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The Color Glass Condensate: Phenomenology tools

1 INITIAL CONDITIONS: First principles calculation (MV model) or empirical determination of small-x 
component of hadronic wave functions at some initial scale x0  

unintegrated gluon distr. ~ 2-point (dipole) amplitude complete description: all n-point functions

φ(x0,kt,b) = FT
[
1− 1

Nc
〈tr

(
U(z1)U†(z2)

)
〉
x0

]
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2 SMALL-X EVOLUTION: Non-linear quantum BK-JIMWLK evolution equations: Predictive power is here!!!  

radiation recombination

∂φ(x,kt,b)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt,b)− φ(x,kt,b)2 BK: evolution of the 2-point function
JIMWLK: (coupled) evolution of all n-point functions

Evolution kernels K known to NLO accuracy. In practice running coupling BK is used. 
First steps of phenomenological implementation of JIMWLK very recent.
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2 SMALL-X EVOLUTION: Non-linear quantum BK-JIMWLK evolution equations. Predictive power is here!!!  

radiation recombination

∂φ(x,kt,b)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt,b)− φ(x,kt,b)2 BK: evolution of the 2-point function
JIMWLK: (coupled) evolution of all n-point functions

Evolution kernels K known to NLO accuracy. In practice running coupling BK is used. 
First steps of phenomenological implementation of JIMWLK very recent.

3 PARTICLE PRODUCTION: 〈O〉
[
φ2, . . . ,φn

]

Factorization theorems only hold for certain, very inclusive observables
Most processes calculated only to LO accuracy
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e+p data: proton as a building block for nuclei
Succesful (χ2/dof~1) global fits based on rcBK evolution

Krun

(
1− d

dY

)
running coupling+
energy conservation: 

Diffractive x-section

5 3

0.5

1

1.5 Data
Theory

r!

2=0.85 GeV2Q

0.5

1

1.5

r!

2=4.5 GeV2Q

0.5

1

1.5

r!

2=10.0 GeV2Q

5 3

0.5

1

1.5

r!

2=15.0 GeV2Q

−510 −410 −310 −210

0.5

1

1.5

r!

2=35 GeV2Q

x

5 3

2=2.0 GeV2Q

2=8.5 GeV2Q

2=12.0 GeV2Q

5 3

2=28.0 GeV2Q

−410 −310 −210

2=45 GeV2Q

x
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Krunrunning coupling: 

Inclusive x-section

preasymptotic 

N (r, x0) = 1− exp
[
− (r2Q2

0)γ

4
ln

(
1

rΛ

)]

scaling

N scal(τ0 = rQs0)

[
x < 10−2, Q2 < 50 GeV2

]Fits stable for

initial conditions

[AAMQS, Kuokkanen, Rummukainen Weigert; 
Berger Stasto] 

Relatively simple system, better understood theoretically. Abundant quality data down to x~10-6

ALL heavy ion phenomenological works use input from e+p 
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e+p data: proton as a building block for nuclei
Succesful (χ2/dof~1) global fits based on rcBK evolution 
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Krunrunning coupling: 

Inclusive x-section

✕ Poor determination of the high-kt behavior of ugdʼs:
Differences persist in the relevant x-range for LHC predictions

✕ Correlation between dynamical input and high-kt  
    behavior (scaling vs pre-asymptotic fits)

φ(x0,kt ! Qs) ∼
1

k2γ
t

, γ ∼ 0.85÷ 1.28

preasymptotic 

N (r, x0) = 1− exp
[
− (r2Q2

0)γ

4
ln

(
1

rΛ

)]

scaling

N scal(τ0 = rQs0)

[
x < 10−2, Q2 < 50 GeV2

]Fits stable for

initial conditions

✕ Fits with b-dependence: high sensitivity to gluon mass

[AAMQS, Kuokkanen, Rummukainen Weigert; 
Berger Stasto] 
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How to deal with b-dependence? Building nuclei from nucleons: 

Q2,A
s (B) ∼ TA(B)Q2,N

s

Q̄2,A
s ∼ A1/3 Q2,N

s1. Trivial: 

2. Mean field: 

3. Monte Carlo  (realistic i.c for heavy ion collisions) × R
a). Initial conditions for the evolution (x=0.01)

where Λ = 0.241 GeV. This introduces two free parameters: the value x0 where the evolution
starts and the initial saturation scale Qs0(R) at the transverse coordinate R; it measures the local
density of large-x sources at a fixed point in impact parameter space (i.e., in the transverse plane).

