Weak Bosons and Jets at the LHC

 Tom Melia, RADCOR Sep 2011

Work with Raoul Rontsch, Kirill Melnikov, Paolo Nason and Giulia Zanderighi
$W^{+} W^{+} j j$: JHEP 1012053 / arXiv:1007.5313
$W^{+} W^{-} j j$: Phys. Rev. D 83, 114043 / arXiv:1104.2327
POWHEG BOX: Eur. Phys. J. C 711670 / arXiv:1102.4846
Oxford Theoretical Physics

Types of Feynman Diagram (even though we do not evaluate any Feynman diagram)

Types of Feynman Diagram (even though we do not evaluate any Feynman diagram)

$W^{+} W^{+} j j$ at the LHC

- Interesting process both theoretically and experimentally.

- Need W-bosons on separate quark lines. This means cross-section is infrared safe as the jet p_{T} go to zero.
- We consider the leptonic decay of both W-bosons as this is a clean signature and shows up the double positive sign.
- Cross-section for this decay is around 6 fb at $14 \mathrm{TeV}\left(l^{-} l^{-}\right.$is 40% of the size).

$W^{+} W^{+} j j$ at the LHC

- Exotic SM signal!

And a background process to

- Double parton scattering
e.g. J. R. Gaunt, C. H. Kom, A. Kulesza and W. J. Stirling, hep-ph/1003.3953
- R-parity violating smuon production
e.g. H. K. Dreiner, S. Grab, M. Kramer and M. K. Trenkel, Phys. Rev. D75 (2007)
- Doubly charged Higgs production
e.g. J. Maalampi and N. Romanenko, Phys. Lett. B 532, 202 (2002)
- Di-quark production
e.g. T. Han, I. Lewis and T. McElmurry, JHEP 1001, 123 (2010)

$W^{+} W^{-} j j$ at the LHC

- 2005 Les Houches Wishlist process.
- Background to Higgs boson production.
- 10% of Higgs bosons produced at the LHC are in association with two jets e.g. Campbell, Ellis, Zanderighi (2006); Anastasiou, Dissertori, Grazzini, Stockli, Webber (2009).
- $W^{+} W^{-} j j$ is the dominant irreducible background if the Higgs is produced by Weak Boson Fusion. Signature of this event involves two forward tagging jets.
- Background to a classic BSM search - two leptons, jets, missing energy.

Theoretical incentives to calculate NLO QCD corrections to both processes

- NLO QCD for >5 particles is difficult. For the virtual amplitude, the number of Feynman diagrams grows as N !.
- On-shell methods as currently formulated require working with an ordering of external lines - colour-ordered/primitive amplitudes. Having two colourless bosons considerably complicates things.
- The number of $2 \rightarrow 4$ processes known at NLO is growing!
$p p \rightarrow V j j j, \quad$ Berger et al. (2009); Ellis, Melnikov, Zanderighi (2009).
$p p \rightarrow t \bar{t} b \bar{b}$, Brendenstein, Denner, Dittmaier, Pozzorini (2009); Bevilacqua et. al. (2010).
$p p \rightarrow t \bar{t} j j, \quad$ Bevilacqua, Czakon, Papadopoulos, Worek (2010).
$p p \rightarrow b \bar{b} b \bar{b}, \quad$ Binoth et. al. (2010).
$p p \rightarrow W^{+} W^{-} b \bar{b}, \quad$ Bevilacqua et. al. (2010); Denner, Dittmaier, Kallweit, Pozzorini (2010).
$2 \rightarrow 5$ process: $p p \rightarrow W j j j j . \quad$ Binoth et. al. (2010).
- Platform for automation of NLO processes being developed: SAMURAI, MC@NLO.

Method of Calculation

In the past three years, methods of D-dimensional unitarity (Bern, Dixon, Kosower; Cachazo, Britto, Feng; Ellis, Kunszt, Giele, Melnikov and more) along with Ossola-Papadopoulos-Pittau (OPP) reduction have simplified the calculation of the virtual amplitude enormously.

Unitarity method: We write the amplitude

$$
\begin{aligned}
\mathcal{A}_{N}\left(p_{1}, \ldots, p_{N}\right)= & \sum_{1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq N} d_{i_{1} i_{2} i_{3} i_{4}} I_{i_{1} i_{2} i_{3} i_{4}}+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} c_{i_{1} i_{2} i_{3}} I_{i_{1} i_{2} i_{3}} \\
& +\sum_{1 \leq i_{1}<i_{2} \leq N} b_{i_{1} i_{2}} I_{i_{1} i_{2}}+\sum_{1 \leq i_{1} \leq N} a_{i_{1}} I_{i_{1}}
\end{aligned}
$$

where

$$
I_{i_{1} \ldots i_{k}}=\int \frac{[d l]}{D_{1} \ldots D_{k}} \quad, \quad D_{i}=\left(l+\sum_{j=1}^{i} p_{j}\right)^{2}-m^{2}
$$

