Alternative subtraction method in QCD using Nagy-Soper scheme

Michael Kubocz

in collaboration with

Giuseppe Bevilacqua, Michał Czakon, Michael Krämer

Institute for Theoretical Particle Physics and Cosmology

Outline

• NLO calculations, subtraction schemes, ...

• Nagy-Soper subtraction scheme

• Implementation in HELAC

Summary and Outlook

General remarks on NLO calculations

- higher-order contributions are necessary to match experimental accuracies and reduce theoretical uncertainty
- corrections to LHC processes are in general large
- decrease renormalization and factorization scale dependence of the cross section
- source of different methods and schemes to tackle complicated issues
- virtual exchange and real emission of partons lead to divergences

Singularities

virtual-UV: virtual momentum arbitrary large

real-IR soft: gluon energy arbitrary small

real-IR collinear: angle between partons arbitrary small

- pole structure is universal → regularize using dimensional regularization
 - \rightarrow singularities appear as $\frac{1}{\varepsilon^2}$ (soft & coll.) and $\frac{1}{\varepsilon}$ (soft or coll.)

(after integration over the one parton unresolved phase space)

- but: fully inclusive measurements, which sum over all degenerate states, are free of IR-divergences (KNL-theorem)
 - \rightarrow averaging is obtained by integrating σ with a IR-safe jet-function F_i
 - ightarrow should satisfy $F_j^{m+1} \longrightarrow F_j^m$ in the collinear and soft limits

Subtraction scheme (general remarks)

• construct local counter-terms $d\sigma^A$, which match the behavior of the real-emission matrix element \mathcal{M}_{m+1} in each soft and collinear limit:

$$\sigma^{\text{NLO}} = \int_{m} d\sigma^{V} + \int_{m+1} d\sigma^{A} + \int_{m+1} \left[d\sigma^{R} - d\sigma^{A} \right]$$
$$= \int_{m} \left[d\sigma^{V} + \sum_{i} \mathcal{V} \otimes d\sigma^{B} \right] + \int_{m+1} \left[d\sigma^{R} + \sum_{i} \mathcal{D} \otimes d\sigma^{B} \right]$$

→ took advantage of the factorization of the real-emission matrix element in the singular limits

$$\mathcal{M}_{m+1}\big(\{p\}_{m+1}\big) \longrightarrow \sum_{l} v_l\big(\{p\}_{m+1}\big) \otimes \mathcal{M}_m\big(\{p\}_m\big)$$

• mapping $\{p\}_{m+1} \longrightarrow \{p\}_m$ necessary, which satisfies momentum conservation and on-shellness for both configurations

Motivation for a new scheme

• one can use splitting functions (proposed in the context of a parton shower with quantum interference)

as dipole subtraction terms

- Z. Nagy, D. Soper, arXiv:0706.0017v2; 0801.1917v1; 0805.0216v1 [hep-ph]
- \rightarrow have same behavior in singular limits (same pole structure, but different finite parts)
- → when combining NLO-calculations with parton shower, less counter-terms (avoid double counting)
 have to be added
- ullet new mapping between $\{p\}_m$ and $\{\hat{p}\}_{m+1}$ phase spaces
 - → leads to smaller number of subtractions terms
 - \Rightarrow for a $2 \to N$ process:
 - \circ CS: momentum fraction of a single designated spectator (final state) $\sim N_{ extstyle extst$
 - \circ NS: momentum fraction of all non-splitting final state partons $\curvearrowright N_{\mathsf{Dipoles}}^2$
- it's fun

Nagy-Soper subtraction scheme - example: final state mapping

•
$$\{\hat{p}\}_{m+1}$$
 configuration (starting point) : $Q = \hat{p}_a + \hat{p}_b = \sum_{j=1}^{m+1} \hat{p}_j$

•
$$\{\hat{p}\}_m$$
 configuration via $P_i = \hat{p}_i + \hat{p}_j \rightarrow p_i$: $p_i = \frac{1}{\lambda}P_i - \frac{1-\lambda+y}{2\lambda a_i}Q$ with $y = \frac{P_i^2 - m^2(f_i)}{2p_i \cdot Q};$ $a_i = \frac{Q^2}{2p_i \cdot Q};$ $\lambda = \lambda(y, a_i, \ldots)$

