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Introduction: semi-inclusive e+e− annihilation (SIA)
Fragmentation functions F h

a (x ,Q2) in e+ e− → γ,Z → h + X

1

σtot

d2σ

dx d cos θ
=

3

8
(1 + cos2 θ)F h

T +
3

4
sin2 θ F h

L +
3

4
cos θ F h

A

x =
2 p · q
Q2

, where Q2 ≡ q2
> 0

θ −→ angle in the centre-of-mass frame between e−(+) and the hadron h(p).

Factorisation formula (terms O(1/Q) neglected)

F h
a (x ,Q2) =

∑
f =q,q̄,g

∫ 1

x

dz

z
cTa,f

(
z, α(Q2)

)
Dh

f

( x
z
,Q2

)
cTa,f have been calculated up to order α2

s [Rijken, van Neerven (’96, ’97)]

Time-like splitting functions PT (x , αs(Q2)) in evolution equation

d

d lnQ2
Dh

a (x ,Q2) =

∫ 1

x

dz

z
PT
ba(z, αs(Q2))Dh

b

( x
z
,Q2

)
.

T-like and S-like cases related by Analytic cont. [Blümlein,Ravindran,vanNeerven(2000)]

P(0)T (x) identical to their space-like couterparts [Gribov,Lipatov(1972),...]

P(1)T (x) [Curci,Furmanski,Petronzio(80), Floratos,Kounnas,Lacaze(81), Stratmann,Vogelsang(97),...]

P(2)T (x) [Mitov,Moch,Vogt(2006), Moch,Vogt(2007), Almasy,Moch,Vogt(2011)].
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Introduction: SGE, Physical Kernel and our method

We are interested in the all-order logarithmic behaviour in the large x limit of
the time-like coefficient and splitting functions.

Soft Gluon Exponentiation (SGE): resums dominant (1− x)−1
+ large-x

contributions to cT ,q(x , αs) and cTφ,g (x , αs): NNNLL, 7 logs [Moch,Vogt(2009)].

Recent studies address also resummation for (1− x)0 terms with SGE
[Grunberg(07),Laenen,Magnea,Stavenga(08), Grunberg,Ravindran(09), Laenen,Stavenga,White(09)]

Physical Kernel methods allow resummation of the highest three (1− x)0

logarithms (flavour non-singlet case) [Moch,Vogt(2009)]

Our approach: functional form together with KLN

All-order results for the highest three large-x logarithms of time-like splitting
and coefficient functions in Higgs- (in heavy top limit, with eff. φGµνGµν

coupling) and gauge-boson exchange SIA are presented.

These results have been derived by studying the unfactorised partonic
fragmentation function in terms of constraints imposed by the functional
forms together with their Kinoshita-Lee-Nauenberg (KLN) cancellations
required by the mass factorisation theorem.
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Introduction: SIA in the large-x limit

We look at the large-x structure of the time-like coefficient funcion

cTa,k (x , αs) =
∞∑
n=1

ans c
T (n)
a,k (x) with as ≡

αs

4π

‘Off-diagonal’ coeff’s fnct’s: double-log higher-order enhancement as x → 1

c
T (n)
a,k (x) =

2n−2∑
l=0

D
T (n,l)
a,k ln2n−1−l (1− x) +O(1) for a, k = T , g or φ, q

c
T (n)
L,k (x) = (1− x)δkg

(
2n−3∑
l=0

D
T (n,l)
a,k ln2n−2−l (1− x) +O(1)

)

Writing the expansion of the time-like splitting functions

PT
ik (x , αs) =

∞∑
n=0

an+1
s P

T (n)
ik (x)

Diagonal splitting functions (in MSbar) stable under higher-order corrections

P
T (n−1)
kk (x) = A

T (n)
k (1− x)−1

+ + B
T (n)
k δ(1− x) + C

T (n)
k ln(1− x) +O(1)

[Korchemsky(89), Moch,Vermaseren,Vogt(04), Dokshitzer,Marchesini,Salam(05)]

Off-diagonal splitting functions show double-logarithmic enhancement

P
T (n)
i 6=k (x) =

2n−1∑
l=0

D
T (n,l)
ik ln2n−l (1− x) +O(1)

