, A/D 45 nm CMOS

<4 Bond
iy s s 45 nm CMOS

Multi-level on-chip interconnects

< Device

surface
Yy Substrate

|30 nm CMOS
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Conclusions

e MM-wave technology presented as a possible solution for current bandwidth limitations
of LHC experiments (ATLAS, CMS)

® A 60 GHz transceiver has been proposed
e Schematic of some blocks shown
¢ Simulations of some blocks shown

¢ SiGe BiICMOS (and CMOS) technology very well suited for 60 GHz wireless
communication front-ends.
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Channel Performance

To support Multi-gigabits/s data transfer, the channel need large bandwidth B and
large allowable signal power S.

Shannon’s theorem

Oxygen attenuation

_ S
C —Blog2(1+N)
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Global Roadmap for 3D Integration with TSV
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rirst tests
Using Commercial ASIC: Gotmic TX/RX Q060A01

e Reference clock system test
e ASIC for 15 GHz reference clock generation
¢ Verified locking behavior
e Signal quality promising
® Receiver operation at 1.7 Gbit/s (60 GHz carrier)

L’[I [
e

o I

® [g1as fine tuning
o

BRSK. In-phase part BPSK. Quadrature part
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