• total Momentum of spectators : before splitting

after splitting

$$K = Q - p_i \qquad \qquad \hat{K} = Q - P_i$$

 $\bullet \text{ transfer of momentum via LT}: \qquad \Lambda^\mu_{\nu}\big(\hat{K},K\big) = g^\mu_{\nu} - \frac{2(\hat{K}+K)^\mu(\hat{K}+K)_\nu}{(\hat{K}+K)^2} + \frac{2\hat{K}^\mu K_\nu}{K^2}$

$$\Longrightarrow \quad K^{\mu} = \Lambda^{\mu}_{\ \nu} \big(K, \hat{K} \big) \hat{K}^{\nu} \quad \text{ or rather } \quad p^{\mu}_{n} = \Lambda^{\mu}_{\ \nu} \big(K, \hat{K} \big) \hat{p}^{\nu}_{n} \quad n \notin \{l, j\}$$

Nagy-Soper subtraction scheme - subtraction function

- subtraction function : $\mathcal{D}_{ij}(\{\hat{p},\hat{f}\}_{m+1}) = \left\langle M(\{p,f\}_m^{ij}) \middle| \mathbf{P}_{ij}(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}) \middle| M(\{p,f\}_m^{ij}) \right\rangle$ ($f \cong \text{flavor}, Q_{ij} \cong \text{momentum mapping}$)
- ullet the operator $oldsymbol{P}_{ij}$ acts on the color \otimes spin space :

$$\begin{split} \boldsymbol{P}_{ij}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big) &= \underbrace{C\left(\hat{f}_{i},\hat{f}_{j}\right)V_{ij}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big)V_{ij}^{\dagger}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big)}_{\text{direct terms}} \\ &+ \sum_{\tilde{k}\neq i,j} T_{\tilde{i}} \cdot T_{\tilde{k}}\Big\{V_{kj}^{\text{soft}}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big)V_{ij}^{\dagger,\text{soft}}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big) \\ &+ \theta(i\geq 1)V_{ki}^{\text{soft}}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big)V_{ji}^{\dagger,\text{soft}}\big(\{Q_{ij},\hat{p},\hat{f}\}_{m+1}\big)\Big\}}_{\text{interference terms}} \end{split}$$

 $(C \cong \mathsf{Casimir}, \, T_i \cong \mathsf{color} \, \mathsf{matrix}, \, V_{ij} \cong \mathsf{splitting} \, \mathsf{operator} \, \mathsf{on} \, \mathsf{the} \, \mathsf{spin} \, \mathsf{space})$

- \rightarrow direct terms contribute leading singularities: \hat{p}_i, \hat{p}_j coll., \hat{p}_j soft but not coll. to \hat{p}_i
- \rightarrow interference terms have no leading singularity when \hat{p}_j is coll. with \hat{p}_i or \hat{p}_k
 - \hookrightarrow use eikonal approximation

Nagy-Soper subtraction scheme - splitting functions, direct terms

ullet define the splitting functions v_{ij} from the QCD vertices, spinors and polarization vectors for on-shell partons :

$$\langle \{\hat{s}\}_{m+1} | V_{ij}^{\dagger} (\{Q_{ij}, \hat{p}, \hat{f}\}_{m+1}) | \{\hat{s}\}_{m} \rangle = \Big(\prod_{k \notin \{i,j\}} \delta_{\hat{s}_{k}s_{\tilde{k}}} \Big) v_{ij} \big(\{\hat{p}, \hat{f}\}_{m+1}, \hat{s}_{j}, \hat{s}_{i}, s_{\tilde{i}} \big)$$