As explained in more detail below, the geometry of a given A+A collision is determined by the
fluctuations in the positions of the nucleons in the transverse plane. Each configuration defines a
different local density in the transverse plane of each nucleus. Obviously, the smallest non-zero
local density corresponds to the presence of a single nucleon. The corresponding value of Qs0 is
constrained by phenomenological analyses of e+p2 and p+p data in [11] and [13]. This results
in a central value Q2

s0 ≈ 0.2 GeV 2 for x0 ≈ 0.01. On the other hand, in A+A collisions rare
fluctuations can result in collisions of a large number of nucleons at the same transverse position
and, therefore, in a large Qs0. To account for all possible configurations we tabulate the solution
of the rcBK equation for different values of the initial local density, i.e., for each value of Qs0 in
Eq. (4) ranging from 0.2 GeV2 to 5 GeV2 in bins of 0.1 GeV2. The solutions are then used in
the kt-factorization formula to calculate local gluon production at each point in the collision zone.
Finally we perform the average over all the nucleon configurations generated by the Monte Carlo.

To complete our discussion of the initial conditions we explain how we construct Qs0(R).
We first generate a configuration of nucleons for each of the colliding nuclei. This consists of
a list of random coordinates ri, i = 1 . . . A, chosen from a Woods-Saxon distribution. Multi-
nucleon correlations are neglected except for imposing a short-distance hard core repulsion which
enforces a minimal distance ≈ 0.4 fm between any two nucleons. After this step, the longitudinal
coordinate of any nucleon is discarded, they are projected onto the transverse plane. Factorizing
the fluctuations of the nucleons in a nucleus from possible fluctuations of large-x “hot spots”
within a nucleon (not accounted for at present), and finally from semi-hard gluon production
appears to be justified by the scale hierarchy

1

Qs

" RN " RA , (5)

where RA, RN are the radii of a nucleus and of a proton, respectively.
For a given configuration, the initial saturation momentumQs0(R) at the transverse coordinate

R is taken to be
Q2

s0(R) = N(R)Q2
s0,nucl , (6)

where Q2
s0, nucl = 0.2 GeV2, as discussed above, and where N(R) is the number of nucleons from

the given nucleus which “overlap” the point R:

N(R) =
A
∑

i=1

Θ

(
√

σ0

π
− |R− ri|

)

. (7)

Some care must be exercised in choosing the transverse area σ0 of the large-x partons of a nucleon.
Qs0 corresponds to the density of large-x sources with x > x0 and should therefore be energy
independent (recoil of the sources is neglected in the small-x approximation). We therefore take
σ0 $ 42 mb to be given by the inelastic cross-section at

√
s = 200 GeV. However, σ0 should not

be confused with the energy dependent inelastic cross section σin(s) of a nucleon which grows due
to the emission of small-x gluons.

2Note that the initial conditions in that work were slightly different since they included an anomalous dimension
γ > 1 (while γ = 1 for the MV i.c.).
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b) Solve local rcBK evolution 
     at each transverse point rcBK equation

or KLN model

ϕ(x0 = 0.01, kt, R)

ϕ(x, kt, R)

Is using the same functional form for proton and nuclei u.g.d a good idea?
Is diffusion in the transverse plane negligible?

Nucleons can be regarded as disks (    )  or gaussian  (   )  or ...

φA(x,kt,B) = φp(x,kt,Q2
sp → Q2

sA(B))
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 Single Inclusive forward hadron production 

ÑF (A)(x, k) =
∫

d2r e−ik·r [
1−NF (A)(r, Y =ln(x0/x))

]

Rapidity dependent K-factors allowed to account for the normalization

x1 ≥ x0 x0 ≈ 0.01In order to ensure                       ,                 with                     yh ≥ 2x2 ≤ x0

x1(2) ∼
mt√

s
exp(± yh)Dumitru Jalilian-Marian; Kovner-Altinoluk

(pt, yh>>0)

pdf (proj) CGC 2-point function fragmentation

Recently calculated subleading in αs corrections only included by Rezaeian and Jalilian Marian
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Are large-x energy loss effects (not included in the CGC) the cause of the suppression?

RHIC data do not constrain initial conditions for evolution(MV, gamma>1...”everything works”)

Kopeliovich et al

Comparison to RHIC data

proton-proton

Fujii-Itakura-Kitadono-Nara

Forward particle productions at RHIC and the LHC from CGC with local rcBK 3
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Figure 1. Comparison of forward hadron spectra computed with the AAMQS set h
(solid) and rcMV (dashed) to the data observed at RHIC. The K factor is chosen as
K = 1.5 for charged particles (h−) and K = 0.5 for π0 in pp and d-Au collisions.

solutions for the rcBK equation with different initial values of Q2
s0. Such an approach

has been pursued within the so-called k⊥ factorization approximation for AA collisions,

which reproduces successfully the centrality dependence of the hadron multiplicity at
RHIC and the LHC[15, 10, 11].

Here we combine the DHJ formula with the rcBK evolution in the MC

implementation (MC-DHJ/rcBK). That is, we compute particle productions at each

transverse grid r⊥ using the DHJ formula (3) with Ñ (k, y) numerically obtained from

Q2
s0 at grid r⊥ determined by the MC code:

dN

dyhd2pTdr⊥

= Td(r⊥)×
dN

dyhd2pT

∣∣∣∣
DHJ r⊥

. (4)

Here Td(r⊥) is the thickness function on the dilute side. We stress as an advantage of
this approach that there is no more additional parameter after fitting pp collisions. We

comment also that the MC implementation allows us to study the initial fluctuations[15].

