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Brief Review of Formalism

• Kaon decay into a pion and lepton pair is characterized by the
vector and scalar form factors. The physical region is
m2

l ≤ t ≤ (MK −Mπ)
2 where the form factor is real.

• For a scalar form factor, expansion about t = 0
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M4
π

+ · · ·
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, (1)

defines slope and curvature parameters where, f+(0) = 0.964(5).
Analogously for vector.

• The method exploits the fact that a bound on an integral involving
the modulus squared of the form factors along the unitarity cut is
known from the dispersion relation satisfied by a certain QCD
correlator.
Theory of unitarity bounds and low energy form factors
Gauhar Abbas, B. Ananthanarayan, I. Caprini, I. S. Imsong and S.
Ramanan
Eur. Phys. J. A 45, 389 (2010) arXiv:1004.4257 [hep-ph].



Brief Review of Formalism

• The QCD correlator
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with t± = (MK ±Mπ)
2. Positive definite and can be bounded. A

different expression for the vector form factor.

• On the other hand, in pQCD when Q ≫ ΛQCD, mq, αS MS scheme.
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(4)
Baikov, Chetyrkin and Kuhn, Phys. Rev. Lett. 96, 012003 (2006)
Baikov, Chetyrkin and Kuhn, Phys. Rev. Lett. 101,012002 (2008)



Brief Review of Formalism

• We can now use the conformal map t → z(t)

z(t) =

√
t+ −√

t+ − t√
t+ +

√
t+ − t

,

to transform the dispersion relation to

1

2π

∫ 2π

0

dθ|g(exp(iθ))|2 ≤ I (5)

where

g(z) = F (t(z))w(z).

• Square integrability implies I = |g0|2 + |g1|2 + ... [Parseval theorem]

• Improvement of the bound if f0 is known at real z(t)
z = xi , i = 1, 2, 3, ...



Brief Review of Formalism

• Further improvement by considering the Omnès function:

O(t) = exp

(

t

π

∫ ∞

t+

dt
δ(t ′)

t ′(t ′ − t)

)

,

where δ(t) is the I = 1/2 elastic S-wave Kπ scattering phase, in the
elastic region and arbitrary Lipschitz continuous above tin More
mathematical steps required to make it more stringent.

• We make a shift from t+ to tin. As a result, dispersion contribution
from t+ to tin needs to be removed from pQCD value which is now
the input for the bound (first proposed by Caprini) given below -

I ′ = χ0(Q
2)− 3
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Experimental and Theoretical Inputs

• f+(0) = 1 in the limit of md = mu = ms (SU(3) limit where all the
eight pseudoscalars are Goldstone particles).

• Corrections to the relation due to SU(3) breaking. Expected to
depart by ∼ 20%.

• Even smaller due to Ademollo-Gatto theorem.

• Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the
combination f+(0)Vus appears in the expression for rates and Dalitz
plot densities.

• Recent determinations from the lattice gives f+(0) = 0.964(5).
RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review
Letters 100 (2008) 141601]
They use 2+1 flavour of dynamical wall quarks.



Experimental and Theoretical Inputs

• A soft-pion theorem due to Callan and Treiman

f0(M
2
K −M2

π) = FK/Fπ +∆CT

∆CT ≃ 0 to two-loops in chiral perturbation theory.
J. Bijnens and P. Talavera, Nuclear Physics B 669 (2003) 341.

• Knowledge of FK/Fπ at high precision is therefore crucial.

• A soft-kaon theorem due to Oehme

f0(M
2
π −M2

K ) = Fπ/FK +∆CT

∆CT = 0.03 is one-loop in chiral perturbation theory.
J. Gasser and H. Leutwyler, Nuclear Physics B250 (1985) 517.
Not known at two-loops.

• Our work predicts −0.046 ≤ ∆̄CT ≤ 0.014 for higher order
corrections.



• FK/Fπ = 1.193± 0.006 according to recent lattice evaluations,
see e.g., L. Lellouch, arXiv:0902.4545;
see also A. Bazavov et al. [MILC collaboration],PoS CD09 (2009)
007,
which uses 2+1 flavor with improved staggered quark action.
Confirmed by S. Dürr et al. [BMW collaboration], Physical Review
D81 (2010) 054507.

• We used the phase of the S-wave of I = 1/2 of the elasticKπ
scattering for the scalar form factor, and the phase of the P-wave of
I = 1/2 for the vector form factor.



• To extimate the low-energy integral, we used the Breit-Wigner
parameterizations of |f+(t)| and |f0(t)| in terms of the resanances
given by the Belle Collaboration for fitting the rate of τ → Kπντ
decay.

• D. Epifanov et al., Physics Letters B 654, (2007), 65
reports measurement of modulus and phase of the Kπ form factors
in terms of resonances, based on about 53,000 lepton tagged events.

• Mushkelishvili-Omnès study of πK , πK ∗, Kρ and use of high
statistics LASS experiment phase shifts used to produce the πK
vector form factor and compared with BELLE
B. Moussallam, European Physical Journal C 53 (2008) 401
M. Jamin, J. A. Oller and A. Pich, JHEP 0402, 047 (2004)
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Figure: Allowed bands for the slope of the scalar form factor, narrow band for

when we include Callan-Treiman constraint.
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Figure: The slope and curvature of the scalar form factor, when we include

phase, modulus and Callan-Treiman constraint.
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factor.



Zeros

• The question of the zeros : important from theoretical and
phenomenological point of view.

• Example Adler zeros in scattering amlitude. No statement for form
factors.

• The absence of zeros is assumed in the recent analysis of KTeV data.
E. Abouzaid et al. [KTeV collaboration]
Phys. Rev. D 81 , 052001 (2010) [arXiv:0912.1291 [hep-ex]].



Figure: Domain without zeros for the scalar form factor, the small domain is

obtained without including phase and modulus in the elastic region, bigger one

using phase, modulus and Callan-Treiman constraint



Figure: Domain without zeros for the vector form factor, the small domain is

obtained without including phase and modulus in the elastic region.



Results on zeros

• Our results show that the zeros are excluded in a rather large
domain at low energies. This provides confidence in the
semiphenomenological analyses based on Omnès representations.

• In the case of complex zeros as well, the allowed zeros are rather
remote to produce visible effects.
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Conclusion

• We have reviewed the status of the vector and scalar form factors
which are of fundamental importance to the standard model.

• The results are very stringent in the scalar form factor case.

• Note the most recent results from NA48 (Veltri et.al) respect our
prediction for the slope of scalar form factor.

• Restricts the range of the slope to ∼ 0.01− 0.02, gives a near linear
correlation with the curvature.

• Eliminates zeros in significant part of the real energy line and
complex energy plane

• We do not need assumptions on the zeros or the phase above tin
(like in the recent Omnes representations). The model independence
has a price: we only are able to predict bounds. But the precision of
the input is already so large, that the bounds are stringent and
improve our knowledge on the form factors.
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