

LPCC workshop on Prospects of p-Pb collisions during the 2012 LHC HI run CERN, October 17th 2011

Proton-nucleus theory review

Néstor Armesto

Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela <u>nestor.armesto@usc.es</u>

Based on e-Print: arXiv:1105.3919 [hep-ph], submitted to JPG

Contents:

I. Introduction.

- 2. pA as benchmark:
 - 2.1 Nuclear PDFs. (Kari Eskola)
 - 2.2 Processes for benchmarking:
 - → Jets. (Guilherme Milhano)
 - → EW bosons. (Carlos Salgado)
 - ➔ Photons. (")
 - → Open heavy flavor. (")
 - Quarkonium. (Andry Rakotozafindrabe)
- 3. Small-x physics. (Cyrille Marquet and Javier Albacete)
- 4. Others:
 - 4.1 UPCs: (David d'Enterria)
 - → γ_p/A.
 - **→** γγ.
 - 4.2 Implications for Astroparticles.

5. Summary.

Introduction:

• At the SPS and at RHIC, pA (dAu) runs have been an essential part of the heavy-ion programs. Prominent examples:

- → SPS: J/ ψ absorption in pA → anomalous suppression in PbPb.
- → RHIC: Cronin in dAu → jet quenching in AuAu as a final state effect.

Introduction:

• At the SPS and at RHIC, pA (dAu) runs have been an essential part of the heavy-ion programs. Prominent examples:

- → SPS: J/ ψ absorption in pA → anomalous suppression in PbPb.
- → RHIC: Cronin in dAu → jet quenching in AuAu as a final state effect.
- A pPb run possible @LHC with $\langle \mathcal{L} \rangle \sim 10^{29} \text{ cm}^{-2}\text{s}^{-1}$ (John Jowett) for $\int \mathcal{L} dt \sim 0.1 \text{ pb}^{-1}$ in 2012 (4.4 TeV/n instead of nominal 8.8); $O(10^6)$ collisions during the feasibility 2011 checks? (Sebastian White).
- Rapidity shift (0.46) due to asymmetric system, smaller for dPb (0.12), but no injector:
 p+Pb and Pb+p (ALICE μ-arm, LHCb).

• All LHC experiments with capabilities for this running mode: ALICE, ATLAS, CMS, LHCb, LHCf,...

I. Introduction.

- 2. pA as benchmark:
 - 2.1 Nuclear PDFs. (Kari Eskola)
 - 2.2 Processes for benchmarking:
 - → Jets. (Guilherme Milhano)
 - → EW bosons. (Carlos Salgado)
 - ➔ Photons. (")
 - → Open heavy flavor. (")
 - → Quarkonium. (Andry Rakotozafindrabe)
- 3. Small-x physics. (Cyrille Marquet and Javier Albacete)
- 4. Others:
 - 4.1 UPCs: (David d'Enterria)
 - → γ_P/A.
 - **→** γγ.
 - 4.2 Implications for Astroparticles.

5. Summary.

Hard probes:

$$R_{AA}(y, p_T) = \frac{\frac{dN_k^{AA}}{dydp_T}}{\langle N_{coll} \rangle \frac{dN_k^{NN}}{dydp_T}} = 1 \text{ if no nuclear effects}$$

• Assume collinear factorization works for the reference (pp) and for the probe (in AA):

$$d\sigma[A + B \rightarrow h + X] \propto \int [dx] f_{i/A}(x_i) \otimes f_{j/B}(x_j) \otimes d\hat{\sigma}[i + j \rightarrow k + X](sx_ix_j) \otimes D[k \rightarrow h + X](z)$$

$$cold nuclear$$

$$matter effects:$$

$$nPDFs$$

$$matter effects$$

$$matter effects$$

• pA, eA: check factorization and constrain cold nuclear matter effects.

•AB: (check factorization and) characterize the medium.

Hard probes:

nPDFs (I):

nPDFs (II):

 Available DGLAP analysis at NLO show large uncertainties at small scales and x.

 eA colliders not available before ~
 2020: EIC,LHeC?

Proton-nucleus theory review: 2. pA as benchmark.

• Models give vastly different results for the nuclear glues at small scales and x.

• Jets offer a less biased observable for jet quenching than single hadrons (or even dihadrons).

• Many interesting features in PbPb@LHC, not yet understood in theoretical models:

- → Dijet momentum imbalance: eloss without broadening?
- → Momentum balance by soft large-angle particles.
- \rightarrow Similar R_{AA} as charged.