3. Results

We use for fi/p and Dh/i the CTEQ6M NLO PDF [16] and DSS NLO fragmentation
functions [17], respectively, and set the factorization scale to µ2 = p2T . We remark that

an oscillation appears in Ñ(k, y) for smaller Q2
s0 when a sharp cutoff for the running

coupling αs(r) = 1/[b0 ln(4C2/r2Λ2)] is adopted at αfr. Thus we tried a smooth cutoff

αs(r) = 1/[b0 ln(4C2/r2Λ2) + a] where constant a is adjusted to make αs(r) → 2 as

r → ∞ in the rcBK evolution in the case of the rcMV initial condition.

In figure 1, transverse momentum distributions of negatively charged hadrons
h− at pseudo-rapidities η = 2.2 and 3.2 from BRAHMS [18] and neutral pions

π0 at η = 4 from STAR [19] in pp and d-Au collisions at
√
s = 200 GeV

are compared to our results. The AAMQS set h with K = 1.5 (0.5) describes

the forward particle multiplicities of h− (π0) very nicely in pp and d-Au collisions

d-Au
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proton-proton

Particle production close to the kinematic limit (x->1 in the projectile).  K-factors ~ 0.3 for most 
forward rapidities

P (∆y) ≈ e−nG(∆y) ≈ (1− xF )#

x1 → 1
Probability of not losing energy: 
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Tips from p+p data @ LHC

LHC p+p data seem to favor “steeper” initial conditions [2]
However: calculated using LO kt-factorization
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Figure 3: Centrality dependence of the charged particle multiplicity at midrapidity for Pb+Pb
collisions at

√
s = 2.76 TeV. Alice data from ref. [18].

every point in the transverse plane, each of them evolved locally to higher energies. The average
over different configurations is performed after the evolution, and not before, as implicitly done in
[12]. Thus we interpret these two different results as an indication that the average over nuclear
geometry does not commute with the evolution.
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Figure 4: Transverse momentum distribution of charged particles at η = 0 for p+p collisions at√
s = 7 TeV. CMS data from ref. [19].

In Fig. 4 we show the transverse momentum distribution of charged particles for p+p collisions
at

√
s = 7 TeV. For the range of p⊥ shown in the figure, particle production is sensitive to LC

momentum fractions well below our assumed starting point of x0 = 0.01. The uGD derived from
MV model initial conditions is clearly too “hard” and predicts an incorrect slope. The new uGD
obtained from the MVγ initial condition corrects this deficiency and provides a good description
of the CMS data in the small-x, semi-hard regime. This illustrates the power of LHC to constrain
small-x physics. Also, we have used this observable to fix the genuine “K-factor” to K = 2 (MVγ

i.c.) or K = 1.5 (MV i.c.), respectively.
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Nuclear modification factors:
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b-dependence)!!

RdAu(RHIC η ~ 3)~ RpPb(LHC η ~0)

predictions for p+Pb @ LHC

Problem cured when using Monte Carlo tools for geometry dependence (ensures self consistency)

RCGC
pA (kt >> 1) =

1
A

Q2
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Q2
sp

∫ A
d2b∫ p
d2b
→ 1 if Q2

sA = A1/3Q2
sp

However, in the “trivial”
approach itʼs found

Q2
0sA

Q2
0sp

∼ 1.5÷ 4 < A1/3 ∼ 6 JLA-Marquet
Jalilian Marian - Rezaeian
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Nuclear modification factors:

RpPb at y=0 uncertain due to sensitivity to i.c. and lack of information on b-dependence of Qs
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Less sensitivity to i.c. at more forward rapidities: CGC predicts “on average”
    - Larger suppression at small-pt and y=0 than nPDF approaches do
    - Larger suppression at forward rapidities than nPDF approaches do

A rapidity and centrality scan of yields in pPb collisions needed to discriminate both 
approaches and to fix the initial conditions for CGC evolution

?

?
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Nuclear modification factors:

2 4 6 8 10 12 14
p

T
 [GeV]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
p

A

4.4 TeV,  !!"

Preliminary

6

10
-1

10
0

10
1

p
T
 [GeV]