5 / 20



Large-x resummation
in semi-inclusive

e+e− annihilation

Adriano Lo Presti

Outline

Introduction

Threshold logarithms
before factorisation

Generalised
exponentiation of the
large-x/large-N
logarithms

Results

Summary and Outlook

Introduction: SIA in the large-x limit

We look at the large-x structure of the time-like coefficient funcion

cTa,k (x , αs) =
∞∑
n=1

ans c
T (n)
a,k (x) with as ≡

αs

4π

‘Off-diagonal’ coeff’s fnct’s: double-log higher-order enhancement as x → 1

c
T (n)
a,k (x) =

2n−2∑
l=0

D
T (n,l)
a,k ln2n−1−l (1− x) +O(1) for a, k = T , g or φ, q

c
T (n)
L,k (x) = (1− x)δkg

(
2n−3∑
l=0

D
T (n,l)
a,k ln2n−2−l (1− x) +O(1)

)

Writing the expansion of the time-like splitting functions

PT
ik (x , αs) =

∞∑
n=0

an+1
s P

T (n)
ik (x)

Diagonal splitting functions (in MSbar) stable under higher-order corrections

P
T (n−1)
kk (x) = A

T (n)
k (1− x)−1

+ + B
T (n)
k δ(1− x) + C

T (n)
k ln(1− x) +O(1)

[Korchemsky(89), Moch,Vermaseren,Vogt(04), Dokshitzer,Marchesini,Salam(05)]

Off-diagonal splitting functions show double-logarithmic enhancement

P
T (n)
i 6=k (x) =

2n−1∑
l=0

D
T (n,l)
ik ln2n−l (1− x) +O(1)

5 / 20



Large-x resummation
in semi-inclusive

e+e− annihilation

Adriano Lo Presti

Outline

Introduction

Threshold logarithms
before factorisation

Generalised
exponentiation of the
large-x/large-N
logarithms

Results

Summary and Outlook

Introduction: SIA in the large-x limit

We look at the large-x structure of the time-like coefficient funcion

cTa,k (x , αs) =
∞∑
n=1

ans c
T (n)
a,k (x) with as ≡

αs

4π

‘Off-diagonal’ coeff’s fnct’s: double-log higher-order enhancement as x → 1

c
T (n)
a,k (x) =

2n−2∑
l=0

D
T (n,l)
a,k ln2n−1−l (1− x) +O(1) for a, k = T , g or φ, q

c
T (n)
L,k (x) = (1− x)δkg

(
2n−3∑
l=0

D
T (n,l)
a,k ln2n−2−l (1− x) +O(1)

)

Writing the expansion of the time-like splitting functions

PT
ik (x , αs) =

∞∑
n=0

an+1
s P

T (n)
ik (x)

Diagonal splitting functions (in MSbar) stable under higher-order corrections

P
T (n−1)
kk (x) = A

T (n)
k (1− x)−1

+ + B
T (n)
k δ(1− x) + C

T (n)
k ln(1− x) +O(1)

[Korchemsky(89), Moch,Vermaseren,Vogt(04), Dokshitzer,Marchesini,Salam(05)]

Off-diagonal splitting functions show double-logarithmic enhancement

P
T (n)
i 6=k (x) =

2n−1∑
l=0

D
T (n,l)
ik ln2n−l (1− x) +O(1)

5 / 20



Large-x resummation
in semi-inclusive

e+e− annihilation

Adriano Lo Presti

Outline

Introduction

Threshold logarithms
before factorisation

Generalised
exponentiation of the
large-x/large-N
logarithms

Results

Summary and Outlook

Introduction: SIA in the large-x limit

We look at the large-x structure of the time-like coefficient funcion

cTa,k (x , αs) =
∞∑
n=1

ans c
T (n)
a,k (x) with as ≡

αs

4π

‘Off-diagonal’ coeff’s fnct’s: double-log higher-order enhancement as x → 1

c
T (n)
a,k (x) =

2n−2∑
l=0

D
T (n,l)
a,k ln2n−1−l (1− x) +O(1) for a, k = T , g or φ, q

c
T (n)
L,k (x) = (1− x)δkg

(
2n−3∑
l=0

D
T (n,l)
a,k ln2n−2−l (1− x) +O(1)

