
Introduction Tensor coefficient construction Implementation and Benchmarks

A recursive one-loop algorithm

for many-particle amplitudes

Philipp Maierhöfer

Institute for Theoretical Physics
University of Zürich

RADCOR 2011
Mamallapuram, 27 September 2011

In Collaboration with
Fabio Cascioli and Stefano Pozzorini



Introduction Tensor coefficient construction Implementation and Benchmarks

Outline

1 Introduction
State of the Art @ NLO
Tensor reduction
OPP method from the users’ point of view

2 Tensor coefficient construction
Tensor coefficients can be used with tensor integrals and OPP
Tree-like construction of tensor coefficients
Sharing loop structures between diagrams
Checks and Remarks

3 Implementation and Benchmarks
Organisation of the calculation
Benchmark results
Remarks, Outlook, Conclusions



Introduction Tensor coefficient construction Implementation and Benchmarks

State of the Art @ NLO

pp → W+W−bb̄ [Denner, Dittmaier, Kallweit, Pozzorini ‘10]

[Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ‘11]

pp → tt̄bb̄ [Bredenstein, Denner, Dittmaier, Pozzorini ‘08, ‘09, ‘10]

[Bevilacqua, Czakon, Papadopoulos, Pittau, Worek ‘09]

pp → tt̄jj [Bevilacqua, Czakon, Papadopoulos, Pittau, Worek ‘10]

pp → W±W±+ 2j [Melia, Melnikov, Rontsch, Zanderighi ‘10]

pp → W±+ 3j [Ellis, Melnikov, Zanderighi ‘09]

pp → γ∗/Z/W±+ 3j [Berger,Bern,Dixon,Febres Cordero,Forde,Gleisberg,Ita,Kosower,Maître ‘09]

pp → Z/W±+ 4j [—"— ‘09, ‘10]

pp → bb̄bb̄ [Binoth, Greiner, Guffanti, Guillet, Reiter, Reuter ‘09]

pp → W γγ j [Campanario, Englert, Rauch, Zeppenfeld ‘11]

On-shell

methods
Tensor integral
reduction can
compete with
on-shell methods
up to 10 external
legs. [van Hameren ‘09]

Tensor integral

reduction

analytical coefficients

numerical coefficients −→

numerical

integration



Introduction Tensor coefficient construction Implementation and Benchmarks

It’s all about tensor reduction

pN

p1
q

p2 p3

p4

p5

. . .

Tensor integral reduction On-shell methods

Reduce amplitude

to a linear combination

of scalar integrals

=

∫

ddq
G0 +G

µ1

1 qµ1
+ . . . +G

µ1...µR

R qµ1
. . .qµR

D0 D1 . . . DN−1

∫

ddq

[

∑
i1

ai1

Di1

+ ∑
i1,i2

bi1 i2

Di1Di2

+ ∑
i1,i2,i3

ci1i2 i3

Di1Di2Di3

+ ∑
i1,i2,i3,i4

di1 i2i3 i4

Di1Di2Di3Di4

]

Di =
(

q+
i

∑
ℓ=0

pℓ

)2
−m2

i + iδ



Introduction Tensor coefficient construction Implementation and Benchmarks

Tensor integral reduction

Generate Feynman diagrams and insert Feynman rules.

Separate tensor coefficients from tensor integrals.

A =
R

∑
r=0

G µ1...µr

r ·

∫

ddq
qµ1

. . .qµr

D0 D1 . . . DN−1

Covariant decomposition in tensor monomials built from g µν and p
µ
i .

Reduce tensor integrals to scalar basis integrals
[Melrose], [Passarino, Veltman], [Denner, Dittmaier]

Can be implemented in a numerically stable way.

Construction of
explicit tensor components

coefficient calculated . . .

analytically in d dimensions numerically in 4 dimensions
(need rational terms R2)



Introduction Tensor coefficient construction Implementation and Benchmarks

OPP method from the users’ point of view

Public implementations available:

CutTools [Ossola, Papadopoulos, Pittau]

Samurai [Mastrolia, Ossola, Reiter, Tramontano]

Provide a Fortran subroutine which evaluates the numerator N(q)
numerically for given (complex) q.

