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Factorisation formula (terms O(1/Q) neglected)

ld
Fea)= > [ el wa@) ot (7.¢°)
f=q,5.8 "~

I have been calculated up to order a2 [Rijken, van Neerven ('96, '97)]
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Otot dx d cos 8( +cos”0) Fr + 45'n [+ 4cos "

Introduction

x = s where Q2 = q2 >0

6 —> angle in the centre-of-mass frame between e~(*) and the hadron h(p).
Factorisation formula (terms O(1/Q) neglected)
h 2 Ydz 5 2 h(X A2
Fl(x, Q%) = Z —Cf (z,(Q%)) Df <*,Q )
f=q.ag”* * i

cT; have been calculated up to order a2 [Rijken, van Neerven (96, '97)]

Time-like splitting functions P (x, as(@?)) in evolution equation

dlin Q2 Q2 / *Pba(z O‘S(Qz)) < Q2>

T-like and S-like cases related by Analytic cont. [Bliimlein,Ravindran,vanNeerven(2000)]
PO (x) identical to their space-like couterparts [Gribov,Lipatov(1972),..]

P(I)T(X) [Curci,Furmanski,Petronzio(80), Floratos,Kounnas,Lacaze(81), Stratmann,Vogelsang(97),...]
P@)T(x) [Mitov,Moch,Vogt(2006), Moch Vogt(2007), Almasy,Moch, Vogt(2011)].
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Introduction: SGE, Physical Kernel and our method

We are interested in the all-order logarithmic behaviour in the large x limit of
the time-like coefficient and splitting functions.

Soft Gluon Exponentiation (SGE): resums dominant (1 — X)J:1 large-x
contributions to ¢ q(x, as) and c(;g(x,as): NNNLL, 7 logs [Moch,Vogt(2009)].

Recent studies address also resummation for (1 — x)° terms with SGE
[Grunberg(07),Laenen,Magnea,Stavenga(08), Grunberg,Ravindran(09), Laenen,Stavenga, White(09)]

Physical Kernel methods allow resummation of the highest three (1 — x)°
logarithms (flavour non-singlet case) [Moch,Vogt(2009)]

Our approach: functional form together with KLN

All-order results for the highest three large-x logarithms of time-like splitting
and coefficient functions in Higgs- (in heavy top limit, with eff. ¢G,,, G*¥
coupling) and gauge-boson exchange SIA are presented.

These results have been derived by studying the unfactorised partonic
fragmentation function in terms of constraints imposed by the functional
forms together with their Kinoshita-Lee-Nauenberg (KLN) cancellations
required by the mass factorisation theorem.
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n T(n) . _ Gs
akxas ZasBk with =

Introduction

‘Off-diagonal’ coeff's fnct's: double—log higher-order enhancement as x — 1
2n—2

e (" (x) ST DM (1 - x) + O(1) for a k=T, g or ¢,q

2n—3
dx) = 1-x)% <Z DM 1n21=270(1 — x) + 0(1)>
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Introduction

‘Off-diagonal’ coeff's fnct's: double—log higher-order enhancement as x — 1

2n—2
) = Yo DM (1-x) 4 O(1) for a k=T, g or 6,9
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Writing the expansion of the time-like splitting functions
oo

PL(x as) =Y ar* P (x)
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Introduction: SIA in the large-x limit

We look at the large-x structure of the time-like coefficient funcion
T(n . Qs
akxas Za” () with 3=

Sak

‘Off-diagonal’ coeff's fnct's: double—log higher-order enhancement as x — 1

2n—2
) = Yo DM (1-x) 4 O(1) for a k=T, g or 6,9
2n—3
V) = ([1-x)k <Z DM 2"2’(1—x)+0(1)>

Writing the expansion of the time-like splitting functions
oo
-
PR(xas) =Y al™ P (x)
n=0
Diagonal splitting functions (in MSbar) stable under higher-order corrections

P00 =AM (1 =) 4+ B 5(1—x) + ¢/ In(1 - x) + O(1)

[Korchemsky(89), Moch,Vermaseren,Vogt(04), Dokshitzer,Marchesini,Salam(05)]