)

Writing the expansion of the time-like splitting functions

PT
ik (x , αs) =

∞∑
n=0

an+1
s P

T (n)
ik (x)

Diagonal splitting functions (in MSbar) stable under higher-order corrections

P
T (n−1)
kk (x) = A

T (n)
k (1− x)−1

+ + B
T (n)
k δ(1− x) + C

T (n)
k ln(1− x) +O(1)

[Korchemsky(89), Moch,Vermaseren,Vogt(04), Dokshitzer,Marchesini,Salam(05)]

Off-diagonal splitting functions show double-logarithmic enhancement

P
T (n)
i 6=k (x) =

2n−1∑
l=0

D
T (n,l)
ik ln2n−l (1− x) +O(1)

5 / 20



Large-x resummation
in semi-inclusive

e+e− annihilation

Adriano Lo Presti

Outline

Introduction

Threshold logarithms
before factorisation

Generalised
exponentiation of the
large-x/large-N
logarithms

Results

Summary and Outlook

Introduction: SIA in the large-x limit

We look at the large-x structure of the time-like coefficient funcion

cTa,k (x , αs) =
∞∑
n=1

ans c
T (n)
a,k (x) with as ≡

αs

4π

‘Off-diagonal’ coeff’s fnct’s: double-log higher-order enhancement as x → 1

c
T (n)
a,k (x) =

2n−2∑
l=0

D
T (n,l)
a,k ln2n−1−l (1− x) +O(1) for a, k = T , g or φ, q

c
T (n)
L,k (x) = (1− x)δkg

(
2n−3∑
l=0

D
T (n,l)
a,k ln2n−2−l (1− x) +O(1)

)

Writing the expansion of the time-like splitting functions

PT
ik (x , αs) =

∞∑
n=0

an+1
s P

T (n)
ik (x)

Diagonal splitting functions (in MSbar) stable under higher-order corrections

P
T (n−1)
kk (x) = A

T (n)
k (1− x)−1

+ + B
T (n)
k δ(1− x) + C

T (n)
k ln(1− x) +O(1)

[Korchemsky(89), Moch,Vermaseren,Vogt(04), Dokshitzer,Marchesini,Salam(05)]

Off-diagonal splitting functions show double-logarithmic enhancement

P
T (n)
i 6=k (x) =

2n−1∑
l=0

D
T (n,l)
ik ln2n−l (1− x) +O(1)
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Threshold logarithms before factorisation (I)

Unfactorized partonic structure functions in D = 4− 2ε dimensions

Ta,j = C̃a,iZij , −γ ≡ P =
dZ

d lnQ2
Z−1,

das

d lnQ2
= −εas + βD=4

ans : ε−n . . . ε−2: lower-order terms, ε−1: n-loop splitting functions+ . . . ,

ε0: n-loop coefficient fct’s + . . . , εk , 0 < k < l : required for order n + l

N0 and N−1 transition functions Z to next-to-leading log (NLL) accuracy

Z

∣∣∣∣
ans

=
1

εn
γn−1

0

n!

[
γ0 −

β0

2
n(n − 1)

]
+

n−1∑
l=1

1

εn−l

n−l−1∑
k=1

γn−l−k−1
0 γlγ

k
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(l + k)!

n!l!

−
β0

2
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n−l−2∑
k=1
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0 γlγ

k
0

(l + k)!

n!l!
(n(n − 1)− l(l + k + 1))

+NNLL contributions (explicit expressions) + . . .

ε−n+l off-diagonal entries: contributions up to N−1 lnn+l−1 N

Diagonal cases: γ0 only for N0 part, second term with l = 1 for N−1 NLL
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D-dimensional coefficient functions C̃a: finite for ε→ 0

C̃T
a,i = 1diagonal case +

∞∑
n=1

∞∑
l=0

ans ε
l c

T (n,l)
a,i

c
(n,l)
a,i : l additional factors lnN relative to c

(n,0)
a,i ≡ c

(n)
a,i discussed above.