10
-6

10
-4

10
-2

10
0

10
2

N
A

*
 p

T

4

Q
2

0s
=0.672 GeV

2

Q
2

0s
=0.336 GeV

2

x = 10
-5

0 2 4 6 8 10 12 14 16 18 20
p

T
 [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
p

A

p(I), A(I), ! 
s
= 0

 p(I), A(I) , ! 
s
= 0.1

 p(II), A(I), ! 
s
= 0

p(II),  A(I), ! 
s
= 0.1

p(I), A(II), ! 
s
= 0

p(I), A(II), ! 
s
= 0.1

p(II), A(II), ! 
s
= 0

p(II), A(II), ! 
s
= 0.1

4.4 TeV, " = 4

p(I):  Q
2

0s
=0.168 GeV

2

p(II):  Q
2

0s
=0.336 GeV

2

A(I): Q
2

0s
=0.5 GeV

2

A(II):  Q
2

0s
=0.67 GeV

2

 N
coll

 = 6.5

FIG. 2: Right: nuclear modification factor RpA for inclusive charged hadrons h+ + h− production at the LHC
√
s = 4.4 TeV

and η = 4 coming from the solutions of the rcBK with different initial values for the saturation scale (at x0 = 0.01) for proton
and nucleus. The dashed and full lines refer to the cases when the cross-section in both pp and pA collisions was obtained via
Eq. (1) by taking αs = 0 (only elastic contribution) and αs = 0.1 respectively. Left: the scaled unintegrated gluon distribution
NA(x, pT ) × p4T as a function of transverse momentum pT at a fixed x = 10−5 obtained from the rcBK equation with two
different initial values for the saturation scale Q0s(x0 = 0.01).

only DIS data. In the case of proton-nucleus collisions, due to theoretical uncertainties and rather large experimental
data errors, it is also not possible to uniquely fix the initial value of Q0s. Nevertheless, the extracted values of initial
nuclear saturation scale here are compatible with values extracted in other studies, see Refs. [3, 12] and reference
therein. It is seen from Fig. 1 that for the description of π0 production in both pp and dAu collisions at very forward
rapidity (η = 4) at RHIC, a K-factor of ∼ 0.4 ÷ 0.6 may be needed. The necessity of such a small K-factor at very
forward rapidity at RHIC

√
s = 200 GeV was also shown in Ref. [12] where the inelastic contribution was ignored.

Notice that as we have already pointed out, the effect of inelastic contribution at very forward rapidities at RHIC
energy

√
s = 200 GeV is negligible numerically, see Fig. 1. It is possible that at very forward rapidities at RHIC

energy, other mechanisms also partially contribute to the hadron production, see for example Refs. [37, 38].
Next, we present our predictions for single inclusive hadron production at the LHC in terms of the nuclear modifi-

cation factor RpA hoping that some of the theoretical uncertainties, such as sensitivity to K factors, will be reduced.
The Nuclear modification factor RpA is defined as

RpA =
1

Ncoll

dNpA→hX

d2pT dη
/
dNpp→hX

d2pTdη
, (16)

where Ncoll is the number of binary proton-nucleus collisions. We take Ncoll = 6.5, 7.4 at
√
s = 4.4 and 8.8 TeV,

respectively [39].
In Fig. 2 (right), we show the nuclear modification factor RpA for inclusive charged hadrons h++ h− production at√
s = 4.4 TeV and η = 4 obtained from different solutions of the rcBK equation corresponding to different values of

Q0s(x0 = 0.01) extracted from RHIC data (see description of Fig. 1). We also show the contribution of the inelastic
term by showing the results due to only the DHJ term (αs = 0). The value of the strong-coupling in the inelastic
term in Eq. (1) is set to αs = 0.1 (the same value was taken in Fig. 1). It is obvious that taking different values
for the saturation scale Q0s(x0 = 0.01) for proton and nuclear targets significantly changes the nuclear modification
factor. Therefore, the measurement of RpA provides vital information about the initial saturation scale of target and
small-x evolution dynamics. Inclusion of the inelastic term changes RpA and makes it increase faster at high-pT , see
also Fig. 3. Notice that rcBK solutions taken here approximately reproduce the perturbative power-law behavior of
the dipole-amplitude NA(F ) ∼ 1/p4T at high-pT , see Fig. 2 (left). We recall that the parameters of rcBK solutions used

here were obtained from a fit to HERA data for virtuality Q2 ∈ [0.25, 45] GeV2 [34]. Therefore, our results at very
high-pT may be less reliable. We show our predictions for RpA at

√
s = 4.4 TeV and η = 4 − 7 in Fig. 3, assuming

LHC η=0

LHC η=4

Jalilian Marian  Rezaeian

RpPb at y=0 uncertain due to sensitivity to i.c. and lack of information on b-dependence of Qs
Less sensitivity to i.c. at more forward rapidities: CGC predicts “on average”
    - Larger suppression at small-pt and y=0 than nPDF approaches do
    - Larger suppression at forward rapidities than nPDF approaches do

A rapidity and centrality scan of yields in pPb collisions needed to discriminate both 
approaches and to fix the initial conditions for CGC evolution
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Going forward, towards LHCf

At large rapidities (very small-x) the sensitivity to i.c is reduced (scaling regime)

Fujii-Itakura-Nara

Outline Introduction Framework Results Summary

.. Test calculation for forward physics at LHC
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Hadron productions (π0,K0 and n) at η = 8.5 at 7 TeV (LHCf) is
being studied in this framework