Off-diagonal splitting functions show double-logarithmic enhancement
2n—1

P )—ZD”"’ n"~/(1 - x) + O(1)
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Threshold logarithms before factorisation (1)

Unfactorized partonic structure functions in D = 4 — 2¢ dimensions

dZ _ ., da

~. _ s
Taj= CaiZj, —Y=P= ain Q2Z T —€as + Bp=a
al . e ... €~ 2: lower-order terms,  e~!: n-loop splitting functions+. ..,
€%: n-loop coefficient fct's 4+..., €k, 0 < k < I: required for order n 4/
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Threshold logarithms before factorisation (1) e emindudve

ete™ annihilation

i i i i ; ; Adriano Lo Prest
Unfactorized partonic structure functions in D = 4 — 2¢ dimensions Adrian resti

. dZ .,  das

=G, Zj, —yv=P= V4 = —eas + Bp=a
A din@2° 7 dinQ2 s+ 8
N . s 1 e . Threshold logarithms
al : € "...e “: lower-order terms, €~ *: n-loop splitting functions+-. .., before factorisation
€%: n-loop coefficient fct's 4+..., €k, 0 < k < I: required for order n 4/

N° and N~1 transition functions Z to next-to-leading log (NLL) accuracy

-1
1“/81 1S ket k(L4 K)!
4, @ 07*"("71) +Ze” I Z To T
Bo2 1 "R L Utk
_?/Z:;E Z Yo /’YOW(”(”—l)—I(/""k‘*‘l))

+NNLL contrlbutlons (explicit expressions) + ...

e~ off-diagonal entries: contributions up to N1 In"*/=1

Diagonal cases: 7 only for N0 part, second term with / =1 for N—1 NLL
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Threshold logarithms before factorisation (I1)
D-dimensional coefficient functions &a: finite for e — 0

E E (n,1)

cT | _T(nt

Ca,i = ldiagonal case T ag € Ca,i
n=1 /=0

C‘gn’_,/): | additional factors In N relative to ca",.‘ ;

(n0) — c‘gn) discussed above.
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Large-x resummation

Threshold logarithms before factorisation (I1) in semi-inclusive

ete™ annihilation

D-dimensional coefficient functions E’a: finite for e — 0

E E (n,1)

cT | _T(nt

Ca,i = ldiagonal case T ag € Ca,i
n=1 /=0

(n,1) (n,0)

n n) Threshold logarithms
c,; '+ I additional factors In N relative to c; ;

= C( ’ discussed above. before factorisation
a,i

Full NTLO calc. of T, j: highest m + 1 powers of e~ to all orders in as

7T _}PT(0)+CT(1,0) LoecTM) 2. T(12) | 3.T(13)
€
770 _ LpTopTe gy - L [PT® 4 2pTOLTOO] | (TC0) _ pTO) T
2e2 2e
Te [CT(Z,I) _ PT(O)CT(I,Z)} .

1
IO = RTOPTO 4 o) (pTO) 1 2)

1
+os [PTW(EPTO 1 250) + PTOEPTO T 435,70 4 55,)]

76i [2PT(2) +3pTM T | p0) (6 TR0 _3pT(0) T _ 3506”1’1))}
€

TGO %PT(I)CT(I,I) _pTO T | %PT(O) (Pr(o) N Bo) T

Extension to all powers of e: all-order resummation of highest m+ 1 logs.
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Threshold logarithms before factorisation (I11)

The main part of our calculations is performed in Mellin-N space

f(N) = /01 dxxM 1 f(x) or f(N) = /01 dx (xN_l — 1) f(x)+

Large-x logarithms correspond to large-N logs after Mellin transform

I

In"(1 — 71n+1 —1)"
"= CO™ iy 4 =¥ E ey
1—x i n+1 N
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I

n nt1 n
<|n (17X)> O™ ey, a—ma— M E ey
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Large-x resummation