Full NmLO calc. of Ta,j : highest m + 1 powers of ε−1 to all orders in αs

TT (1) = −
1

ε
PT (0) + cT (1,0) + εcT (1,1) + ε

2cT (1,2) + ε
3cT (1,3)

TT (2) =
1

2ε2
PT (0)(PT (0) + β0) −

1

2ε

[
PT (1) + 2PT (0)cT (1,0)

]
+ cT (2,0) − PT (0)cT (1,1)

+ ε
[
cT (2,1) − PT (0)cT (1,2)

]
+ . . .

TT (3) = −
1

6ε3
PT (0)(PT (0) + β0)(PT (0) + 2β0)

+
1

6ε2

[
PT (1)(3PT (0) + 2β0) + PT (0)(3PT (0)cT (1,0) + 3β0c

T (1,0) + 2β1)
]

−
1

6ε

[
2PT (2) + 3PT (1)cT (1,0) + P(0)(6cT (2,0) − 3PT (0)cT (1,1) − 3β0c

T (1,1))
]

+cT (3,0) −
1

2
PT (1)cT (1,1) − PT (0)cT (2,1) +

1

2
PT (0)

(
PT (0) + β0

)
cT (1,2) + . . .

Extension to all powers of ε: all-order resummation of highest m + 1 logs.
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The main part of our calculations is performed in Mellin-N space

f (N) =

∫ 1

0
dx xN−1 f (x) or f (N) =

∫ 1

0
dx
(
xN−1 − 1

)
f (x)+

Large-x logarithms correspond to large-N logs after Mellin transform

(
lnn(1− x)

1− x

)
+

M
=

(−1)n+1

n + 1
lnn+1 N + . . . (1− x) lnn(1− x)

M
=

(−1)n

N2
lnn N + . . .

Large-N logarithmic behaviour of coeff’s and transition functions

c
(n,l)
T ,q , c

T (n,l)
φ,g ∼ ln2n+l N + . . . c

(n,l)
T ,g , c

T (n,l)
φ,q ∼

1

N
ln2n−1+l N + . . .

c
T (n,l)
L,q ∼

1

N
ln2n−2+l N + . . . c

T (n,l)
L,g ∼

1

N2
ln2n−2+l N + . . .

Zkk

∣∣
ans
∼ ε−n lnn N + . . . Zi 6=j

∣∣
ans
∼ ε−n 1

N
lnn−1 N + . . .

Structure of the unfactorised amplitudes

TT ,q ' cT ,q Zqq ∼ O(1) → TT ,g = cT ,q Zqg + cT ,g Zgg ∼ O(1/N)

TT
φ,g ' cφ,g Zgg ∼ O(1) → TT

φ,q = cTφ,g Zgq + cTφ,q Zqq ∼ O(1/N)

TT
L,q ' cTL,q Zqq ∼ O(1/N) → TT

L,g = cTL,q Zqg + cTL,g Zgg ∼ O(1/N2)
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D-dim. structure of unfactorised observables

Maximal phase space SIA:

NLO : 1 → 2 + 1 (1− x)−1−ε x ...
∫ 1

0
one other variable

N2LO : 1 → 2 + 2 (1− x)−1−2ε x ...
∫ 1

0
four other variables

N3LO : 1 → 2 + 3 (1− x)−1−3ε x ...
∫ 1

0
seven other variables

. . .

Purely real contributions: no additional factors (1− x)−ε from integral

T
(n)R
a,j = (1− x)−1−nε

∑
ξ=0

(1− x)ξ
1

ε2n−1

{
R

(n)LL
a,j,ξ + εR

(n)NLL
a,j,ξ + . . .

}
Mixed contributions (1→ r + 2): n − r additional factors (1− x)−ε

T
(n)M
a,j =

n∑
l=r

(1− x)−1−lε
∑
ξ=0

(1− x)ξ
1

ε2n−1

{
M

(n)LL
a,j,ξ + εM

(n)NLL
a,j,ξ + . . .