To find the coefficients $d_{i_{1} i_{2} i_{3} i_{4}} \ldots a_{i_{1}}$, we can write the 1-loop amplitude as

$$
\mathcal{A}_{N}\left(p_{1}, \ldots, p_{N}\right)=\int[d l] \frac{N\left(p_{i} ; l\right)}{D_{1} \ldots D_{N}}
$$

and the numerator

$$
\begin{align*}
N\left(p_{i} ; l\right) & =\sum_{1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq N}\left(d_{i_{1} i_{2} i_{3} i_{4}}+\tilde{d}_{i_{1} i_{2} i_{3} i_{4}}(l)\right) \prod_{i \neq i_{1} i_{2} i_{3} i_{4}} D_{i} \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N}\left(c_{i_{1} i_{2} i_{3}}+\tilde{c}_{i_{1} i_{2} i_{3}}(l)\right) \prod_{i \neq i_{1} i_{2} i_{3}} D_{i} \\
& +\sum_{1 \leq i_{1}<i_{2} \leq N}\left(b_{i_{1} i_{2}}+\tilde{b}_{i_{1} i_{2}}(l)\right) \prod_{i \neq i_{1} i_{2}} D_{i} \\
& +\sum_{1 \leq i_{1} \leq N}\left(a_{i_{1}}+\tilde{a}_{i_{1}}(l)\right) \prod_{i \neq i_{1}} D_{i} \tag{1}
\end{align*}
$$

where the tilde terms vanish upon integration over l.

OPP tells us the analytical form in l of the coefficients.

For example, to find the coefficient $\bar{d}_{2356}(l)=d_{2356}+\tilde{d}_{2356}(l)$, look for $l=\hat{l}$ so that $D_{2}=D_{3}=D_{5}=D_{6}=0$. Then eqn (1) becomes

$$
N(p, \hat{l})=\bar{d}_{2356}(\hat{l}) \prod_{i \neq 2,3,5,6} D_{i}(\hat{l})
$$

What is more, the 1-loop amplitude factorises at this point:

Amplitudes calculated with Berends-Giele recursion relations.

Repeat this process to find all coefficients and therefore the full amplitude (...almost).

- Analytically (using dim.reg.) one finds 'rational' terms from parts of the coefficients which are $\mathcal{O}(\epsilon)$ hitting UV poles which are $\mathcal{O}(1 / \epsilon)$.
- But we want to do this numerically: we can't work to $\mathcal{O}(\epsilon)$.
- So we do this with loop momentum in $D=5$ dimensions and the internal particles' spin in both $D_{s}=6$ and $D_{s}=8$ dimensions.
- The extra-dimensional part of l enters into the analytical form of $\tilde{d}(l) \ldots \tilde{a}(l)$ as (coeff.) $\times l_{\mathrm{XD}}^{2}$ or $($ coeff. $) \times\left(l_{\mathrm{XD}}^{2}\right)^{2}$.
- We pick up the rational terms from the new integrals involving extra-dimensional parts of l, such as

$$
\int[d l] \frac{l_{\mathrm{XD}}^{2}}{D_{1} D_{2} D_{3} D_{4}}
$$

- The amplitude is essentially linear in D_{s}. Extrapolate back to e.g. $D_{s}=4$ or $D_{s}=4-2 \epsilon($ FDH Scheme, 't H-V scheme).

Checks

- Tree level: Born, real and cross-section checked with MG/ME.
- Virtual: Poles reproduced correctly. In addition we cross-check the full 1-loop amplitude at individual phase-space points with an independent Feynman-diagram based program.
- Catani-Seymour dipoles: - Collinear limits - Cancellation of virtual poles with integrated dipoles - Independence of cross-section on α parameter.

Results for $W^{+} W^{+} j j$

Cuts and Input Parameters:
$p p$ collisions with $\sqrt{s}=14 \mathrm{TeV}$
Allow W-bosons to decay leptonically into $e^{+} \mu^{+}$
(full $l^{+} l^{+}$is a factor of 2 greater)

- Jets are reconstructed with anti- k_{T} algorithm with $R=0.4$.
- Jet cuts: $p_{T, j}>30 \mathrm{GeV}$.
- Lepton cuts: $p_{T, j}>20 \mathrm{GeV},\left|\eta_{l}\right|<2.4$.
- Missing transverse momentum cut: $p_{T, \text { miss }}>30 \mathrm{GeV}$.
- MSTW08LO and MSTW08NLO parton distributions.
- $\alpha_{s}\left(M_{Z}\right)=0.13939$ and 0.12018 respectively.
$-\alpha_{Q E D}=1 / 128.802, \sin ^{2} \theta_{W}=0.2222$.
$-M_{W}=80.419 \mathrm{GeV}, \Gamma_{W}=2.141 \mathrm{GeV}, \Gamma_{Z}=2.490 \mathrm{GeV}$.