Threshold logarithms before factorisation (I11) n semiinclusie
lation

The main part of our calculations is performed in Mellin-N space

f(N) = /01 dxxM 1 f(x) or f(N) = /01 dx (xN_l — 1) f(x)+

Threshold logarithms
before factorisation

Large-x logarithms correspond to large-N logs after Mellin transform

—1)"
x)ﬂuln"/\/+...
N2

R 1
<In (1*X)> v (=1) * S I (1—x)In"(1—
1—x + n+1

Large-N logarithmic behaviour of coeff’s and transition functions

(n0)  _T(nJ) 21 (n0)  _T(n) 1 on—14
T4 Sog ~ In N+... T s Coq ~ Nln N+...
T(n,l) 1 on—24 T(n0) 1 2n—24
Cl.q ~ In N+ ... g B In N+ ...
1
Zik| g ~ € "IN+ Ziil o ~ e’"ﬁln"’lN—&—...
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The main part of our calculations is performed in Mellin-N space

f(N) = /01 dxxM 1 f(x) or f(N) = /01 dx (xN_l — 1) f(x)+

Large-x logarithms correspond to large-N logs after Mellin transform Thresthalt] (epritings
before factorisation
In"(1 — x —1)ntt —1)"
o I 7 G YR (17x)|n"(17x)¥!|n"N+...
1—x i n+1 N2

Large-N logarithmic behaviour of coeff’s and transition functions

(1) _T(n1) 2+ (ml) _T(nJ) 1 on—14
T4 Sog ~ In N+ ... T s Coq ~ Nln N-+...
T(n0) 1 on—24 T(n0) 1 2n—24
Cl.q Nln N+ ... g N2|n N+ ...
_ P R
Zkk|ag ~ e "In"N+ ... Z,';,gj an ~ € nﬁlnn N+ ...

Structure of the unfactorised amplitudes
Trg=crgZsg ~ OQ1) — Tr,=crqZqg + cryZgg ~ O(1/N)
T T T T
Ty ™ CogZeg ~ ol — Tha=CogZeq + hqZsa ~ O(1/N)
T T T T T
Tq=¢clqgZqa ~ OL/N) — T, ,=c 2 + ¢ zZgg ~ O(1/N?)
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Maximal phase space SIA:
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NLO: 1 —2+1 (1—x)"17ex / one other variable
0
‘ 1
N?LO:1 =242 (1—x)"172x- / four other variables
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N°LO:1 =243 (1—x)"13ex- / seven other variables
0
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D-dim. structure of unfactorised observables

Maximal phase space SIA:

NLO: 1 —52+1 (1—x)"1"¢x"
N?LO:1 —» 242 (1-x)"17%x

N°LO:1 - 243 (1—x)"173%x

1
/ one other variable
0
1
: / four other variables
0

1
: / seven other variables
0

Purely real contributions: no additional factors (1 — x)~¢ from integral

R —1—ne
TR (=2 (- s
£=0

(n)LL (n)NLL
aJ§ +e RaJ§ +}
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Large-x resummation

D-dim. structure of unfactorised observables in semi-inclusive

eTe™ annihilation
Maximal phase space SIA: Adriano Lo Presti

1
NLO: 1 —2+1 (1—x)"17ex / one other variable
0

1
N?LO:1 =242 (1—x)"172x- / four other variables
0

1 Generalised
3 . —1-3e ... . exponentiation of the
N°LO:1 —-2+4+3 (1—-x) X /0 seven other variables oo/ lorge N

logarithms

Purely real contributions: no additional factors (1 — x)~¢ from integral
(MR _ _ —1—n Y3 (n)LL (n)NLL
T =007 - g (R RO
£€=0

Mixed contributions (1 — r 4+ 2): n — r additional factors (1 — x)~¢

MM _ z":(l — )Ll Z(l —x)§ g {’V’i,"j)? T M(Z)ﬁNLL I }

a,J
I=r £=0
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NLO: 1 —2+1 (1—x)"17ex / one other variable
0

1
N?LO:1 =242 (1—x)"172x- / four other variables
0

1 Generalised
3 . —1-3e ... . exponentiation of the
N°LO:1 —-2+4+3 (1—-x) X /0 seven other variables oo/ lorge N

logarithms

Purely real contributions: no additional factors (1 — x)~¢ from integral
(MR _ _ —1—n Y3 (n)LL (n)NLL
T =007 - g (R RO
£€=0