}
Purely virtual part (in diagonal cases, ξ = 0): γ∗qq, Hgg form factors

T
(n)V
a,j = δ(1− x)

1

ε2n

{
V

(n)LL
a,j,ξ + εV

(n)NLL
a,j,ξ + . . .

}
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T
(n)
a,j = T

(n)R
a,j +T

(n)M
a,j +

(
T

(n)V
a,j

)
diag

=
1

εn

{
T

(n)0
a,j + εT

(n)1
a,j + ε2 T

(n)2
a,j + . . .

}
⇒ Up to n − 1 relations between the coeff’s of (1− x)−1−lε, l = 1, . . . , n

Log expansion: NkLL higher-order coefficients completely fixed, if first k + 1
powers of ε known to all orders - provided by NkLO calculations.

Present situation: (a) N2LO for FT
a 6=L (b) NLO for FT

L

⇒ resummation of the (a) three and (b) two highest N−1 lnk N terms to all
orders in αs : consistent with, and extending, MV Physical Kernel results

In Mellin-N space one can rewrite the (off-diag) unfactorised amplitudes like

T
T (n)
a,k (N) =

1

N ε2n−1

n−1∑
i=0

(
A
T (n,i)
a,k + εB

T (n,i)
a,k + ε2C

T (n,i)
a,k + . . .

)
exp(ε (n−i) lnN)

Once the coefficients A
T (n,i)
a,k , B

T (n,i)
a,k and C

T (n,i)
a,k are obtained,

the unfactorised amplitude at all orders at NNLL is known.

We extract the coefficient function at all order at such logarithmic accuracy
using mass factorisation relations.
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Bernoulli functions
All order expressions: new functions involving Bernoulli numbers [LL:Vogt(’10)].

Relation between even-n Bernoulli numbers and the Riemann ζ-function

B0(x) = 1−
x

2
−
∞∑
n=1

(−1)n

[(2n)!]2
|B2n|x2n = 1−

x

2
−
∞∑
n=1

(−1)n

(2n)!
ζ2n

( x

2π

)2n

B0 to appear for the LL result; further B-functions for NLL and NNLL results.

−x
B0(x)

x
80400-40

40

30

20

10

0

-10

Bk (x) =
∞∑
n=0

Bn

n!(n + k)!
nn

B−k (x) =
∞∑
n=k

Bn

n!(n − k)!
nn

dk

dxk
(xkBk ) = B0 ,

dk

dxk
B0 =

1

xk
B−k

Bernoulli numbers Bn: zero for odd n ≥ 3 ⇒ P
T (3)
gq (N)

LL
= 0 not accidental

B0 = 1 , B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, B6 =

1

42
, · · · ,B12 =

691

2730
, · · ·
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dk
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LL
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, · · · ,B12 =
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, · · ·
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Ñ ≡ Neγe and ãs ≡ 4as(CA − CF ) ln2 Ñ

N PT
qg (N, αs ) = 2asnf B0(ãs )

+a2
s ln Ñ nf

[
(−12CF + 6β0)

1

ãs
B−1(ãs ) +

β0

ãs
B−2(ãs ) + (6CF − β0)B1(ãs )

]
+ known NNLL contributions (tables) + . . .

N PT
gq(N, αs ) = 2asCFB0(−ãs )

+a2
s ln Ñ CF

[
(−12CF + 2β0)

1

ãs
B−1(−ãs ) +

β0

ãs
B−2(−ãs ) + (8CF − 2CA − β0)B1(−ãs )

]
+ known NNLL contributions (tables) + . . .

αs = 0.12, nf = 5

NP T
gq(N)

N
302010

0.04

0.038

0.036

0.034

0.032
+NNLL

+NLL

+LL

NNLO

NP T
qg(N)

N
302010

0.11

0.1

0.09

0.08
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qg (N, αs ) = 2asnf B0(ãs )

+a2
s ln Ñ nf
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(−12CF + 6β0)

1

ãs
B−1(ãs ) +

β0
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N PT
gq(N, αs ) = 2asCFB0(−ãs )

+a2
s ln Ñ CF

[
(−12CF + 2β0)

1

ãs
B−1(−ãs ) +

β0

ãs
B−2(−ãs ) + (8CF − 2CA − β0)B1(−ãs )

]
+ known NNLL contributions (tables) + . . .