➔ Influence of background substraction on medium characterization.

• Very few studies in pA (dAu@RHIC).

Proton-nucleus theory review: 2. pA as benchmark.

Jets in pPb at 8.8 TeV/n:

Proton-nucleus theory review: 2. pA as benchmark.

Jets in pPb at 4.4 TeV/n:

Proton-nucleus theory review: 2. pA as benchmark.

Jets in pPb at 4.4 TeV/n:

Proton-nucleus theory review: 2. pA as benchmark.

events in

EW bosons: motivation

- EW bosons are, with photons, the canonical medium-blind observable: check of collinear factorization (N_{coll} -scaling) and of the Glauber model, constrains on nPDFs, callibrate jet energy via γ ,Z+jet.
- Already available in PbPb at the LHC.

EW bosons in pPb at 8.8 TeV/n:

Z-Spectrum, pPb at \sqrt{s} = 8.8TeV, M=M_z

- Isospin effects 'corrected' in pPb: possibility to constrain nPDFs.
- 4000 (1000) Z's expected at $|y_R|=0$ (3).
- Luminosity important for Z+jet (reconstruction, cuts, etc.).

Photons: motivation

- Photons at low p_T are the smoking gun of a hot medium.
- At large p_T , they are the baseline for hot nuclear matter effects.
- They are affected from nuclear effects: nPDFs, and uncertainties from the fragmentation contribution $q \rightarrow \gamma \Rightarrow pA$ may clarify this.

Photons: motivation

- Photons at low p_T are the smoking gun of a hot medium.
- At large p_T , they are the baseline for hot nuclear matter effects.
- They are affected from nuclear effects: nPDFs, and uncertainties from the fragmentation contribution $q \rightarrow \gamma \Rightarrow pA$ may clarify this.

Proton-nucleus theory review: 2. pA as benchmark.

Photons in pPb at 8.8 TeV/n:

- Abundant yields up to 50 GeV/c for $\int \int dt \sim 0.1 \text{ pb}^{-1}$.
- Modest (O(10%)) nuclear effects.

• Role of isolation cuts for fragmentation to be determined. *Proton-nucleus theory review: 2. pA as benchmark.*

Photons in pPb at 8.8 TeV/n:

- Abundant yields up to 50 GeV/c for $\int \int dt \sim 0.1 \text{ pb}^{-1}$.
- Modest (O(10%)) nuclear effects.

• Role of isolation cuts for fragmentation to be determined. *Proton-nucleus theory review: 2. pA as benchmark.*

Open heavy flavor: motivation

Proton-nucleus theory review: 2. pA as benchmark.

- Nuclear modification of HQ in HIC expected to offer strong constrains on the mechanism of eloss: mass effect.
- RHIC: non-photonic electrons demand theory to determine c/b contributions.
- LHC: direct measurement of HQs.

Open HF in pPb at 8.8 TeV/n:

- FONLL (NLO): large yields of mesons up to 30 GeV/c for $\int \int dt \sim 0.1 \text{ pb}^{-1}$.
- Large nuclear effects for small p_T : pPb required for PbPb.
- Meson reconstruction efficiency to be studied; b-tagged jets.

Open HF in pPb at 8.8 TeV/n:

pPb at 4.4 TeV/n

- FONLL (NLO): large yields of mesons up to 30 GeV/c for
 ∫ Ldt~0.1 pb⁻¹.
- Large nuclear effects for small p_T : pPb required for PbPb.
- Meson reconstruction efficiency to be studied; b-tagged jets.

Quarkonium: motivation

₽

1.4

1.2

CMS Preliminary

Prompt J/ψ

Y(1S)

PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

★ Non-prompt J/ψ ☆ (0-100%)

(0-100%)

(0-100%)

 Cold nuclear matter effects on QQbar crucial: little theoretical control on energy dependence and (mass, p_T , x_F) behavior of absorption, large effect of nPDFs.

Quarkonium: motivation

⊈[₹]1.¢

1.2

0.8

0.6

0.4

0.2

• Cold nuclear matter effects on QQbar crucial: little theoretical control on energy dependence and (mass, p_T , x_F) behavior of absorption, large effect of nPDFs.

Quarkonium in pPb at 8.8 TeV/n:

 CEM: large yields of QQbar for
 ∫⊥dt~0.1 pb⁻¹.

