Wireless Transfer!

Multi-Gigabit Wireless data transfer at 60 GHz

R.Brenner (Uppsala. Uni.), A. Schöning <u>H.K. Soltveit</u> and D. Wiedner

H. K. SOLTVEIT. UNIVERSITY OF HEIDELBERG.

WIT2012 WORKSHOP ON INTELLIGENT TRACKERS

Thursday, May 3, 2012

- Motivation
 - Needs for wire-less in HEP (ATLAS@LHC)
 - Introduction of MilliMeter-Wave (MM-Wave)
- Proposed 60 GHz Transceiver System
 - Conceptual design
 - Simulation results
- *3-D* Opportunities
- Conclusions
 - H. K. SOLTVEIT. UNIVERSITY OF HEIDELBERG

Motivation

- The ATLAS and CMS experiments@LHC consists of several million channels
 Data Transfer rate is today limited by the available:
 - Bandwidth

limited by

- Power budget (Gbps/W)
- Mass (Gbps/g)
- Space (Gbps/cm²)

Example: Innermost silicon layer:

- Required bandwidth is 50-100Tb/s
- Detector divided into 20-50K independent segments
- Required bandwidth per link is then 5 Gb/s

Wireless Multi-GigaBit/s readout ?

H. K. Soltveit. University of Heidelberg.

- 10⁶ to 10⁸ channels
- 50 kHz to 1 MHz readout rate
- Trigger system limited by readout bandwidth
 of (Tb/s) needed

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Thursday, May 3, 2012

Motivation cont.

Use of the MilliMeter Wave (MM-Wave) technology at 60 GHz

Offers:

- Wireless unlicensed spectrum of 7-9 GHz bandwidth available world-wide
- Able to send *Gigabits/s* (5-10 Gbps) of information over short distances (10 m)
- High transmit power: 40 dBm EIRP (Effective Isotropic Radiated Power)
- Largely unused today: *low interference probability*
- 60 GHz does not penetrate (walls, silicon, etc): security
- Flexibility of placement
- Small form factor
- Allows for integration of antenna(s)

How do we read it out?

Wireless readout architecture?

Readout path (ideally) along particle path: • Helps Track Trigger!

• 60 GHz signal cannot penetrate through the silicon layers

- *Solution*: Send the data through the Silicon layers by a wire/vias connection, with an antenna on both sides.
 - R. Brenner@Wuppertal 2011

Proposed 60 GHz Transceiver System

H.K SOLTVEIT. UNIVERSITY OF HEIDELBERG.

WIT2012 WORKSHOP ON INTELLIGENT TRACKERS

Proposed 60 GHz Transceiver System

OSCILLATOR

Transmitter:

- Deliver necessary output power
 - High power efficiency
 - High gain and stability

Receiver:

- Need aggressive LNA
 - Balance gain, linearity and NF
 - Low Power Dissipation

7

H. K. SOLTVEIT. UNIVERSITY OF HEIDELBERG.

WIT2012 WORKSHOP ON INTELLIGENT TRACKERS

Antenna

Link-budget

Required Bit-Error-Rate (BER): **10**-12

OOK Modulation: $(E_b/N_0) = 17 \text{ dB}$

$$SNR_{\min} = \left(\frac{E_b}{N_0}\right) \cdot \frac{R}{BW} = 14 dB$$

$$P_{RX} = SNR_{\min} \cdot N_0 \cdot BW \cdot F = -56 dBm$$

- E_b/N_0 : Energy per bit to noise power spectral density
- R: Data bit rate
- BW: Bandwidth
- F: Noise Figure
- *P_{RX}*: Receiver sensitivity

H. K. SOLTVEIT. UNIVERSITY OF HEIDELBERG.

Link-budget cont.