HF, K. Itakura, Y. Nara Forward hadron productions in CGC framework

Hadron production (π0 K0 and n) at η =8.5 is 
being studied in this framework

RpPb should approach its universal limit at 
very forward rapidities

FIG. 2: Ratio of distributions φ and h in nucleus and proton,
normalized to 1 at k → ∞. Upper plots: BK evolution, with
MV as initial condition with Q2

s = 0.1 GeV2 for p and 2 GeV2

for A. Lines from top to bottom correspond to y = 0, 0.05,
0.1, 0.2, 0.4, 0.6, 1, 1.4 and 2. Lower plots: BFKL evolution,
with MV as initial condition with Q2

s = 4 GeV2 for p and 100
GeV2 for A. Lines from top to bottom correspond to y = 0,
1 and 4.

k < Qs, where saturation effects are important. For
larger momenta k, the ratios are very similar for linear
and non-linear QCD evolution. We thus conclude that
the wiping out of the initial enhancement is primarily
driven by the linear BFKL dynamics which is contained
in the BK equation as well.

For the evolved gluon distributions determined above,
we have calculated the yield of produced gluons in pA
and AA collisions at central rapidity according to the
factorized expressions [24]

dNpA

dyd2p d2b
∝ 1

p2

∫
d2k hq(y, k)hQ(y, p − k) , (7)

dNAA

dy d2p d2b
∝ A2/3

p2

∫
d2k hQ(y, k)hQ(y, p − k) . (8)

From these spectra, we calculate the p- and y-dependent
ratios

RpA =
dNpA

dyd2p d2b

A1/3 dNpp

dyd2p d2b

, RAA =
dNAA

dyd2p d2b

A4/3 dNpp

dyd2p d2b

.

As seen in Fig. 3, the non-linear BK evolution quickly
wipes out any initial Cronin enhancement not only on
the level of single parton distribution functions but also
on the level of particle spectra. We have checked that
this behaviour is generic by evolving different initial con-
ditions corresponding to different initial amounts of en-

hancement. We note that in calculations of the gluon pro-
duction in pA in the eikonal approximation [13, 25, 26],
the gluon distribution h rather than φ enters the right
hand side of (7), but no similar statement exists of
nucleus-nucleus collisions. We have checked that the re-
sults using φ are very close to those shown in Fig. 3. More
generally, the expressions (7) and (8) are based on rather
strong approximations discussed in Ref. [10]. However,
our conclusion about the disappearance of Cronin en-
hancement during QCD evolution is likely to persist in
more refined ways of calculating particle spectra, since
it is rooted directly in the rapidity dependence of gluon
distributions.

FIG. 3: Ratios RpA and RAA of gluon yields in pA (upper
plot) and AA (lower plot) for BK evolution, with MV as initial
condition with Q2

s = 0.1 GeV2 for p and 2 GeV2 for A. Lines
from top to bottom correspond to y = 0, 0.05, 0.1, 0.2, 0.4,
0.6, 1, 1.4 and 2.

We now comment on a recent formal argument [11]
which - in contrast to our numerical findings - suggests
that Cronin enhancement survives the non-linear evolu-
tion. It is based on the observation that at very short dis-
tances r → 0, the dipole amplitude N(r) is not affected
by evolution. Thus, the integral of the gluon distribution
function φ over the transverse momentum is expected to
be rapidity independent,

∫
d2k φ(k) =

1
r2

N(r)|r=0 . (9)

One thus obtains the sum rule
∫

d2k φA(k, y) = A1/3

∫
d2k φp(k, y) (10)

valid for any rapidity, since it is satisfied by the initial
condition φMV . Since the nonlinear evolution leads to

15
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(k1, y1), (k2, y2)
xp =

|k1|ey1 + |k2|ey2

√
s

xA =
|k1|e−y1 + |k2|e−y2

√
s

hard quark initiating scattering Fourier transfrom coordinate space to momentum

q-> qg splitting (pQCD)

Scattering of the 2-parton system with the CGC target

{
Involves more than 3 and 4 point functions. Calculated in the large Nc limit 

C. Marquet;
Dominguez et al (gluon channel)

suppression of forward di-hadron correlations in d-Au collisions:
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Presence of “monojets” well explained qualitative and quantitatively by the presence of a 
dynamical, semi-hard saturation scale:

                                       !"
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d+Au 
p+p

2.4 ≤ y1, y2 ≤ 4

increasing Qs(x)

Knowledge of 4 and 6 point correlators needed (i.e solving JIMWLK): 

Inclusion of gluon channel recently carried out by Stasto et al.

