

pA Collisions in LHCb

Michael Schmelling – MPI for Nuclear Physics

- on behalf of the LHCb Collaboration -

Outline

- Setting the Stage
- Experimental Constraints
- Kinematics
- Physics Topics
- Summary

→ schematic of the LHCb detector

□ forward spectrometer 15 < Θ < 300 mrad
 □ two configurations for proton-nucleus collisions: pA ≠ Ap

pA Collisions in LHCb - Setting the Stage

Http://www.comparison.of Angular Coverage

pA Collisions in LHCb - Setting the Stage

HE 2. EXPERIMENTAL CONSTRAINTS

→ can we measure anything?

consider typical occupancies in the tracking system . . .

- *pp* minimum bias interactions:
 - → up to 0.3 % average occupancy in silicon detectors
 - → up to 3 % average occupancy in Outer Tracker
- lacksquare tracking algorithms break down at \sim 30 %

♦ in the following focus at a qualitative understanding of *pA* collisions
 → don't worry (too much) about factors of 2 . . .

Heb Expectations for pA-collisions

→ measurements of A-dependence at lower energies total cross-sections – e.g. J. Carvalho, Nucl.Phys.A 725 (2003) 269 $\sigma_{\rm inel} \sim A^{0.71} \approx A^{2/3}$ (geometric behaviour) identified (strange) particles – e.g. HERA-B Collaboration $\sigma_{
m part} \sim A$ A-dependence of multiplicities and occupancies occupancy $\propto n \sim rac{\sigma_{
m part}}{\sim} \sim A^{1/3}$ $\sigma_{\rm inel}$ \clubsuit expectation for p - Pb-collisions (A = 208) occpancies increased by a factor $A^{1/3} \approx 6$ →single interactions OK for LHCb!

→ pp high-pileup event in LHCb LHCb Event Display

→ what about physics?

Http://www.action.com/with high-pileup events

→ e.g. reconstruction of B-meson decays . . .

- 5200 5300 5400 5200 5300 B mass 5200 5300 S clean signal for $N_{PV} = 1$ and $N_{PV} = 4$
 - \times S/B basically unaffected by pileup

5400 B mass **3**. KINEMATICS

→ same B-field and same radius of curvature:

momentum per nucleon: $p_N \propto \frac{Z}{A}$

 \diamond in the following use Pb(Z, A) = (82, 208) and assume

 $p_p = 7 \, {
m TeV}/c$ and thus $p_N^{Pb} = p_p \cdot rac{82}{208} pprox 2.76 \, {
m TeV}/c$

consider kinematics of two limiting cases

soft interactions: the proton interacts with the entire nucleus

→ 7 TeV particle with m = 1 on $A \cdot 2.76$ TeV particle with M = 208

hard interactions: the proton interacts with a single nucleon

- → 7 TeV particle with m = 1 on 2.76 TeV particle with M = 1
 - X likely to be the more relevant case

Key Quantities

→ neglecting mass terms...

effective center-of-mass energy of the interaction

 $\sqrt{s_{ ext{eff}}} = 2\sqrt{E_1E_2}$

center-of-mass rapidity coverage of final state particles

 $-\ln\sqrt{s_{ ext{eff}}} < y^* < \ln\sqrt{s_{ ext{eff}}}$ ($\sqrt{s_{ ext{eff}}}$ in GeV)

- → soft interactions : $|y^*| < 12$
- → hard interactions: $|y^*| < 9$

rapidity of the center-of-mass and lab-system

$$y_{cm}=rac{1}{2}\lnrac{E_1}{E_2}$$

- → soft interactions : $y_{cm} = -2.2$
- → hard interactions: $y_{cm} = 0.47$

pA Collisions in LHCb - Kinematics

Hick Accessible Rapidity Range

- \rightarrow center-of-mass rapidities y^* measured along p-direction
 - *pA*-collisions (proton towards LHCb)
 - → soft-collisions: $y^* = [4.2, 7.2]$
 - → hard-collisions: $y^* = [1.5, 4.5]$
 - Ap-collisions (lead nucleus towards LHCb)
 - → soft-collisions: $y^* = [-2.8, 0.2]$
 - → hard-collisions: $y^* = [-5.5, -2.5]$
 - discussion: qualitative arguments show. . .
 - \rightarrow for asymmetric detectors study pA and Ap interaction
 - → even (close to) central rapidities become accessible
 - ➔ potential for a very rich physics program...

