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Introduction 

• Definition of double parton scattering (DPS) singularity in 
one loop amplitudes 

• (A) motivation for studying the DPS singularity – some 
unexplained behaviour in simple SM one loop diagrams 
close to points at which the loop contains a DPS singularity. 

• Derivation of a compact analytical expression for the DPS 
divergent part of any one-loop diagram. I use this to explain 
behaviour of the loop integrals. 

• I demonstrate how the work links in with double parton 
scattering theory – it can be used to show that there are 
some theoretical issues with a certain framework for 
describing double parton scattering. 
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Double Parton Scattering Singularity 

n1 particles 

n2 particles 

Total invariant mass > 0 

Total invariant mass > 0 

On shell On shell 

Blue = massless 

Pinch singularity in Feynman Integral 
(Landau Singularity) that occurs in 
diagrams of this structure. 

kt 

-kt 

Singularity occurs when external particles 
attached to top (or bottom) leg of loop have 
zero total transverse momentum (i.e. kt = 0). 

A Landau singularity corresponds to the ‘resonance’ of a Feynman diagram with a 
classical scattering process (Coleman-Norton Theorem).  In this case the classical 
scattering process is a process where both initial state partons split and double 
scatter. 

Nagy and Soper, Phys. Rev. D74 (2006) 093006. 
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Naive expectations for SM loop 
behaviour around DPS singularity 

With no numerator structure (scalar particles), DPS 
singularity corresponds to an actual divergence in the 
loop integral (with the number of dimensions equal to 4). 

e.g. scalar ‘crossed box’ 2
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L. D. Ninh [arXiv:0810.4078]. 

Naively might expect SM boxes to behave similarly – they will only be less singular if 
the numerators in the SM loops happen to vanish at the DPS singular point. 
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Standard Model Box Graphs 
Can extract the leading low Q2 behaviour from analytic results for some SM box 
amplitudes. Results are only presented for those helicity amplitudes that diverge as 
Q2  0.   

DPS divergence in SM graphs seems to be demoted from a power to a logarithm at 
most. What is the physical mechanism behind this? 

Why do some external helicity configurations give a divergence at Q2  0 but not others? 

λ1λ2μ1μ2 

λ1λ2 

Glover, van der Bij 
Nucl.Phys. B309 (1988) 282. 

Glover, van der Bij 
Nucl.Phys. B321 (1989) 561. 

gg  ZZ 

gg  HH 
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Six Photon Amplitude 

− 

− 
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+ 

+ 
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+ 
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MHV: NMHV: 

Amplitudes 
Considered: 

+ 

[Helicity labels given 
are relative to 
incoming particles] 

− 

− 

Very thorough numerical study of certain six photon helicity amplitudes in the region 
of  phase space around a point corresponding to a DPS singularity for some graphs 
was performed by Bernicot and Guillet. 

Conclusion: both MHV and NMHV 
amplitude do not diverge at kt = 0. 
Why is this? 

2D approach to a point with kt = 0: 

kt 

-kt 

C. Bernicot [arXiv:0804.1315] 
Z. Bern et al., [arXiv:0803.0494] 
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Analytic Expression for DPS Divergence 

We desire an analytical expression for the DPS divergent part of a crossed box integral 
= contribution to crossed box loop integral at small external transverse momentum 
coming from region of loop integration around DPS singular point (i.e. loop particles 
having small transverse momentum and virtualities). 

To answer these questions we performed an 
analytical study of the DPS divergence in one 
loop integrals. The simplest loop that can 
contain DPS singularity is this crossed box – we 
studied this first. 

Q1
2 = Q2

2 = Q2 > 0 
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DPS Divergence in Crossed Box 
Q1

2,Q2
2 > 0 

+z 

Numerator – depends on 
nature of particles in diagram  

Loop propagator denominators – 
universal to all crossed boxes 

Compact expression! 

Decompose all vectors in terms of a light cone basis 
defined using p1 and p2 as basis vectors.  

Perform k- integral followed by k+ integral using contour methods, throwing away terms 
that are negligible in region around DPS singularity   ii QQkQk ,,,,2 kQk 2
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Cutkosky cuts of the box 

DPS divergence is in the real 
part of box integral – i.e. 
imaginary part of box amplitude 
since 

DPS divergent part of loop integral can also be found by taking sum of cuts in 
limit where external transverse momenta are small and internal particles are 
almost on shell. 