- we use the axial gauge: $n_{\tilde{i}}\cdot A=0$, with $D^{\mu\nu}(P;n)=-g^{\mu\nu}+\frac{P^{\mu}n^{\nu}+n^{\mu}P^{\nu}}{(P\cdot n)}$
- splitting functions examples:

$$\text{o final state, } q \to qg: \qquad v_{ij} = \varepsilon_{\mu} \big(\hat{p}_{j}, \hat{s}_{j}; \hat{Q}\big)^{*} \frac{\overline{U}(\hat{p}_{i}\hat{s}_{i})\gamma^{\mu} \big[\hat{p}_{i} + \hat{p}_{j} + m(f_{\tilde{i}})\big] \varkappa_{\tilde{i}} U(\hat{p}_{\tilde{i}}\hat{s}_{\tilde{i}})}{2p_{\tilde{i}} \cdot n_{\tilde{i}} \big[(\hat{p}_{i} + \hat{p}_{j})^{2} - m^{2}(f_{\tilde{i}})\big]} t^{a}$$

$$\circ \text{ final state, } g \to q \overline{q}: \quad v_{ij} = -\varepsilon_{\mu} \big(\hat{p}_{\tilde{i}}, \hat{s}_{\tilde{i}}; \hat{Q} \big) D_{\mu\nu} (\hat{p}_i + \hat{p}_j, n_{\tilde{i}}) \frac{U(\hat{p}_i, \hat{s}_i) \gamma^{\nu} V(\hat{p}_j, \hat{s}_j)}{(\hat{p}_i + \hat{p}_j)^2} \, t^a$$

Nagy-Soper subtraction scheme - splitting functions, interference terms

• soft splitting function:

$$v_i^{\text{soft}} \left(\{ \hat{p}, \hat{f} \}_{m+1}, \hat{s}_j, \hat{s}_i, s_{\tilde{i}} \right)$$

$$= \delta_{\hat{s}_i, s_{\tilde{i}}} \frac{\varepsilon \left(\hat{p}_j, \hat{s}_j; \hat{Q} \right)^* \cdot \hat{p}_i}{\hat{p}_i \cdot \hat{p}_j}$$

- ullet ambiguity with momentum mapping in squared expression: $W_{ik} = v_i^{\rm soft} \left(v_k^{\rm soft}\right)^* \delta_{\hat{s}_i',s_{\tilde{i}}'} \delta_{\hat{s}_k,s_{\tilde{k}}}$
 - \hookrightarrow mapping from $p_{\tilde{i}} \to \hat{p}_i + \hat{p}_j$ or $p_{\tilde{k}} \to \hat{p}_k + \hat{p}_j$
 - ightarrow define $W_{ik}^{(i)}$ with weight A_{ik} and $W_{ik}^{(k)}$ with weight A_{ki}
 - \rightarrow default value for weight functions: $A_{ik} = A_{ki} = 1/2$, better: $A(\{p\}_{m+1})$
- example: spin averaged i-k interference function: $\overline{W}_{ik} = A_{ik} \frac{\hat{p}_i \cdot D(\hat{p}_j, Q) \cdot \hat{p}_k}{\hat{p}_j \cdot \hat{p}_i \, \hat{p}_j \cdot \hat{p}_k}$

with
$$A_{ik} = \frac{\left(\hat{p}_j \cdot \hat{p}_k\right)^2 \hat{p}_i \cdot D(\hat{p}_j, \hat{Q}) \cdot \hat{p}_i}{\left(\hat{p}_j \cdot \hat{p}_k\right)^2 \hat{p}_i \cdot D(\hat{p}_j, \hat{Q}) \cdot \hat{p}_i + \left(\hat{p}_j \cdot \hat{p}_i\right)^2 \hat{p}_k \cdot D(\hat{p}_j, \hat{Q}) \cdot \hat{p}_k}$$

Nagy-Soper subtraction scheme - integrated dipoles

ullet main work: calculation of the $m{I}$ operator (+ finite parts $oldsymbol{ ilde{K}}\dots)$

$$\int_{m+1} d\sigma^A = \sum_{\text{dipoles}} \int_m d\sigma^B \otimes \int_1 dV_{\text{dipole}} = \int_m \left[d\sigma^B \otimes \boldsymbol{I} \right]$$

o contains the singularity structure that cancels all arepsilon poles in the virtual contribution $\mathrm{d}\sigma^V$

$$\ldots + \int_0^1 \mathrm{d}x \int_m \mathrm{d}\sigma^B(xp) \otimes \left[\boldsymbol{K} + \ldots \right]$$