Dominance of double parton interactions ruled out by neutron-tagged measurements by STAR

Dumitru et al (numerically)
Iancu -Triantafyllopoulos 
(analytically)

CP (∆φ) =
1

Ntrig

dNpair

d∆φ∆φ

trigger trigger

JLA-Marquet

pt1(2) ! Qs

Decorrelation happens if

suppression of forward di-hadron correlations in d-Au collisions:
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decorrelation increases with

Stasto, Xiao Yuan

➡  Increasing the saturation scale of target:

Increasing 
Qs 

➡ Increasing collision centrality

Increasing b

JLA Marquet

A rapidity (central-central, central-forward and 
forward-forward) and centrality scan of of 
di-hadrons correlations at moderate 
pt (1-15 GeV) in pPb collisions at the LHC 
energies would:

1. Set strong constraints to the CGC evolution 
2. Provide very valuable information on the b-
dependence of the saturation scale 0 2 4 6 8 10

2

3

4

5

6

7

8

QPb
s (GeV)

y

forward 
rapidities
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Initial gluon production in heavy ion collisions
- Classical Yang-Mills EOM:

- kt-factorization (BK evolution)

[DµFµν ] = Jν [ρ]
(Suplemented by JIMWLK evolution) 
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FIG. 3. Charged particle pseudo-rapidity density per partic-
ipant pair for central nucleus–nucleus [16–24] and non-single
diffractive pp/pp collisions [25–31], as a function of

√
sNN.

The energy dependence can be described by s0.15NN for nucleus–
nucleus, and s0.11NN for pp/ppcollisions.

ity variables (SPD hits, or combined use of the ZDC and
VZERO signals).

We measure a density of primary charged particles
at mid-rapidity dNch/dη = 1584 ± 4 (stat.) ± 76
(sys.). Normalizing per participant pair, we obtain
dNch/dη/(0.5 〈Npart〉) = 8.3 ± 0.4 (sys.) with negligi-
ble statistical error. In Fig. 3, this value is compared
to the measurements for Au–Au and Pb–Pb, and non-
single diffractive (NSD) pp and pp collisions over a wide
range of collision energies [16–31]. The energy depen-
dence can be described by s0.11NN for pp and pp, and
by s0.15NN for nucleus–nucleus collisions. A significant in-
crease, by a factor 2.2, in the pseudo-rapidity density is
observed at

√
sNN = 2.76 TeV for Pb–Pb compared to√

sNN = 0.2 TeV for Au–Au. The average multiplicity
per participant pair for our centrality selection is found
to be a factor 1.9 higher than that for pp and pp collisions
at similar energies.

Figure 4 compares the measured pseudo-rapidity den-
sity to model calculations that describe RHIC measure-
ments at

√
sNN = 0.2 TeV, and for which predictions at√

sNN = 2.76 TeV are available. Empirical extrapolation
from lower energy data [4] significantly underpredicts the
measurement. Perturbative QCD-inspired Monte Carlo
event generators, based on the HIJING model tuned to
7 TeV pp data without jet quenching [5] or on the Dual
Parton Model [6], are consistent with the measurement.
Models based on initial-state gluon density saturation
have a range of predictions depending on the specific im-
plementation [7–11], and exhibit a varying level of agree-
ment with the measurement. The prediction of a hybrid
model based on hydrodynamics and saturation of final-
state phase space of scattered partons [12] is close to
the measurement. A hydrodynamic model in which mul-

FIG. 4. Comparison of this measurement with model predic-
tions. Dashed lines group similar theoretical approaches.

tiplicity is scaled from p+p collisions overpredicts the
measurement [13], while a model incorporating scaling
based on Landau hydrodynamics underpredicts the mea-
surement [14]. Finally, a calculation based on modified
PYTHIA and hadronic rescattering [15] underpredicts
the measurement.
In summary, we have measured the charged-particle

pseudo-rapidity density at mid-rapidity in Pb–Pb colli-
sions at

√
sNN = 2.76 TeV, for the most central 5% frac-

tion of the hadronic cross section. We find dNch/dη =
1584 ± 4 (stat.) ± 76 (sys.), corresponding to 8.3 ±
0.4 (sys.) per participant pair. These values are signif-
icantly larger than those measured at RHIC, and indi-
cate a stronger energy dependence than measured in pp
collisions. The result presented in this Letter provides
an essential constraint for models describing high energy
nucleus–nucleus collisions.
The ALICE collaboration would like to thank all its en-

gineers and technicians for their invaluable contributions
to the construction of the experiment and the CERN
accelerator teams for the outstanding performance of
the LHC complex. The ALICE collaboration acknowl-
edges the following funding agencies for their support
in building and running the ALICE detector: Calouste
Gulbenkian Foundation from Lisbon and Swiss Fonds
Kidagan, Armenia; Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnológico (CNPq), Financiadora
de Estudos e Projetos (FINEP), Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP); Na-
tional Natural Science Foundation of China (NSFC), the
Chinese Ministry of Education (CMOE) and the Min-
istry of Science and Technology of China (MSTC); Min-
istry of Education and Youth of the Czech Republic;
Danish Natural Science Research Council, the Carlsberg
Foundation and the Danish National Research Founda-
tion; The European Research Council under the Eu-
ropean Community’s Seventh Framework Programme;
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Centrality dNch/dη 〈Npart〉 (dNch/dη)/
(
〈Npart〉/2