$$P_{TX} = P_{RX} - G_{TX} - G_{RX} + L_{TX} + PL(R) + L_{RX} + FM$$

- P_{TX} = Transmitted output power (dBm)
- P_{RX} = Required Power (-56 dBm)
- G_{TX} = Transmitter antenna gain (8 dBi)
- G_{RX} = receiver antenna gain (8 dBi)
- L_{TX} = Transmitter losses (connections, other losses) (2 dB)
- L_{RX} = Receiver losses (connections, other losses) (2 dB)
- FM = Fading Margin (20 dBm)

$$PL(R)$$
 = Free space loss = $20 \log \frac{4\pi R}{\lambda} [dB] = 68 \ dB@1m, 28 \ dB@10 \ cm$

9

H. K. SOLTVEIT. UNIVERSITY OF HEIDELBERG.

Key Challenges for MM-Wave Design

- Lossy/conductive substrate \rightarrow poor isolation and lower Q components
 - LNA and VCO challenging
- High dielectric constant $\varepsilon_r = 11.7$
 - For on-chip antenna: Most of the electromagnetic energy would be drawn into the substrate

•Difficult to deliver high output power (low supply and break-down voltage).

• PA challenging

SiGe HBT BiCMOS versus CMOS

- For equal performance, SiGe requires less aggressive lit.(2gen.)
- SiGe has Higher Breakdown Voltage at fixed performance
- SiGe has much larger gm/um^2 (need big MOSFETs for high f_{max})
- SiGe has much lower 1/f Noise
- Modeling of SiGe HBTs is easier for high frequency design (first time pass)
- Matching of the bipolar devices is superior compared to the CMOS devices
- Radiation hardness?

SiGe BiCMOS technology combines both high speed HBTs with relatively high breakdown voltage and standard CMOS transistors allowing a very high integration level

Why ON-Chip Antennas?

- MM-Wave signals have small wavelengths at 60 GHz (5 mm)
 - Possible to integrate receive and transmit antenna(s) on chip.
- Multiple metal layers on ICs available
 - Can be used to fabricate MM-wave antennas.
- Eliminate cable/connectors loss
- No need for ESD
- Reduces integration cost

Contains two antennas 5*5 mm²

Low Noise Amplifier

Design metrics

Gain S ₂₁	20 dB
NF	5 dB
P _{1dB}	20 dBm
Reverse Isolation (S ₁₂)	-60 dB
Supply Voltage	1.2-1.5 V
Power dissipation	10 mW
Input/output Impedance	50 Ω

- Large gain to reduce NF_{tot}
- Reduced Noise Figure NF_{min}
- Handle large signals without distortion
- Input, output impedance matching
- Isolation between input and output
- Low power consumption

$$NF_{tot} = NF_{LNA} + \frac{NF_{other} - 1}{G_{LNA}} \dots$$

LNA Circuit

LNA Simulations

LNA Simulations

Power Amplifier

- Last amplifying stage in the transmitter chain
- Drive the Antenna(s)
- Output power
- Efficiency
- Linearity
- PAE (Power added Efficiency)
- Power gain

Output Power	20 dBm
Power Efficiency	20%
Gain	30 dB

- Class of operation: AB
 - Trade-off between good linearity and good efficiency

2-Stage PA

Power Amplifier Simulations

Power Amplifier Simulations

H. K. SOLTVEIT. UNIVERSITY OF HEIDELBERG.

Power Amplifier Simulations

Thursday, May 3, 2012

MIXER Stage

Metrics

- Noise Figure
- Linearity
- Isolation
- Conversion gain

• Gilbert Cell structure

- Very good Isolation
- Differential structure
 - Complete port-to-port isolation

H. K. Soltveit. University of Heidelberg.

Thursday, May 3, 2012

Voltage Controlled Oscillator

Leeson's equation

$$L_{PM} = 10 \log \left[\frac{FkT}{A} \frac{1}{8Q_L^2} \left(\frac{f_o}{f_m} \right)^2 \right]$$

Where:

- L_{PM} = Single Side Band, Phase Noise density [dBc/Hz]
- A = LO output power
- F = Noise Factor at operating power level
- $k = \text{Boltzmann's constant } 1.38*10^{-23} [J/K]$
- T = Temperature [K]
- Q_L = Loaded-Q [dimensionless]
- f_o = Oscillator carrier frequency [Hz]
- f_m = Frequency offset from the carrier [Hz]

VCO metrics:

- Accuracy of oscillation
- Phase noise
- Tuning sensitivity and linearity

Modulation

Method used to convert analog or digital information to signals at RF frequency suitable for transmission.