- ightarrow contains finite parts as well as collinear singularities (of initial state partons . . .)
- due to different mapping, integrals are more complicated in comparison to CS
- one particle phase-space measure:

$$d\xi_{p} \int dP_{i}^{2} \frac{d^{d}\hat{p}_{i}}{(2\pi)^{d-1}} \delta_{+}(\hat{p}_{i}^{2} - m_{i}^{2}) \frac{d^{d}\hat{p}_{j}}{(2\pi)^{d-1}} \delta_{+}(\hat{p}_{j}^{2} - m_{i}^{2}) \left[\frac{\lambda(Q^{2}, P_{i}^{2}, M^{2})}{\lambda(Q^{2}, m_{\tilde{i}}, M^{2})} \right]^{\frac{d-3}{2}} \times (2\pi)^{d} \delta^{(d)}(\hat{p}_{i} + \hat{p}_{j} - P_{i}); \quad \mathbf{P}_{i} \neq 0$$

→ parametrization is a little bit more complicated, some parts have to be evaluated numerically

Implementation

- first numerical test and comparisons with Catani-Seymour scheme on simple collider processes with up to two massless particles in the final state can be looked up here:
 - C. H. Chung, T. Robens, arXiv:1001.2704 [hep-ph], C. H. Chung, M. Krämer, T. Robens, arXiv:1012.4948 [hep-ph]
 - → reproduced results from the literature, implementation agrees with results obtained using Catani-Seymour scheme (private code)
- example: results for single W, plot: difference between CS and NS: $\frac{\sigma_{\rm CS}-\sigma_{\rm NS}}{\sigma_{\rm CS}}$

- ⇒ generalization to the massive case with arbitrary number of partons in final state
- extension of the HELAC-DIPOLES package
 - M. Czakon, C. G. Papadopoulos, M. Worek, JHEP 0908 (2009) 85

HELAC-DIPOLES package implementation (current status)

- new NS-mapping subroutine √
- NS-splitting functions for real-emission (included with minimal modification of the original

```
CS-based code) ✓
```

- \rightarrow in singular limits same or better reproduction of σ^R
- integrated NS-Dipoles for final states (massless/massive) √ (ongoing work: initial states) ∘
- ready for arbitrary processes √
 - \rightarrow with massive and massless external states \checkmark
- uses further features of the HELAC-DIPOLES package
 - \rightarrow helicity sampling for partons \checkmark
 - \rightarrow random polarizations for non-partons (soon) \circ

 $\rightarrow \dots$

Final remarks and conclusion

- new NLO subtraction scheme, based on context of an improved shower formalism
- global mapping leads to less dipole configurations
- interesting for multi-parton processes (with additional parton shower)
- implementation has (will have) access to all features of HELAC-DIPOLES package
- Open questions which increase curiosity and motivation:
 - \rightarrow How is the numerical behavior in comparison to CS (different $A_{ik}(\{p\}_{m+1})$ weight functions, . . .) ?
 - \rightarrow How big is the gain of speed due to the new mapping after optimization of the code?
 - → How will look the outcome if we attach the NS parton shower

Final remarks and conclusion

- new NLO subtraction scheme, based on context of an improved shower formalism
- global mapping leads to less dipole configurations
- interesting for multi-parton processes (with additional parton shower)
- implementation has (will have) access to all features of HELAC-DIPOLES package
- Open questions which increase curiosity and motivation:
 - \rightarrow How is the numerical behavior in comparison to CS (different $A_{ik}(\{p\}_{m+1})$ weight functions, . . .) ?
 - \rightarrow How big is the gain of speed due to the new mapping after optimization of the code?
 - → How will look the outcome if we attach the NS parton shower

Work in progress . . .