)

0–5% 1601±60 382.8±3.1 8.4±0.3
5–10% 1294±49 329.7±4.6 7.9±0.3
10–20% 966±37 260.5±4.4 7.4±0.3
20–30% 649±23 186.4±3.9 7.0±0.3
30–40% 426±15 128.9±3.3 6.6±0.3
40–50% 261±9 85.0±2.6 6.1±0.3
50–60% 149±6 52.8±2.0 5.7±0.3
60–70% 76±4 30.0±1.3 5.1±0.3
70–80% 35±2 15.8±0.6 4.4±0.4

Table 1: dNch/dη and (dNch/dη)/
(
〈Npart〉/2

)
measured in |η | < 0.5 for nine centrality classes. The 〈Npart〉

obtained with the Glauber model are given.

Fig. 2: Dependence of (dNch/dη)/
(
〈Npart〉/2

)
on the number of participants for Pb–Pb collisions at

√
sNN =

2.76 TeV and Au–Au collisions at
√

sNN = 0.2 TeV (RHIC average) [7]. The scale for the lower-energy data is
shown on the right-hand side and differs from the scale for the higher-energy data on the left-hand side by a factor
of 2.1. For the Pb–Pb data, uncorrelated uncertainties are indicated by the error bars, while correlated uncertainties
are shown as the grey band. Statistical errors are negligible. The open circles show the values obtained for centrality
classes obtained by dividing the 0–10% most central collisions into four, rather than two classes. The values for
non-single-diffractive and inelastic pp collisions are the results of interpolating between data at 2.36 [19, 23] and
7 TeV [24].

the parameters entering the Glauber calculation as described above. The geometrical 〈Npart〉 values are
consistent within uncertainties with the values extracted from the Glauber fit in each centrality class, and
agree to better than 1% except for the 70–80% class where the difference is 3.5%.

Figure 2 presents (dNch/dη)/
(
〈Npart〉/2

)
as a function of the number of participants. Point-to-point,

uncorrelated uncertainties are indicated by the error bars, while correlated uncertainties are shown as the
grey band. Statistical errors are negligible. The charged-particle density per participant pair increases
with 〈Npart〉, from 4.4±0.4 for the most peripheral to 8.4±0.3 for the most central class. The values for
Au–Au collisions at

√
sNN = 0.2 TeV, averaged over the RHIC experiments [7], are shown in the same

figure with a scale that differs by a factor of 2.1 on the right-hand side. The centrality dependence of the

LHC RHIC

dNg

dηd2b
∝ Q2

s (x,b) ∼
√

sλ Npart

- Approximate factorization of energy and centrality dependence

↵

- Gluon to hadron conversion
- Quark contribution  
- jet fragmentation
- k-factor for higher order 
 corrections
- Truly soft contribution 
- ...

Recent progress by T. Lappi

- Strong coherence effects: 
dNAA

dη
! Ncoll

dNpp

dη

DATA:
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LHC data and rcBK CGC Monte Carlo

b

R

ri

3 kt-factorization

According to the kt-factorization formalism [12], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by

dNA+B→g

dy d2pt d2R
=

1

σs

dσA+B→g

dy d2pt d2R
, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= κ

2

CF

1

p2
t

∫ pt d2kt

4

∫
d2b αs(Q) ϕ(

|pt + kt|
2

, x1; b) ϕ(
|pt − kt|

2
, x2; R− b) , (9)

with x1(2) = (pt/
√

sNN) exp(±y) and CF = (N2
c−1)/2Nc; the normalization factor κ is given below.

As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫
d2r e−ik·r∇2

r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [13] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton→ hadron
conversion factors and so on. The results shown below were obtained under the assumption that
this normalization factor is the same for both dEt/dy and dN/dy, and that it is energy independent.

4

- kt-factorization + running coupling BK evolution3 kt-factorization

According to the kt-factorization formalism [12], the number of gluons produced per unit rapidity
at a transverse position R in A+B collisions is given by
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dy d2pt d2R
=

1

σs

dσA+B→g
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, (8)

where σs represents the effective interaction area and σA+B→g is the cross section for inclusive
gluon production:

dσA+B→g

dy d2pt d2R
= κ

2

CF

1

p2
t

∫ pt d2kt

4

∫
d2b αs(Q) ϕ(
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with x1(2) = (pt/
√

sNN) exp(±y) and CF = (N2
c−1)/2Nc; the normalization factor κ is given below.

As noted before, we assume that the local density in each nucleus is homogenous over transverse
distances of the order of the nucleon radius RN . Thus, the b-integral in Eq. (9) yields a geometric
factor proportional to the transverse “area” of a nucleon which cancels with a similar factor implicit
in σs from Eq. (8), modulo subtleties in the definition of σs. In any case, uncertainties associated
with the overall normalization of Eq. (8) cancel in the calculation of the initial eccentricity in
Eq. (16).

