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General remarks on NLO calculations

e higher-order contributions are necessary to match experimental

accuracies and reduce theoretical uncertainty

o corrections to LHC processes are in general large

o decrease renormalization and factorization scale dependence of the

Cross section

e source of different methods and schemes to tackle complicated issues

e virtual exchange and real emission of partons lead to divergences
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Singularities

virtual-UV: real-IR soft: real-IR collinear:
virtual momentum gluon energy angle between partons
arbitrary large arbitrary small arbitrary small

e pole structure is universal — regularize using dimensional regularization

1 1
—> singularities appear as — (soft & coll.) and — (soft or coll.)
£ £

(after integration over the one parton unresolved phase space)
e but: fully inclusive measurements, which sum over all degenerate states, are free of
IR-divergences (KNL-theorem)
— averaging is obtained by integrating o with a IR-safe jet-function F

— should satisfy F;”H — F" in the collinear and soft limits
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Subtraction scheme (general remarks)

e construct local counter-terms daA, which match the behavior of the real-emission matrix element

M +1 in each soft and collinear limit:

o0 = / do" + do* + / [daR — daA]
m m+1 m+-1
~ [ [ao¥ + > veds]+ [ [aot+ S Do de”]

— took advantage of the factorization of the real-emission matrix element in the singular limits

m-+1 |:

Mm—l—l({p}m—l-l) — Z Ul({p}m+1) X Mm({p}m)
l

e mapping {p}m+1 —> {p}m necessary, which satisfies momentum conservation and on-shellness for

both configurations
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Motivation for a new scheme

e one can use splitting functions (proposed in the context of a parton shower with quantum interference)

as dipole subtraction terms
Z. Nagy, D. Soper, arXiv:0706.0017v2; 0801.1917v1l; 0805.0216v1 [hep-ph]

— have same behavior in singular limits (same pole structure, but different finite parts)
— when combining NLO-calculations with parton shower, less counter-terms (avoid double counting)

have to be added

e new mapping between {p},, and {p},.+1 phase spaces
— leads to smaller number of subtractions terms
= for a 2 — N process:

o CS: momentum fraction of a single designated spectator (final state) ~ N[?;ipoles

2

o NS: momentum fraction of all non-splitting final state partons ~ NDiIDOIes

e it's fun
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Nagy-Soper subtraction scheme - example:
final state mapping

m-+1
e {p}11 configuration (starting point) : Q = Pa+ Do = Z Pj
j=1

1 Il -+

o {p},, configurationvia P, =p; +p; = pi: pi=—F @

A 2Aai
P2 — m2(f, 2
with y = — m(f); a; = ¢ A=Ay, a4,...)
2p;i - Q 2p; - @
e total Momentum of spectators :  before splitting after splitting
K=Q-p K-Q-P
. 2(K + K)K + K), 2K'K,

e transfer of momentum via LT :  A* (K,K) = g/, — (K + - 'K + K) >
(K + K)? K

— K“:A“V(K,K)K” or rather pg:A“y(K,f()ﬁZ né¢{l,j}
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Nagy-Soper subtraction scheme - subtraction function

e subtraction function : Dij({ﬁ) f}m+1) = <M({p7 f}%) ‘Pij({Qiﬁ p, f}mﬂ) ‘M({p, f}:vjz)>
(f = flavor, QQ;; = momentum mapping)

e the operator P;; acts on the color @ spin space :

Pij({Qz‘j, ﬁ,f}m+1) = (fz, fg) i ({nga pa f}m-I-l) Z;({ng, ﬁa f}m—l—l)/

dlrect terms

+> T T~{Vks;ft (£Qijs By F3mi) Vi ({Qugs D5 fImir)

k#i,j

‘|‘9(Z > 1) SOft({QZja p, f}m—I—l) TSO&({QZ]) p7 f}m—l—l)}

mterference terms

(C = Casimir, T; = color matrix, V;; = splitting operator on the spin space)
— direct terms contribute leading singularities: p;, p; coll., p; soft but not coll. to p;

— interference terms have no leading singularity when p; is coll. with p; or Py

— use eikonal approximation
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Nagy-Soper subtraction scheme - splitting functions,
direct terms

e define the splitting functions v;; from the QCD vertices, spinors and polarization vectors for on-shell
partons :

<{§}m+1|‘/i:;({Qij7 D, f}m+1) |{§}m> — ( H 5§k8%)vij({ﬁ7 f}erl’ §j7 Si, S%)
k¢{i,j}

PtnY 4+ nHtPY

e we use the axial gauge: n; - A = 0, with D" (P;n) = —g¢"" +
® )

e splitting functions examples:

A\ K U Ai Ai H 7 ; = ~.U A~.A~.
o final state, ¢ — qg © vy = e, (Bj, 85 Q) <p; i %(Tij f)v;z(f»};f} )jpzs» p
p; - [\Pi = Pj)° — m={J;

ﬁ(ﬁza §z)/yyv(ﬁj7 §j) ta
(Di + D;j)?

o final state, g — qq : wv;; = —¢, (13;, 573 Q) D, (pi + Dj, n3)
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Nagy-Soper subtraction scheme - splitting functions,
interference terms

; e soft splitting function:

f ~ P N ~
v@s‘Ot({pa f}m—l—la Sj, Siy SZ)

_ 5. e(pj, 555 Q)" - pi
I Di " Dj

e ambiguity with momentum mapping in squared expression: Wj;, = v?o'ct(vzo'ct)*cs%si Sy
< mapping from p; — p; + p; or pr — D + Dj Z
— define W with weight A,;, and W) with weight Ay,
— default value for weight functions: A;, = Ay; = 1/2, better: A({p}m41)

pi - D(pj, Q) - b

e example: spin averaged i-k interference function: W, = A ———————
Pj - PiPj " Pk

(; - br) i - D(B;, Q) - pi
(p; - D) Pi - D(B;, Q) - pi + (B; - Bi) ' Pr - D(B;, Q) - P

with A, =
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Nagy-Soper subtraction scheme - integrated dipoles

e main work: calculation of the I operator (+ finite parts - K ... )

/ dot =3 / do” ®/dvdipo.e :/ [daB @I]
m—+1 m 1 m

dipoles

—> contains the singularity structure that cancels all € poles in the virtual contribution doV

...—I—/Oldaj/me'B(CCp)@[K—l—...]

— contains finite parts as well as collinear singularities (of initial state partons . . . )
e due to different mapping, integrals are more complicated in comparison to CS

e one particle phase-space measure:

da da ANO2 P2 2] 2
dgp/dPQ&fh(ﬁ?—mz)&fh(ﬁ?—mf)[ (Qa i )] %

i (27)d—1
do(d) [ A .
—> parametrization is a little bit more complicated, some parts have to be evaluated numerically
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Implementation

e first numerical test and comparisons with Catani-Seymour scheme on simple collider processes with
up to two massless particles in the final state can be looked up here:
C. H. Chung, T. Robens, arXiv:1001.2704 [hep-ph], C. H. Chung, M. Krémer, T. Robens, arXiv:1012.4948 [hep-phl
— reproduced results from the literature, implementation agrees with results obtained using
Catani-Seymour scheme (private code)

: : ocs — ONS
e example: results for single W, plot: difference between CS and NS:

0cCs

0.0014 9cs — Ins
acs

5x 10741

—5x 1074

—0.001 4

0 9 4 6 N 10 12 14
R4 Shadr [T@v\’r]

— generalization to the massive case with arbitrary number of partons in final state
e extension of the HELAC-DIPOLES package

M. Czakon, C. G. Papadopoulos, M. Worek, JHEP 0908 (2009) 85
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HELAC-DIPOLES package implementation
(current status)

e new NS-mapping subroutine v
e NS-splitting functions for real-emission (included with minimal modification of the original
CS-based code) v
— in singular limits same or better reproduction of %
e integrated NS-Dipoles for final states (massless/massive) v (ongoing work: initial states) o
e ready for arbitrary processes v/
— with massive and massless external states v/
e uses further features of the HELAC-DIPOLES package
— helicity sampling for partons v
— random polarizations for non-partons (soon) o
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Final remarks and conclusion

e new NLO subtraction scheme, based on context of an improved shower formalism
e global mapping leads to less dipole configurations

e interesting for multi-parton processes (with additional parton shower)

e implementation has (will have) access to all features of HELAC-DIPOLES package

e Open questions which increase curiosity and motivation:
— How is the numerical behavior in comparison to CS (different A/L‘k({p}m_l_l)
weight functions, ... ) 7
— How big is the gain of speed due to the new mapping after optimization of the code?

— How will look the outcome if we attach the NS parton shower
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Final remarks and conclusion

e new NLO subtraction scheme, based on context of an improved shower formalism
e global mapping leads to less dipole configurations

e interesting for multi-parton processes (with additional parton shower)

e implementation has (will have) access to all features of HELAC-DIPOLES package

e Open questions which increase curiosity and motivation:
— How is the numerical behavior in comparison to CS (different A/L‘k({p}m_l_l)
weight functions, ... ) 7
— How big is the gain of speed due to the new mapping after optimization of the code?

— How will look the outcome if we attach the NS parton shower

Work in progress . . .
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