Mixed contributions (1 — r 4+ 2): n — r additional factors (1 — x)~¢
n
(mM _ —1-1 (n)LL (n)NLL
T = D20 (0 gy (M M
I=r £=0

Purely virtual part (in diagonal cases, £ = 0): v*qq, Hgg form factors

v
T = a0 g (VIR VT
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KLN cancellation between purely real, mixed and purely virtual contributions i fation

(n) _ (mMR__(mMM (mV _ 1 (n)0 (n)1 2 1(n)2
T = TR Tl +(T. )diag = AT e 2Tl +}

a,j aJ en
= Up to n — 1 relations between the coeff's of (1 —x)~1='¢ 1 =1,...,n
Log expansion: NXLL higher-order coefficients completely fixed, if first k + 1 Generalised
powers of € known to all orders - provided by NKLO calculations. fa‘r‘;‘;"f"fa'féf';\f’m‘e

logarithms
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powers of € known to all orders - provided by NKLO calculations.

Present situation: (a) N°LO for F,,  (b) NLO for F[

= resummation of the (a) three and (b) two highest N=1 Ink N terms to all
orders in as: consistent with, and extending, MV Physical Kernel results

In Mellin-N space one can rewrite the (off-diag) unfactorised amplitudes like

s T T(n,i :
(N N e2n— 12( ,n, + B, ("I) +E2C37£n,) + .-.)exp(e(n—l) In N)

Once the coefficients A, ( ), BaT,((" 4 and CT(" ) are obtained,

the unfactorised amplltude at all orders at NNLL is known.

We extract the coefficient function at all order at such logarithmic accuracy
using mass factorisation relations.
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All order expressions: new functions involving Bernoulli numbers [LL:Vogt('10)].

Relation between even-n Bernoulli numbers and the Riemann (-function

_ X = - x X (=1)" X \2n
Bo(x) =1- 7 — Z [(2n ), |BZn|X2 =1- E*HZ;: @n)! G2n <§>

Results
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All order expressions: new functions involving Bernoulli numbers [LL:Vogt('10)]. e Lo P

Relation between even-n Bernoulli numbers and the Riemann (-function

(oo}

X \2n
Bo(x) =1~ 7 ~ Z [(2n)' 1Bl =1 % Z: (2n X ()

Bo to appear for the LL result; further B-functions for NLL and NNLL results.
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© B, Results
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Bernoulli functions

All order expressions: new functions involving Bernoulli numbers [LL:Vogt('10)].
Relation between even-n Bernoulli numbers and the Riemann (-function

" ()"

(oo}

|32 |x2":1777
" nz‘: (2n

ol =1-5~ Z P

Bo to appear for the LL result; further B-functions for NLL and NNLL results.

10

30

Bl = Zn!(n—f—k)!nn

20

¥
~
—
X
N
I

10

-10 0 0 8

1 1 1 1 691
——, Bs=—, ,Buo=——,
30 42 2730
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Bernoulli functions

All order expressions: new functions involving Bernoulli numbers [LL:Vogt('10)].

Relation between even-n Bernoulli numbers and the Riemann (-function

(oo}

X \2n
Bo(x) =1~ 7 ~ Z [(2n)' 1Bl =1 % Z: (2n X ()

Bo to appear for the LL result; further B-functions for NLL and NNLL results.

Bi(x) — > B,
. B Br(x) = E ————n"
= nl(n+ k)!
10 q{ [e’)
B
B_k(x) = E ———n"
5 1 = nl(n— k)!
,,,,,,,,,,,,, N dk dk 1
“ KB =B o Bo=—By

-5
-40 0 10 . 80

1 691
Bo=1, B=—=, By==>, By=—-—, Bg=—, - ,Bio= ——,
0 1 2 4 6 42 12 2730
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Bernoulli functions

All order expressions: new functions involving Bernoulli numbers [LL:Vogt('10)].
Relation between even-n Bernoulli numbers and the Riemann (-function

" ()"

(oo}

|32 |x2":1777
" nz‘: (2n

ol =1-5~ Z P

Bo to appear for the LL result; further B-functions for NLL and NNLL results.