αs = 0.12, nf = 5

P T
gq(N = 20)× 103

n
108642

1.73

1.728

1.726

+NNLL

+NLL

+LL

NNLO

P T
qg(N = 20)× 103

n
108642

4.96

4.92

4.88
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N CT,g (N, αs ) =
1

2 ln Ñ

CF

CA − CF

[
exp(2asCF ln2 Ñ)B0(ãs )− exp(2asCA ln2 Ñ)

]
−

1

8 ln2 Ñ

CF (3CF − b0)

(CA − CF )2

[
exp(2asCF ln2 Ñ)B0(ãs )− exp(2asCA ln2 Ñ)

]
−

as

4

CF

CA − CF

exp(2asCF ln2 Ñ)(8CA + 4CF − β0)

−
as

4

nf

CA − CF

exp(2asCF ln2 Ñ)

[
− 6CFB0(ãs )− (8CA − 2CF − β0)B1(ãs )

−(12CF − 4β0)
1

ãs
B−1(ãs )−

β0

ãs
B−2(ãs )

]

−
a2
s

3
β0 ln2 Ñ

CF

CA − CF

[
CA exp(2asCA ln2 Ñ)− CF exp(2asCF ln2 Ñ)B0(ãs )

]
+ known NNLL contributions (tables) + . . .

αs = 0.12, nf = 5

CT,g(N = 20)

n
108642

-0.02

-0.022

-0.024

-0.026

-0.028

+NNLL

+NLL

+LL

NLO

CT,g(N)

N
3020100

0.1

0

-0.1

-0.2

-0.3

-0.4
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N CT
φ,q(N, αs ) =

1

2 ln Ñ

nf

CF − CA

[
exp(2asCA ln2 Ñ)B0(−̃as )− exp(2asCF ln2 Ñ)

]
+

1

8 ln2 Ñ

nf (3CF − b0)

(CF − CA)2

[
exp(2asCA ln2 Ñ)B0(−ãs )− exp(2asCF ln2 Ñ)

]
+

as

4

nf

CF − CA

exp(2asCF ln2 Ñ)(12CA − 18CF − β0)

+
as

4

nf

CF − CA

exp(2asCA ln2 Ñ)

[
2β0B0(−ãs )− (β0 − 6CF )B1(−ãs )

−(4β0 − 12CF )
1

ãs
B−1(−ãs )−

β0

ãs
B−2(−ãs )

]

+
a2
s

3
β0 ln2 Ñ

nf

CF − CA

[
CA exp(2asCA ln2 Ñ)B0(−ãs )− CF exp(2asCF ln2 Ñ)

]
+ known NNLL contributions (tables) + . . .

(CA − CF ) denominators are cancelled by corresponding numerator factors.

Unlike the splitting functions, coefficient functions do not vanish for CA = CF .
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N2CT
L,g (N, αs ) = 8asCF exp(2asCA ln2 Ñ) + 2asCFNC

LL
T,g (N, αs )

+16a2
s ln Ñnf exp(2asCA ln2 Ñ)

[(
4CA −

5

4
CF

)
+

1

3
as ln2 ÑCAβ0

]

αs = 0.12, nf = 5

NCT
L,g(N)

N
3020100

0.12

0.08

0.04

0

+NNLL

+NLL

+LL

NLO

CT
L,q(N)

N
3020100

0.012

0.008

0.004

0

αs = 0.12, nf = 5

NCT
L,g(N = 20)

n
108642

0.024

0.02

0.016

+NNLL

+NLL

+LL

NLO

CT
L,q(N = 20)

n
108642

0.012

0.008

0.004

0
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Summary and Outlook

I As in DIS: double logs fixed (‘inherited from lower orders’)
by D-dim structure and mass-factorisation.

I Lower level of prediction than in DIS for FT
L (α3

s coeff. fct. missing) and

F
(ns)
T (α3

s coeff. fct. → fourth log known in DIS).

I Physical kernels single-log enhanced: present work ‘proves’ previous
conjecture.

