

Summary of Day 1

www.eu-egee.org

INFSO-RI-508833

We learnt about grids

Enabling Grids for E-sciencE

- Grids are:
 - heterogenous, dynamic, distributed, wide area
 - infrastructures primarily used for
 - high-performance computing
 - high-throughput computing
 - collaborative computing
- Two significantly different concepts:
 - Desktop Grids (DG)
 - Utility Grids (UG) → In the focus of this school
- Main differences:
 - Client-server model
 - DG Resource providers operate client software → Easy to maintain
 - UG Resource providers operate server software \rightarrow Difficult to maintain
 - Access control
 - Few privileged users have access to DGs
 - Many users can get access to UGs
 - Operation
 - DG resources are volatile cycle scavenging systems
 - UG resources provide 24/7 service

We learnt about EGEE and gLite

Enabling Grids for E-sciencE

- An EU founded Grid project: 2004-2006 EGEE; 2006-2008 EGEE-II
 - Build, deploy and operate a consistent, robust a large scale production grid service that
 - Improve and maintain the middleware in order to deliver a reliable service to users
 - Attract new users from research and industry and ensure training and support for them
- gLite middleware: Bag of services that address key distributed system issues:
 - Security, Data management, Job management, Monitoring
- Components

GGGGG

- User interface \rightarrow access service for end users
- Workload Management System \rightarrow resource broker
- Computing Element \rightarrow computing service, a job queue
- Storage Element \rightarrow File storage further details tomorrow
- File catalog \rightarrow File registry further details tomorrow
- Information System \rightarrow resource database

All built onto Grid Security Infrastructure (GSI)

If you want to become an EGEE user

- Enabling Grids for E-science
- Obtain a certificate from a recognized CA:
 - <u>www.gridpma.org</u> → 1 year long, renewable certificates, accepted in every EGEE VO
 - GILDA CA two weeks long, renewable certificate BUT accepted only in GILDA VO
- Find and register at a VO

GGGGG

- EGEE NA4 CIC Operations portal: <u>http://cic.gridops.org/</u>
- GILDA VO training and application prototyping: <u>https://gilda.ct.infn.it/</u>
- Use command line clients installed on the User Interface (UI – mainaned by the VO / your institute / you)
- Use third party clients
 - E.g. GANGA, GridWay \rightarrow Thurdsay
- Use programming APIs to interact with gLite services
 - E.g. data management API \rightarrow tomorrow
- Use graphical clients
 - − E.g. P-GRADE portal \rightarrow tomorrow

GGCC Job management, information system

- Login to the grid: voms-proxy-init
- Describe your grid job in JDL
- edg-job-submit / glite-wms-job-submit → JobID
- edg-job-status
- edg-job-get-output
- lcg-infosites ...
- voms-proxy-destroy

edg-* for historical reasons glite-* current production VOs

Information sources

Enabling Grids for E-sciencE

- EGEE
 - http://www.eu-egee.org/
- gLite middleware
 - http://www.glite.org
- gLite manuals, documentation
 - http://glite.web.cern.ch/glite/documentation/
 - (gLite user guide)

• EGEE Application Identification and support (NA4)

- http://egeena4.lal.in2p3.fr
- EGEE User training and induction (NA3)
 - http://www.egee.nesc.ac.uk/

- Data services: handling large data sets
- Connecting data and job management
 - More realistic examples, reusable JDLs and scripts
- A high level application developer and executor environment: P-GRADE Portal
 - Concept of grid workflows
 - Workflow development and execution on GILDA

See you at 7pm. Enjoy your cocktail'

INFSO-RI-508833