Bl = Zn!(n—f—k)!nn

¥
~
—
X
N
I

-80 -40 0 10 80
T

Bernoulli numbers Bj: zero forodd n >3 = P;JG)(N) L 0 not accidental

1 1 1 1 691
——, Bs=—, ,Buo=——,
30 42 2730
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Bernoulli functions

All order expressions: new functions involving Bernoulli numbers [LL:Vogt('10)].

Relation between even-n Bernoulli numbers and the Riemann (-function

" ()"

(oo}

Bo(x)=1—=— Z [(ZH), |an|x2" —1- X Z: (2n

Bo to appear for the LL result; further B-functions for NLL and NNLL results.

Bn
B = — "
k() ; nl(nt k)
oo
B
B_ = "
Kk (x) nz:; nl(n— k)1
d* d* 1
W(XkBk) =B, —gBo= B

Bernoulli numbers Bj: zero forodd n >3 = P;JG)(N) L 0 not accidental

1 1 1 1 691

) = 7773277"'78 = S55A 0
2 6 300 °T 4 2= 5730
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NNLL resummation of the off-diagonal splitting functions S e

ete™ annihilation

N = NeYe and 3s = 4as(Ca — Cr) In2 N

N P;—g(N» as) = 2asnsBo(3s)
2 & 1 ~ Bo o =
+agIn N ng | (—12CF + 6ﬁ0);B—1(as) + ;B—z(as) + (6CF — Bo)B1(3s)
s s
+known NNLL contributions (tables) + ...
N sz(N: as) = 2asCpBo(—3s)
o 1
+a2 0 Cr [(—12CF +260) - Bo1(—30) + 225 _a(~32) + (60 — 2Ca — po)ba(~3.)| S
3s 3s

+ known NNLL contributions (tables) + ...

0.04
T T
0.11 iqug(N) 1 Nqu(N)
0.038
0.1 | 4
0.036
0.09 q
0.034
0.08 q
s =0.12, ny =5
0.032
30 10 20 30

N
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Large-x resummation
in semi-inclusive
E+97

NNLL resummation of the off-diagonal splitting functions

annihilation

N = NeYe and 3s = 4as(Ca — Cr) In2 N

N P;—g(N» as) = 2asnsBo(3s)

. 1
+a2In N ng [(-12& + 6;30);13,1(55) + ?B,z(és) + (6CF — 60)81(55)}

+known NNLL contributions (tables) + ...

N sz(N: as) = 2asCpBo(—3s)

Bi(~3) + 2B 5(~3) + (8Cr — 264 — o)~

o 1

+a2lnfi cp [(—126; +28)— Results
as

+ known NNLL contributions (tables) + ...

7' — 3 T — 3
o | PLIN =20) < 10*] | PL(N = 20) x 10%]
\ T T T g
1099 | . 1.728 | ( q
S S |
NNLO !
. 4LL 1.726 | 1
4.88 - +NLL 1
—-— +NNLL as =012, ny =5
4 6 8 10 2 4 6 8 10

n
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Large-x resummation

NNLL resummation of the coefficient functions in semi-inclusive

ete™ annihilation

N Cr ¢(N, as) ; L [exp(ZasCF In? NYBo(ds) — exp(2asCa In? N)]
’ 2InN Cy — Cr
1 Cr(3Ck — bo) 25 2 &
— — ——————— |exp(2as Cg In“ N)Bg(ds) — exp(2asCp In" N
TR (Coe Gy LowasCr I M)Bo(d) — exp(2as Ca o )]
_a_ exp(2as Cr In? N)(8Cx + 4CF — Bo)
4 Cacr sCF A F 0
as nf 2 5 = -~
~ " ep(2asCr In N)[ — 6CEBo(3s) — (8Ca — 2CF — Bo)B1(ds)
4 Cu—Cr
1 - Bo -
—(12Cr — 4B0) —B_1(d5) — —B_2(d)
as as Results
i a2y CF 2 f 2 &
— S gy N—F [cA exp(2a5Ca In® N) — Cr exp(2as Cr In N)Bg(a“s)]
3 Ca— Cr
+ known NNLL contributions (tables) + ...
0.1 -0.02
Crg(N) Crg(N = 20)
of ]
-0.022 | B
-0.1 f
-0.024 e E
-0.2 |
-0.026 L. B
03| Lo —
=012, ng =5
-0.4 -0.028
0 10 20 30 2 4 6 8, 10
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Large-x resummation
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~ annihilation

