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Differential NNLO: a young and promising
field in the LHC era
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already a significant impact on
precision phenomenology at i
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Basic mathematical problem

e Divergent loop and phase-space integrals

Fixed Integration boundaries for loops
OVERLAPPING

and phase-space integrations. '/'* SINGULARITIES

Infrared safe but otherwise arbitrary boundarles
of phase-space for acceptance cuts w
and differential distributions.




Differential Methods

experimental
observables

physical sectors, ...
Many conceptual problems

remain. Room and need for
fresh 1deas!




Subtracting factorised singularities

To obtain

[ aat® 1O [ S0 1O
U

drrt——= =
T - T

L] T

Infinite in d=4

dxxt
;




How to deal with
Overlapping singularities?
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factorization to divide the integration into a singularity free
numerical integral and integrals with fixed boundaries.

ARBITRARY BOUNDARIES (11)
Sector decomposition

NEW: Non-linear mappings




A toy example with sector
decomposition




A toy example with sector
decomposition

drdy = dzdy [O(x > y) + O(y > z)]




A toy example with sector
decomposition

drdy = dzdy [O(x > y) + O(y > z)]

Restore boundaries Singularities are

1 ( yt)e factorized!
d dt dtd .
/ + @(GHF 1) Cost:

Integral proliferation
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Non-linear mappings
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Easier to Implement

Does not proliferate integrations
Transparent and more physical factorisation of singularities




A toy example with nonlinear
mapping:




A toy example with nonlinear
mapping:

factorizes the singularity spolls integration boundaries




A toy example with nonlinear
mapping:
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factorizes the singularity spolls integration boundaries
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factorizes the singularity ~ preserves integration boundaries




A systematic method of non-linear
mappings at NNLO

.
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Real-virtual. (this work)

Double real-radiation for decays. (ihis work)




1St physical appllcatlon
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Nice proof of principle of our
method.




Feynman diagrams

Difficult, but well suited
problem for our method.
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master integrals (known since 1987).

Use the analytic result in our Monte-Carlo program for the
decay width.

Our method can be useful for two-loop amplitudes which are
not yet known analytically (more masses, off-shell legs, ...)



Real-Virtual




Real-Virtual

ut
Use Euler representation of hypergeometric function

ol 1
o (1, 1 —¢€, —¢, ——) — —Et/ dxs
t 0

Apply non-linear mapping x3t/u
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Real-Virtual (11)

Full regulator dependence must carefully expanded in epsilon
be kept and combined with phase-  and subtracted in soft/collinear limits

Space measure

* Implemented both analytic and semi-analytic (non-linear mapping)
methods. Surprisingly, no difference in evaluation time




Double Real
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S134 = A2+ A3hiAo

* We have factorized ALL overlapping singularities with partial fractioning

and just three mapping at most! e.g. A
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The inclusive check
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Jet rates with JADE algorithm
Your = 0.01
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A fully differential observable:

Maximum Energy In 2 Jet rate

LO Domm=s
NLO
NNLO —=

Fraction of events
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Conclusions

First physics application: the differential decay rate of
the Higgs boson to bottom quarks

More to follow....