Two cuts give the same 
contribution. 

Li M
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Hard matrix elements – 
can evaluate with incoming 
off-shellness and 
transverse momentum = 0 

‘Light-cone wavefunction to 
find L2L3 in b’ 

Decomposition of DPS divergent part 
of Crossed Box 
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DPS divergent part of arbitrary one-
loop integral 

To obtain DPS divergent part of an arbitrary 
one-loop diagram (of the appropriate 
character), replace 2→1 matrix elements by 
2→n1, 2→n2 matrix elements above. 

n1 

n2 

On shell On shell 

Total invariant mass > 0 

Total invariant mass > 0 

Red = massless 


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For crossed box: 
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Light-cone wavefunctions 

Square root of helicity dependent splitting function. 

Transverse momentum dependent factor K contains a 1/k2 factor from propagator 
denominator, multiplied by a further factor coming from splitting matrix element. 

k 
-k p 

k 
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k+ = xp+  

(k-p)+ = (1-x)p+  
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Scalar ϕ3 theory : splitting matrix element doesn’t depend on k. For an arbitrary loop: 
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Light-cone wavefunctions 
For any Standard Model massless particle splitting, matrix element is proportional to k. 

Can show where this comes from for e.g. g → qq graph: 

Helicity conservation  Jz of 
final state = 0 in collinear limit 

Jz of initial state =±1  

splitting must be suppressed 
in collinear limit. 

   
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Strongly related to 
logarithmic scaling violations 
of parton distributions 

 DPS divergence in SM graphs cannot be stronger than a logarithm of Q2.  
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SM crossed boxes – why are some helicity 
configurations not divergent? 

For a gg  qqqq  AB box, if the helicities of initial state gluons are different, then 
the product of lightcone wavefunctions vanishes upon integration over k when Q2 =0 . 

1. Suppression of divergence from the wavefunction factors. 

Physical explanation: total Jz nonconservation in collinear limit. 

Initial Jz = -2 

Intermediate Jz = 0 
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SM crossed boxes – why are only some helicity 
configurations divergent? 

2. Suppression of divergence from matrix element factors. 

Physical explanation: no configuration of internal helicity in the loop which 
simultaneously  ensures helicity conservation at every external vertex, and conserves Jz 
in both qq  Z processes in the collinear limit.  

For the gg  ZZ crossed box, if the helicities of the final state bosons are not the 
same, at least one of the qq  Z matrix elements vanish for all internal helicity 
configurations allowed by g  qq wavefunctions. 
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Six photon helicity amplitudes 
Similar arguments can be used to explain why MHV and NMHV amplitudes studied by 
Bernicot and Guillet are finite at kt = 0. 

There are four graphs giving a DPS divergence at the point 
kt = 0. The matrix elements to be used in the calculation 
of the DPS divergent parts of the sum of these graphs are 
the sum of the following two graphs: 

= full matrix element for qq → γγ. For MHV 
amplitude studied, photons have same 
helicity in both matrix elements, and go to 
zero by MHV rules for QED. 

MHV amplitude: suppression in matrix element factors. 

− 

− 

+ 
+ 

+ + 
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Six photon helicity amplitudes 
NMHV amplitude: suppression in light cone wavefunctions 

+ 

+ 
− 

+ 

− 

− 

Unequal photon helicities in initial state  total Jz 
nonconservation between initial state and long-lived qqqq 
intermediate state in collinear limit. 

In general: 

No NMHV six-photon amplitude can ever contain a DPS divergence - however one 
distributes the helicities, one always ends up either with the initial state photons 
having opposite helicities, or with one of the pairs of the final state photons having 
the same helicity 

There are MHV amplitudes that do have 
logarithmic DPS divergences – for example: + 

+ 
− 

+ 

+ 

− 
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Application of the work to double parton scattering 
theory 

Double parton scattering is the process in which two pairs of partons 
participate in hard interactions in a single proton-proton collision. 

DPS processes can constitute important 
backgrounds to Higgs and other interesting signals 
and can themselves be considered as interesting 
signal processes, since they reveal information 
about parton pair correlations in the proton. 