HCP 4. PHYSICS TOPICS

- → understanding multi-particle production at high energies
 - **X** full picture requires studies of pp, pA, and AA collisions
 - **X** LHCb is able to contribute to pp and pA
- LHCb physics topics
 - soft QCD measurements
 - ➔ particle multiplicities
 - → strangeness production (V^0, ϕ, K^*, \ldots) and Λ -polarization
 - → energy flow and underlying event measurements
 - open charm production
 - $\Box J/\psi$ -related measurements (likely to have largest impact w.r.t. QGP)
 - ➔ production cross sections of charmonium states
 - ➔ polarization studies

...

Hicp Luminosity Issues

- → wanted: large event sample of single pPb-collisions ...
 - small average number of inelastic interactions per bunch crossing

$$\mu = rac{L \cdot \sigma_{inel}}{f_{
m rev} \cdot N} \ll 1$$

- satisfied with $\mu = 0.02$, assuming...
 - → instantaneous luminosity $L = 10^{29} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - → total inelastic cross section $\sigma_{\text{inel}} = 2 \text{ b}$
 - → revolution frequency $f_{rev} = 10 \text{ kHz}$
 - → number of colliding bunches N = 1000
- \square assuming 10⁶ s running time and $L = 10^{29} \text{ cm}^{-2} \text{s}^{-1}$:
 - → integrated luminosity $L_{int} = 100 \text{ nb}^{-1}$
 - → $2 \cdot 10^9$ events written to disk 1% of all inelastic interactions

Http://www.cs.cs.com

- → lower limit, based on extrapolation from current analyses
 - minbias running with veto on empty events, 2 kHz logging rate
 - \square available integrated luminosity $L_{int} = 1 \text{ nb}^{-1}$
 - \blacksquare assume that cross sections scale with A
 - assume same detector performance as for 7 TeV pp physics
 - expected yields of reconstructed particles in LHCb acceptance
 - ightarrow 70 000 000 $K^0_S \rightarrow \pi^+\pi^-$
 - ightarrow 12000000 $\phi \longrightarrow K^+K^-$

 - ightarrow 20 000 $J/\psi
 ightarrow \mu^+\mu^-$ (up to 100 times more with trigger)

flavour physics remains the primary goal, but LHCb is keen to explore its potential in pA collisions!

Http 5. SUMMARY

- \rightarrow pA studies interpolate between pp and AA
 - LHCb detector expected to be able to handle *pPb* collisions
 - → extended physics program will require extra computing resources!
 - \blacksquare large rapidity coverage when combining pA and Ap running
 - \rightarrow swap *p* and *A* to make optimal use of asymmetric detectors!
 - rich physics program, covering e.g.
 - → soft QCD
 - → open charm
 - → J/ψ measurements
- → to explore and understand the physics potential:

If collisions are possible in the *pA*-test this year LHCb is ready to collect data!

Backup Slides

Relativistic Kinematics (i)

→ center-of-mass energy:

calculate the Mandelstam-variable $s = E_{cm}^2$: $s = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 \approx (E_1 + E_2)^2 - (E_1 - E_2)^2 = 4 E_1 E_2$

→ rapidity coverage of final state particles: consider relativistic particles travelling along the rapidity axis

$$y = \frac{1}{2}\ln\frac{E+p}{E-p} = \frac{1}{2}\ln\frac{(E+p)^2}{E^2-p^2} \approx \frac{1}{2}\ln\frac{4E^2}{m^2} = \ln\frac{2E}{m}$$

and thus, assuming a mass $m = 1$ and all units in GeV:

 $y_{max} = \ln 2E_{max} = \ln \sqrt{s}$

→ rapidity of the center-of-mass system:

Use the first intermediate result of the above calculation:

$$y_{cm} = rac{1}{2} \ln rac{(E+p)^2}{E^2 - p^2} pprox rac{1}{2} \ln rac{((E_1+E_2)+(E_1-E_2))^2}{s} = rac{1}{2} \ln rac{E_1}{E_2}$$

Hick Relativistic Kinematics (ii)

Setting for p - Pb-collisions the proton energy to $E_1 = E$ one has:

hard collisions:

$$E_2 = E \cdot Z/A$$

$$\sqrt{s} = 2 E \sqrt{Z/A}$$

- $\Rightarrow y_{\rm max} = \ln(2 E \sqrt{Z/A})$
- → $y_{cm} = 0.5 \ln(A/Z)$

soft collisions :

$$\Rightarrow E_2 = E \cdot Z$$

$$\Rightarrow \sqrt{s} = 2 E \sqrt{Z}$$

- → $y_{\max} = \ln(2 E \sqrt{Z})$
- $\Rightarrow y_{cm} = 0.5 \ln(1/Z)$