E+Q

NNLL resummation of the coefficient functions

Ncl (N,as) = _r {exp(2a Ca In? N)Bo(—as) — exp(2asCr In? N)}
@.a TS 2Inf Cr — Ca g < g
1 n(3CF — by) . ) -
= exp(2asCx In“ N)Bo(—4s) — exp(2asCg In® N
SR (G oo [exp(2a5 Ca In® W) Bo(—45) — exp(2as Cr In” )]
as  nf 5 -
+—= exp(2as Cg In® N)(12C4 — 18Cr — Bop)
4 Cp—Cp
exo(225 Co In? W) 260 0(~:) — (B — 6CF)Bs(~) Resuts

as n
4 Cr—Ca
1 - Bo .
—(4B0 — 12Cp) ~B_1(—45) — —B_2(—4)
ds ds
a 25 0f 2 5 2 5
+Z g — [CAexp(ZaSCA In2 N)Bo(—45) — Cr exp(2asCr In N)]
3 Cr—Cyp
+ known NNLL contributions (tables) +

(Ca — Cg) denominators are cancelled by corresponding numerator factors.

Unlike the splitting functions, coefficient functions do not vanish for C4 = Cr .
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Large-x resummation

NNLL resummation of the coefficient functions n semiinclusie

annihilation

N°Cl (N as) = 8asCr exp(2asCaIn® ) + 225 CENCE, (N, axs)

_ _ 5 1 _
41622 In Nng exp(2a5 Ca In? ) [(4CA - ZCF) +5 In? NCABO]

0.012 0.12
.
Cta(IN) NCF (N)
0.008 |
0.08 |
0.004 |
0.04 + Results
o} —
—-— +NNLI
0
0 10 20 30 0 10 20 30
N N
0.012
2. .
CL (N = 20) 0-024 NCE (N = 20)
0.008 | e ] T T T T T T
\ [
: 0.02 | e ]
0.004 | 17 J }
i JS—
S 1
NLO 0.016 —
o+ +LL ]
- +NLL
—.— +NNLL —0.12, ny =5
2 4 6 8 10 2 4 6 8 10
n [
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> As in DIS: double logs fixed (‘inherited from lower orders’)
by D-dim structure and mass-factorisation.

> Lower level of prediction than in DIS for F7 (a2 coeff. fct. missing) and

F(T"s) (a2 coeff. fct. — fourth log known in DIS).

> Physical kernels single-log enhanced: present work ‘proves’ previous
conjecture.

Summary and Outlook

» Compact form of results at LL, NLL with ‘Bernoulli functions’.

» Double-logarithmic results can be extended to all orders in (1-x) or 1/N.

> Extension to single logs would require additional theoretical structure
[Grunberg; Laenen, Gardi, Magnea, Stavenga, White], or SCET, in the future?

» Similar double-log resummation at small-x [Vogt, August 2011 ]
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. . T La’.’ge—Y re?‘umm.at'\on
Diagonal amplitudes T, and T, (SGE) i sl

Our goal is the resummation of the off-diagonal amplitudes TTg and Td;rq,
suppressed by N1

(n,1)

-
and ¢
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Expressions for the N? parts of Zjy, cg."’c;) are required.
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Our goal is the resummation of the off-diagonal amplitudes TT,g and Td;r,q’ AT (Lo Bt

suppressed by N1

(n,1)

Expressions for the N? parts of Zjy, cg."’c;) and c;g are required.