Large nuclear
 effects for small p⊤:
 pPb required for
 PbPb.

• Larger luminosity would extend the reach in p_T for Y.

I. Introduction.

- 2. pA as benchmark:
 - 2.1 Nuclear PDFs. (Kari Eskola)
 - 2.2 Processes for benchmarking:
 - → Jets. (Guilherme Milhano)
 - → EW bosons. (Carlos Salgado)
 - ➔ Photons. (")
 - → Open heavy flavor. (")
 - → Quarkonium. (Andry Rakotozafindrabe)
- 3. Small-x physics. (Cyrille Marquet and Javier Albacete)
- 4. Others:
 - 4.1 UPCs: (David d'Enterria)
 - → γ_P/A.
 - **→** γγ.
 - 4.2 Implications for Astroparticles.

5. Summary.

The 'QCD phase' diagram:

Olagram: Our aims: understanding

- The implications of unitarity in a QFT.
- The behavior of QCD at large energies.
- The hadron wave function at small x.

• The initial conditions for the creation of a dense medium in heavy-ion collisions.

Origin in the early 80's: GLR, Mueller et al, McLerran-Venugopalan.

Saturation ideas: CGC

Saturation ideas: CGC

 Control experiment for initial state effects in AA: Cronin in dAu at midrapidity ruled out initial state effects as the explanation for the suppression observed in AA.

- Suppression at forward rapidities predicted by small-x evolution.
- Azymuthal decorrelation in the forward region also seen.

• Control experiment for initial state effects in AA: Cronin in dAu at midrapidity ruled out initial state effects as the explanation for the suppression observed in AA.

- Suppression at forward rapidities predicted by small-x evolution.
- Azymuthal decorrelation in the forward region also seen.

• Control experiment for initial state effects in AA: Cronin in dAu at midrapidity ruled out initial state effects as the explanation for the suppression observed in AA.

- Suppression at forward rapidities predicted by small-x evolution.
- Azymuthal decorrelation in the forward region also seen.

• Control experiment for initial state effects in AA: Cronin in dAu

- Saturation physics describes these data, but:
 - \rightarrow The normalization is not determined by the calculation \leftrightarrow problems to compute the b-dependence.
 - → A full NLO analysis is still missing.
 → PLIC data lie at the odde of phase of
 - → RHIC data lie at the edge of phase space.
 - Other descriptions exist: NLO pQCD (problems with pp reference), eloss models,...

 $dAu \rightarrow hX$

 d^3p

 Note: these studies are very important to understand the mechanism of soft/semihard particle production: ridge, initial conditions for HIC, isotropization,...⇒ 'benchmarking' the bulk.

Proton-nucleus theory review: 3. Small-x physics.

• Si

• A

 $CP(\Delta \phi)$

pPb at the LHC:

- Offers the best possibility (before lepton-ion colliders) to test:
 - → The small-x glue far from the kinematical limits.
 - → The production mechanism: clear differences between collinear factorization and saturation?

I. Introduction.

- 2. pA as benchmark:
 - 2.1 Nuclear PDFs. (Kari Eskola)
 - 2.2 Processes for benchmarking:
 - → Jets. (Guilherme Milhano)
 - → EW bosons. (Carlos Salgado)
 - ➔ Photons. (")
 - → Open heavy flavor. (")
 - → Quarkonium. (Andry Rakotozafindrabe)
- 3. Small-x physics. (Cyrille Marquet and Javier Albacete)
- 4. Others:
 - 4.1 UPCs: (David d'Enterria)
 → γp/A.
 → γγ.
 4.2 Implications for Astroparticles.
- 5. Summary.

UPCs: motivation

- pA compared to pp:
 - → Enhancement factor Z^2 in photon flux.
 - \rightarrow No event pileup.
 - → Nuclear dissociation makes Pomeron background easy to detect.

• pA compared to AA:

- → ~1000 larger luminosity.
- → Higher cms energies.

→ Backgrounds easier to be removed (e.g. those leading to forward neutron production).

• $\gamma p/A$: proton/nucleus DIS, test the small-x glue and saturation. E.g. b-rate measurable at x~10⁻⁴ for p_T ~5 GeV, exclusive vector meson production,...Also nuclear EM dissociation as a luminometer.

• γγ: luminometer, QCD studies (spectroscopy, cross section,...) and EW couplings (even Higgs).

Proton-nucleus theory review: 4. Others.