$W^{+} W^{+}{ }_{j j}$ Cross-sections and μ dependence

$$
\mu=\mu_{R}=\mu_{F}
$$

NLO cross section dependence on μ reduced significantly compared to LO.

$$
\sigma^{L O}=2.7 \pm 1.0 \mathrm{fb}, \quad \sigma^{N L O}=2.44 \pm 0.18 \mathrm{fb} \quad\left(\sim 60 l^{+} l^{+} \text {events for } 10 \mathrm{fb}^{-1}\right)
$$

Notably larger cross section for 2-jet inclusive than for 2-jet exclusive \rightarrow presence of a relatively hard third jet in quite a large fraction of events.

Implementation of $W^{+} W^{+} j j$ in the POWHEG BOX

- Benefits of a NLO calculation together with a parton shower.
- POWHEG BOX interface - supply a few ingredients:
- Phase space
- Flavour information
- Born, real and virtual matrix elements.
- No generation cut complications arise because there are no soft or collinear divergences at Born level.
- $W^{+} W^{+} j j$ is the first $2 \rightarrow 4$ process to be implemented in NLO+PS framework.
- POWHEG implementation framework for arbitrary processes exists, but the virtual corrections here are computationally demanding - technical modifications allowed for parallel running.

Selected POWHEG $W^{+} W^{+} j j$ Results

- Here we consider $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$. No jet cuts are applied. -

With the previous leptonic cuts, $\mu_{R}=\mu_{F}=\left(p_{t, 1}+p_{t, 2}+E_{t, W_{1}}+E_{t, W_{2}}\right) / 2$

$$
\begin{aligned}
& \sigma_{N L O}=1.11 \pm 0.01_{(\text {stat })} \mathrm{fb} \\
& \sigma_{P Y T}=1.06 \pm 0.01_{(\text {stat })} \mathrm{fb}
\end{aligned}
$$

- Most kinematic distributions show minor shape change after parton showering.
- $H_{T, T O T}=p_{t, e^{+}}+p_{t, \mu^{+}}+p_{t, \text { miss }}+\sum_{j} p_{t, j}$ is affected by soft partons and underlying event PYTHIA adds (no jet cut!).
- Causes a migration of the NLO distributed events to higher $H_{T, T O T}$ bins.

Results for $W^{+} W^{-} j j$

- Allow W-bosons to decay leptonically into $e^{+} \mu^{-}\left(\right.$full $\left.l^{+} l^{\prime}-\times 4\right)$ and with the same leptonic cuts and EW parameters as previously described.
- Jet cuts: $p_{T, j}>30 \mathrm{GeV},\left|\eta_{j}\right|<3.2$.

$$
\mu=\mu_{R}=\mu_{F} .
$$

- Dramatic reduction in scale dependence in going to NLO.

$$
\sigma_{L O}=46 \pm 13 \mathrm{fb} \quad \sigma_{N L O}=42 \pm 1 \mathrm{fb}
$$

- Optimal scale choice changes from $2 M_{W}$ at 7 TeV to $4 M_{W}$ at 14 TeV .

Kinematic distributions for $W^{+} W^{-} j j$

Selected distributions relevant for Higgs searches at 7 TeV :

$$
\mu=\mu_{R}=\mu_{F} \text {. Solid line } \mu=2 M_{W} \text {, variation } M_{W}<\mu<4 M_{W} \text {. }
$$

- Opening angle of the leptons. For $H \rightarrow W W \rightarrow e \mu \nu \nu$ the leptons have small opening angle. Here they prefer to be back-to-back.
- Large reduction in the theoretical uncertainties of the distribution. No observed shape change.

Kinematic distributions for $W^{+} W^{-} j j$

Selected distributions relevant for Higgs searches at 7 TeV :

- Difference in rapidity of the two hardest jets. Right plot shows Higgs produced by gluon fusion and by weak boson fusion. Taken from Campbell, Ellis and WIlliams, hep-ph:1001.4495.
- Large reduction in the theoretical uncertainties of the distribution. No observed shape change.

Conclusions

- Have presented the QCD NLO calculations for the processes $W^{+} W^{+} j j$ and $W^{-} W^{+} j j$ using D-dimensional generalised unitarity.
- Significant reduction in theoretical uncertainties for LHC predictions of both processes.
- $W^{+} W^{+} j j$ has been implemented in the POWHEG BOX - matching NLO with a parton shower. Currently being used by an ATLAS new physics search group.
- Look forward to measurements of pairs of weak bosons and jets at the LHC!

BACKUP SLIDES

Dependence on the jet p_{T} cut

Here μ is varied between 100 GeV and 200 GeV , and the central value is 140 GeV .
Shows reduction in scale dependence for a jet cut $>40-50 \mathrm{GeV}$.
Whatever the exact value of exclusive 2 jet cross-section, still significantly less than the 2 jet inclusive.