The unintegrated gluon distributions (ugd’s) ϕ entering Eq. (9) are related to the dipole scat-
tering amplitude in the adjoint representation, NG, through a Fourier transform (for consistency
with the notation used in Eq. (9) we make the impact parameter dependence of the ugd’s explicit):

ϕ(k, x, b) =
CF

αs(k) (2π)3

∫
d2r e−ik·r∇2

r NG(r, Y =ln(x0/x), b) . (10)

In turn, NG is related to the quark dipole scattering amplitude that solves the rcBK equation, N ,
as follows:

NG(r, x) = 2N (r, x)−N 2(r, x) . (11)

Note that this relation entails that the saturation momentum relevant for gluon scattering is larger
than that for quark scattering by about a factor of 2.

Eqs. (10) and (9) were written originally for fixed coupling. In order to be consistent with
our treatment of the small-x evolution, we have extended them by allowing the coupling to run
with the momentum scale. The argument of the running coupling in Eq. (9) is chosen to be
Q = max{|pt + kt|/2, |pt − kt|/2}, while for the definition of the ugd Eq. (10) we take it to be
the transverse momentum itself, k. This turns out to be important in order to reproduce the
centrality dependence of charged particle multiplicities at RHIC, which are otherwise too flat for
small Npart. However, the results are not very sensitive to the particular choice of scale because
ϕ → 0 as k2 → 0 due to the saturation of N (r) at large dipole sizes r. In principle, one could
improve on this educated ansatz by using the results of [13] where running coupling corrections to
inclusive gluon production have been studied. Most importantly, the x-dependence of the dipole
scattering amplitude obtained by solving the rcBK equation encodes all the collision energy and
rapidity dependence of the gluon production formula Eq. (9).

With the ugd as defined above, the normalization factor κ (introduced in the kt-factorization
formula (9) above) required to fit the charged particle multiplicity at RHIC energy turns out to
be κ % 7.1. It lumps together higher-order corrections, sea-quark contributions, parton→ hadron
conversion factors and so on. The results shown below were obtained under the assumption that
this normalization factor is the same for both dEt/dy and dN/dy, and that it is energy independent.
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  [JLA-Dumitru-Nara]

CGC models for multiplicities can 
also be tested in a p+Pb run 

Good description of Pb+Pb data
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Sensitivity of MC-CGC models for the initial state of HIC to high-kt uncertainties

Reminder: e+p, d+Au and Pb+Pb (multiplicities) data are 
compatible with u.g.d with rather different high-kt behavior:

decreasing x

2)
1)
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Sensitivity of MC-CGC models for the initial state of HIC to high-kt uncertainties

~ 10% effect on multiplicity distributions  Larger (x2) effect on transverse energy 
distributions!
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These uncertainties translate to the extraction of transport coefficients (shear 
viscosity...) when these model are used as i.c. for hydro evolution

Information on the moderate to high kt behaviour of Pb ugdʼs from a pPb run would 
ALSO have a positive impact on CGC models for bulk particle production !!!
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 ✔  CGC can consistently describe data at small-x collected in different collision 
systems (e+p, p+p, d+Au, Au+Au) at energies lower than the LHC

Conclusions / Outlook

 ✔ Relatively simple measurements (multiplicities and transverse energy 
distributions, single inclusive hadron spectra and di-hadron correlations) in a p
+Pb run at the LHC at relatively low momentum  (pt < 10~20 GeV) A p-Pb run at 
the LHC would be most useful for: 

     1. Testing the formalism at its present degree of accuracy 
     2. Establishing reliable references for initial state effects in hard probes 
         production in HIC (photons, drell-yan, heavy quarks...)

 ✔ A p+Pb run would ALSO be extremely useful to further constrain models for bulk 
    particle production, thus reducing systematic uncertainties for hydro studies. 

 ✔  First LHC data on bulk properties of HIC in agreement with CGC expectations

 ✔  Predictive power of the CGC limited due to the lack of small-x data on nuclear 
reactions able to constrain the initial conditions for the evolution (b,kt)-dependence
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Evolution kernel: known up to  full NLO accuracy. In practice BK with running coupling is used 

∂φ(x,kt)
∂ ln(x0/x)

≈ K ⊗ φ(x,kt)− φ(x,kt)2

radiation recombination
“BK-JIMWLK”

       LO: αs ln(1/x)
small-x gluon emission

    NLO Running coupling

kt ! Qs(x)Saturation of gluons with: 

decreasing x

Running coupling corrections render 
evolution speed compatible with data!

Fits to
DIS
HIC

[Balitsky, , Gardi et at],
Kovchegov-Weigert

Krun(r, r1, r2) =
Nc αs(r2)

2π2

[
r2

r2
1 r2

2

+
1
r2
1

(
αs(r2

1)
αs(r2

2)
− 1

)
+

1
r2
2

(
αs(r2

2)
αs(r2
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− 1
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