Assuming only the factorisation of the two hard 
processes A and B, we can write the cross section for 
proton-proton DPS as follows: 

W 
H0 

b 

b 

W 

b 
b 

Higgs signal DPS background 

Two-parton GPDs Parton-level 
cross sections 

Transverse parton pair 
separation 

-x3 

-x4 
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Double Parton Scattering theory 
In many extant studies of DPS, it is assumed that the 2pGPD can be approximately 
factorised into a product of a longitudinal piece and a (typically flavour and 
scale independent) transverse piece: 

Then, introducing σeff via  we find that the DPS cross section 

can be written as follows: 

A quantity denoted as Dh
j1j2(x1,x2,Q2) (the double PDF, or dPDF) was introduced in 1982 

by Shelest, Snigirev and Zinovjev [Phys. Lett. B 113:325], and an evolution equation for 
this quantity was given (dDGLAP equation). Snigirev suggested afterwards [hep-
ph/0304172] that this quantity is equal to the factorised longitudinal piece of the 2pGPD 
for the case where QA = QB ≡ Q. 

Smooth function 
of size Rp. 
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Double PDF framework for calculating DPS 

x1 

x2 

x1 
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x2 
x1+x2 
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Pictorial form of dDGLAP equation: 

Independent branching terms 

‘Single parton feed’ 
Involves single PDF 

Given the inclusion of single feed term, dPDF 
framework predicts that part of these ‘double 
perturbative splitting’ graphs should be 
included as DPS. At the cross section level the 
part that should be included is proportional to: 

n = total number of QCD branching vertices on either side of diagram. 

QA
2 = QB

2 = Q2 > 0 

This part should be associated with QCD branchings on either side of the 
diagram being strongly ordered in transverse momenta. 
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‘Double Perturbative Splitting’ graphs 

Is there such a structure in these ‘Double Perturbative 
Splitting’ graphs? Let’s see for the simple box graph: 

We expect the  piece in this graph  

to be contained in the region of cross section integration around 
the DPS singularity  insert our analytic expression for DPS 
singular part of loop into standard 2  2 cross section formula: 

‘O(αs) g  qq 2pGPD’  
1  2  splitting function 

rk
2
1 rk

2
1

rk
2
1

rk
2
1 rk

2
1

rk
2
1

rk
2
1

rk
2
1

r is Fourier conjugate 
of parton pair 
separation b 
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‘Double Perturbative Splitting’ graphs 

Obtain a result that is consistent with the double PDF framework if one considers the 
portion of the integral with |r| < ΛS as DPS, where ΛS  is a specific choice of cut-off of the 
order of ΛQCD. But why should we consider this piece specifically as DPS?  

Same issues are encountered for an arbitrary double perturbative splitting graph. There is 
no distinct piece of the arbitrary double splitting graph that contains a natural scale of 
order ΛQCD and is associated with the transverse momenta inside the loop being strongly 
ordered on either side of the diagram. Most of the contribution to the cross section 
expression for this graph comes from the region of integration in which the transverse 
momenta of particles inside the loop are of O(√Q2). 
 Perhaps, then, we shouldn’t include any of this graph as DPS. This has the advantage of 
avoiding potential double counting between DPS and SPS. 22 



‘Double Perturbative Splitting’ graphs 
There are clearly theoretical issues with the double PDF framework. Can gain some 
insight into the root of the problems in the dPDF framework by Fourier transforming 
the r-space perturbative splitting 2pGPD we obtained before into b space. We find: 

  221
1~,,
b

bxx
qqgqq 



Power law behaviour – very different from smooth function of size Rp expected from 
double PDF framework. A key error then in the formulation of the dPDF framework 
seems to be the assumption that all 2pGPDs can be approximately factorised into 
dPDFs and smooth transverse functions of size Rp. 

A sound theoretical framework for describing proton-proton DPS needs to carefully 
take account of the different b dependence of pairs of partons emerging from 
perturbative splittings, whilst simultaneously avoiding double counting between SPS 
and DPS. 

See also Diehl and Schafer [arXiv:1102.3081]. 
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Summary 

• We have derived a compact analytical expression for the DPS 
divergence in an arbitrary one-loop diagram. 

• This expression was used to show that no Standard Model loop can 
have a DPS singularity worse than a logarithm of the transverse 
momentum of particles on the top/bottom leg of the loop. 

• We explained why certain amplitudes studied by the NLO multileg 
community do not have a DPS divergence – e.g. six photon MHV 
and NMHV helicity amplitudes studied by Bernicot and Guillet. 

• Relevance of the work to double parton scattering theory – used 
analytical expression for DPS singularity to show that that the 
treatment of the double parton splitting diagrams in the double 
PDF framework appears to be unsatisfactory. 
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