These quantities can be determined from the diagonal amplitudes T, a and

T(;—g in the limit governed by SGE

Summary and Outlook

~£:’2 = Z e <R§,",;/) exp(neln N) — V;:',;I)>
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. . T La’.’ge—Y re?‘umm.at'\on
Diagonal amplitudes T, and T, (SGE) i sl

Our goal is the resummation of the off-diagonal amplitudes TTg and Td;rq,

suppressed by N1

are required.

Expressions for the N? parts of Zjy, (n:1) T(n.1)

c and ¢
T,q .8

These quantities can be determined from the diagonal amplitudes T, a and
T(;—g in the limit governed by SGE

Summary and Outlook

To NBLL accuracy these results are converted to the renormalised coupling via
N 50 5 B B3
ds = as — E + 0 ? s + 7034
€

After the transformation to the renormalised coupling Ty , needs to be
multiplied by the renormalisation constant of G*¥ G,

1—2Bpe 11,22 + 383¢2a3 + .
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In Mellin-N space one can rewrite the unfactorised amplitudes like

T = ey S (W07 4 ]+ 2 Y eole () )

Mass factorisation links AT("’i), B:f(n’i), CaT‘(("’i) to lower-order quantities.
n—1
= An0) T(0) _ _p2n—11 [ ~n—I—1
an 5 C A b.a -2 pr Eﬁ CeCy
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Off-diagonal amplitudes 77z and Ty, i

ete™ annihilation

In Mellin-N space one can rewrite the unfactorised amplitudes like Adriano Lo Presti

n—1
T(n 1 T(n,i T(n,i T(n,i .
Ta,;E )(N) = N1 E <Aa,5< )+ 6837,2 )+ €2Ca7‘(( )4 ) exp(e (n—i) In N)
i=0

Mass factorisation links A (k ), B:f(n"), CaT‘(("") to lower-order quantities.
1

n—1
(n,0) _ T(nO0) _ _p2n-11 | ~n—I—1
,TfAT,g T 2 nl IZ(;CFCA

Summary and Outlook

KLN — only one(LO)/two(NLO)/three(NNLO) independent coeff's V n, a, k

T(ni) _ (_\i (= 1\ 4T(n0)
AL =1 ("T ) Al

B;I:l((n,i+1) — () [(n - 2) T ( J:11> B‘;l:l((n,O)i|

1

o = (-1y [(" B 3) e il 2) cim 7,( +("

i+1 +2)

The general expressions for BaT,((""') and especially CaT,S"’i) are rather lengthy...
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Resummation of the longitudinal structure function Laife;;ff?,??ﬂi:""

lation

Up to an additional power of € and N~ longitudinal fragmentation functions
are built up in the same way

e—2n+2 11

Z (AZ:(:"') + eBZ:f("’i) + eQCZ:}(("’i) + ) exp(e(n—i)In N)

T(n) _
T, - N1+6kg .

Ly

Summary and Outlook
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Up to an additional power of € and N~ longitudinal fragmentation functions
are built up in the same way

e—2n+2 11

Z (AZ:(:"') + eBZ:f("’i) + eQCZ:}(("’i) + ) exp(e(n—i)In N)

T(n) _
T T Nk 4

Ly

In this case also €e~" poles vanish at order a. The coefficients for LL
resummation are
T(n,0) _ 22" cn T(n,0) _ 22n+1 Cn—l n Summary and Outlook
La  — (n—1)t F Le  — (n—1p A f

Same KLN relations as for TT,g and TJq apply.
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Up to an additional power of € and N~ longitudinal fragmentation functions
are built up in the same way

e—2n+2 11

Z (AZ:(:"') + eBZ:f("’i) + eQCZ:}(("’i) + ) exp(e(n—i)In N)

T(n)
T, N1tokg £

() =

In this case also €e~" poles vanish at order a. The coefficients for LL
resummation are
T(no) _ 2% T(no) _ 22!

1 Summary and Outlook
== __¢f ="
La (h—1) F~ Le (h—1)1 A

: T
Same KLN relations as for TT,g and T¢,q apply.

Once the coefficients A, ( ), BQT,E o) and CT(" 0 are obtained,
the unfactorised amplltude at all orders at NNLL is known.

We extract the coefficient function at all order at such logarithmic accuracy
using mass factorisation relations.
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