I Compact form of results at LL, NLL with ‘Bernoulli functions’.

I Double-logarithmic results can be extended to all orders in (1-x) or 1/N.

I Extension to single logs would require additional theoretical structure
[Grunberg; Laenen, Gardi, Magnea, Stavenga, White], or SCET, in the future?

I Similar double-log resummation at small-x [Vogt, August 2011 ]
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Diagonal amplitudes TT ,q and TT
φ,g (SGE)

Our goal is the resummation of the off-diagonal amplitudes TT ,g and TT
φ,q ,

suppressed by N−1.

Expressions for the N0 parts of Zkk , c
(n,l)
T ,q and c

T (n,l)
φ,g are required.

These quantities can be determined from the diagonal amplitudes TT ,q and

TT
φ,g in the limit governed by SGE

Ta,k = exp
(
âs T̃

(1)
a,k + â2

s T̃
(2)
a,k + â3

s T̃
(3)
a,k + . . .

)

T̃
(n)
a,k =

∞∑
l=−n−1

εl
(
R

(n,l)
a,k exp(nε lnN)− V

(n,l)
a,k

)
To N3LL accuracy these results are converted to the renormalised coupling via

âs = as −
β0

ε
a2
s +

(
β2

0

ε2
−
β1

2ε

)
a3
s +

β3
0

ε3
a4
s

After the transformation to the renormalised coupling Tφ,g needs to be
multiplied by the renormalisation constant of GµνGµν

1− 2β0ε
−11, a2

s + 3β2
0ε
−2 a3

s + . . .
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Off-diagonal amplitudes TT ,g and Tφ,q

In Mellin-N space one can rewrite the unfactorised amplitudes like

T
T (n)
a,k (N) =

1

N ε2n−1

n−1∑
i=0

(
A
T (n,i)
a,k + εB

T (n,i)
a,k + ε2C

T (n,i)
a,k + . . .

)
exp(ε (n−i) lnN)

Mass factorisation links A
T (n,i)
a,k , B

T (n,i)
a,k , C

T (n,i)
a,k to lower-order quantities.

1

nf
A

(n,0)
T ,g =

1

CF
A
T (n,0)
φ,q = −22n−1 1

n!

n−1∑
l=0

C l
FC

n−l−1
A

KLN → only one(LO)/two(NLO)/three(NNLO) independent coeff’s ∀ n, a, k

A
T (n,i)
a,k = (−1)i

(n − 1

i

)
A
T (n,0)
a,k

B
T (n,i+1)
a,k = (−1)i

[(n − 2

i

)
B

T (n,1)
a,k + i

(n − 1

i + 1

)
B

T (n,0)
a,k

]

C
T (n,i+2)
a,k = (−1)i

[(n − 3

i

)
C

T (n,2)
a,k + i

(n − 2

i + 1

)
C

T (n,1)
a,k +

1

2
i(i + 1)

(n − 1

i + 2

)
C

(n,0)
a,k

]
The general expressions for B

T (n,i)
a,k and especially C

T (n,i)
a,k are rather lengthy...
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The general expressions for B

T (n,i)
a,k and especially C

T (n,i)
a,k are rather lengthy...
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Resummation of the longitudinal structure function

Up to an additional power of ε and N−1 longitudinal fragmentation functions
are built up in the same way

T
T (n)
L,k (N) =

ε−2n+2

N1+δkg

n−1∑
i=0

(
A
T (n,i)
L,k + εB

T (n,i)
L,k + ε2C

T (n,i)
L,k + . . .

)
exp(ε(n−i) lnN)

In this case also ε−n poles vanish at order αn
s . The coefficients for LL

resummation are

A
T (n,0)
L,q =

22n

(n − 1)!
Cn
F , A

T (n,0)
L,g =

22n+1

(n − 1)!
Cn−1
A nf

Same KLN relations as for TT ,g and TT
φ,q apply.

Once the coefficients A
T (n,i)
a,k , B

T (n,i)
a,k and C

T (n,i)
a,k are obtained,

the unfactorised amplitude at all orders at NNLL is known.

We extract the coefficient function at all order at such logarithmic accuracy
using mass factorisation relations.
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