UPCs in pPb:

- Large luminosities in γp.
- Interesting kinematical coverage.

UPCs in pPb:

- Large luminosities in γp.
- Interesting kinematical coverage.

Proton-nucleus theory review: 4. Others.

- Hadronic models required for the extraction of chemical composition of the primary (γ , ν , p, He, Fe,...) in cosmic ray showers.
- Large uncertainties in models (e.g. μ -production not understood, composition depending on the model, etc.) for E>10¹⁵ eV.
- pA of uttermost important (as air in basically N and O) for model verification, $E \sim 10^{17}$ eV.
- Shower development determined by particle production in the forward region: ZDC, LHCf.
- Note: comparison with hadronic models already undergoing in pp.

Proton-nucleus theory review: 4. Others.

Cosmic rays:

Proton-nucleus theory review: 4. Others.

Summary:

- A pPb run at the LHC offers huge possibilities (unique before IA colliders) for:
- A) Benchmarking for the HIC program, particularly for reducing uncertainties coming from nPDFs:

Observable	Expected impact of the p+A data for benchmarking of A+A
Jets	The expected effects from nPDFs are small. Cold nuclear matter effects
	in the structure of highly virtual jets are also expected to be small,
	but little experimental or theoretical information is available at present.
W/Z bosons	This observable provides unique possibilities for constraining the
	nuclear PDFs and also to serve as benchmark for Z+jet production in A+A.
Photons	The expected effects from nPDFs are small for most of the regions studied.
	A p+A run would serve as a benchmark for the A+A results.
Heavy flavour	Sizable uncertainties appear from nuclear PDFs for $p_T \lesssim 10$ GeV/c
	which could affect the interpretation of the A+A data. No information
	exists on the modification of the hadronization by cold nuclear matter.
Quarkonia	The effect of both the nuclear PDFs and the hadronization presents
	large uncertainties, especially for the case of J/Ψ integrated in p_T .
	p+A runs would be essential for a correct interpretation of the A+A results.

B) Discovery: clarifying the relevance of saturation physics.

C) Others: UPCs, measurements of interest for UHECR.

Summary:

• A pPb run at the LHC offers huge possibilities (unique before IA colliders) for:

A) Benchmarking for the HIC program, particularly for reducing

Summary:

- A pPb run at the LHC offers huge possibilities (unique before IA colliders) for:
- A) Benchmarking for the HIC program, particularly for reducing

• Note: $< \int > ~ 10^{29} \text{ cm}^{-2}\text{s}^{-1}$ (i.e. $~ 10^{11}$ events for $\sigma_{in}=1$ b in 10^6 s)

should suffice for most for most studies but Z+jets, Y at large p_T , γPb and $\gamma \gamma$.

Rescaling in energy could be done as for HI (or specific pp run):

$$\sigma(pp \to X; \sqrt{s_{\rm PbPb/pPb}}) = \frac{\sigma^{\rm TH}(pp \to X; \sqrt{s_{\rm PbPb/pPb}})}{\sigma^{\rm TH}(pp \to X\sqrt{s_{pp}})} \sigma^{\rm EXP}(pp \to X; \sqrt{s_{pp}})$$

C) Others: UPCs, measurements of interest for UHECR.

Proton-nucleus theory review.

XΔ

XA

arXiv:1105.3919 [hep-ph] authors:

Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements

Editor: C. A. Salgado¹ Authors: J. Alvarez-Muñiz¹, F. Arleo², N. Armesto¹, M. Botje³, M. Cacciari⁴, J. Campbell⁵, C. Carli⁶, B. Cole⁷, D. D'Enterria^{8,9}, F. Gelis¹⁰, V. Guzey¹¹, K. Hencken¹², P. Jacobs¹³, J. M. Jowett⁶, S. R. Klein¹³, F. Maltoni¹⁴, A. Morsch⁸, K. Piotrzkowski¹⁴, J. W. Qiu¹⁵, T. Satogata¹⁵, F. Sikler¹⁶, M. Strikman¹⁷, H. Takai¹⁵, R. Vogt^{13,18}, J. P. Wessels^{8,19}, S. N. White¹⁵, U. A. Wiedemann²⁰, B. Wyslouch^{21†}, M. Zhalov²²

Thanks a lot to Jaime Álvarez and Carlos Salgado for comments!

Many thanks to you all for your attention!

Proton-nucleus theory review.

50