Modulation technique is a key consideration, since it determines:

• System bandwidth

- Power efficiency
- Sensitivity
- Complexity
- OOK: On-Off Keying
- **BPSK:** Binary-phase shift key
- **8PSK:** Phase Shift Key
- QAM: Quadrature Amplitude Modulation

Modulation format	Theoretical bandwidth efficiency limits
OOK	0.5 bit/second/Hz
BPSK	1 bit/second/Hz
8PSK	2 bit/second/Hz
16 QAM	3 bit/second/Hz

On-Off Keying (OOK) Modulation

Current Timeline

LNA OOK Mixer VCO PA

Started. To be finished by the end January 2013

Amplifier Layout

Will Start February 2013

First prototype submission June 2013

3-D Opportunities

What are the Drivers for 3D integration

- Better electrical performance
- Lower power consumption and noise
 - Smaller wire-length will decrease the average load capacitance and resistance.
 - Lower wire to wire capacitance reduce noise coupling between signal lines.
- Form factor improvement
- Lower cost
- More functionality
- Heterogeneous integration

Companies are now heavily involved in 3D development

3D IC for HEP

- Move from horizontal 2-D chip layouts to 3-D chip stacking.
- Increased performance Outscaling Moores's law(More than Moore).
- Decreasing system risk.
 - E.g. Stacking a 130 nm analog die with a 65 nm digital die, rather then trying to build a 65 nm mixed signal SOC.
- Reducing cost: at some point, 3-D integration will be cheaper than shrinking further the 2-D design.

3D IC for HEP

- Move from horizontal 2-D chip layouts to 3-D chip stacking.
- Increased performance Outscaling Moores's law(More than Moore).
- Decreasing system risk.
 - E.g. Stacking a 130 nm analog die with a 65 nm digital die, rather then trying to build a 65 nm mixed signal SOC.
- Reducing cost: at some point, 3-D integration will be cheaper than shrinking further the 2-D design.

Conclusions

- MM-wave technology presented as a possible solution for current bandwidth limitations of LHC experiments (ATLAS, CMS)
- A 60 GHz transceiver has been proposed
 - Schematic of some blocks shown
 - Simulations of some blocks shown
- SiGe BiCMOS (and CMOS) technology very well suited for 60 GHz wireless communication front-ends.
- There are several challenges to integration of MM-wave systems on a silicon substrate in spite of its numerous advantages
- 3-D integration opens up new possibilities for the near future that can potentially remove the drawbacks of the 2D solution.

Channel Performance

To support Multi-gigabits/s data transfer, the channel need large bandwidth B and large allowable signal power S.

Thursday, May 3, 2012

Semicon West, San Francisco, 2011

Roadmap 3D WL System Integration

Global Roadmap for 3D Integration with TSV

First tests

Using Commercial ASIC: Gotmic TX/RX Q060A01

- Reference clock system test
 - ASIC for 15 GHz reference clock generation
 - Verified locking behavior
 - Signal quality promising
- Receiver operation at 1.7 Gbit/s (60 GHz carrier)
 - I_{BIAS} fine tuning
 - 15 GHz generator for higher sensitivity
 - External reference transmitter system used
 - Binary phase shift keying applied

Fraunhofer Heinrich Hertz Institute

D. Wiedner@Physics at Terascale 2012

Thursday, May 3, 2012