N(q) can be calculated by a generator for tree-level amplitudes.

OPP routines extract coefficients of the scalar basis integrals.

Coefficient extraction can be numerically unstable.

Calculate scalar integrals (several libraries available).



Introduction Tensor coefficient construction Implementation and Benchmarks

Construction of the OPP numerator function

To construct the numerator function, “cut” one of the loop propagators.

q

cut

−→ ∑
λ

q

λ
-q

λ

Two additional external legs with momenta q and −q.

Remove denominators from loop propagators.

Step-by-step attach vertices and propagators
to build tree wave functions.

Diagram by diagram,
sharing common structures

between diagrams
[like MadGraph]

Current recursion
using Dyson-Schwinger

equations
[like HELAC-Phegas]



Introduction Tensor coefficient construction Implementation and Benchmarks

Tensor coefficients can be used with tensor integrals and OPP

If the tensor coefficients G
µ1...µr

r are known, the numerator function N(q)
can be easily calculated by contracting the coefficients with direct
products of the loop momentum.

N(q) =
R

∑
r=0

G µ1...µr

r qµ1
. . . qµr

⇒ If one has an efficient way to calculate G
µ1...µr

r ,
⇒ one can use it for both, contraction with tensor integrals,
⇒ or as input for the OPP method.

Reconstructing G from N(q) for several q is always possible,
but the performance is only acceptable to cure numerical instabilities
in exceptional phase space points. [Heinrich, Ossola, Reiter, Tramontano]

But: Coefficients can be constructed in a tree-like way!



Introduction Tensor coefficient construction Implementation and Benchmarks

Tree-like construction of tensor coefficients

Separate coefficient G from the tensor integrals

= ∑
subsets of

{i1, . . . , iR}
= {1, . . . ,r}

µi2

µi1

µi5

µi4

µi3

︸ ︷︷ ︸

G = {G0, G
µ1

1
, ..., G

µ1...µR

R
}

∫

ddq
qµ1

. . .qµr

D0 D1 . . . DN−1

Open the loop and choose build direction

µi2

µi1

µi5

µi4

µi3
︸ ︷︷ ︸

G

= δβ
α

βα

µi1

µi2 µi3

µi4

µi5

︸ ︷︷ ︸

Gαβ



Introduction Tensor coefficient construction Implementation and Benchmarks

Step-by-step construction of tensor coefficients

Just like in a tree generator, connection rules for the vertices and
propagators of the theory are the universal building blocks for loop
structures.

q

α β

Gα
β = δα

β

× β i

ψj

p

−igs (γβ )ij

= α i

ψj

p

Gα
i = − igs (γα)ijψj

α i

ψj

p

Gα
i = − igs (γα)ijψj

× i k
µ

(γµ )kiq
µ +(/p+m)ki

= α k

ψj

p µ

Gα
k = {Gα

i (/p+m)ki , Gα
i (γµ)ki}

Vertices and propagators which contain the loop momentum q raise the
rank of the coefficient, i. e. they add an open Lorentz index, but they
also contribute to the equal rank part.



Introduction Tensor coefficient construction Implementation and Benchmarks

Sharing loop structures between diagrams

Loop structures can be shared between diagrams, if the loop momentum
is chosen in the same way in the corresponding diagrams.

parent child 1 child 2

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability.

In QCD cutting a gluon line assures that all child diagrams exist.

Choose a cutting algorithm which assures that merging
the last two vertices which are connected to the loop
does not change the cut position and direction.



Introduction Tensor coefficient construction Implementation and Benchmarks

Pseudo-tree consistency check

Instead of closing the loop by taking the trace G = Gα
α one can attach

external legs ε1,2 to the chain and contract with a fixed “loop” momentum

A = εα
1 (q)

[
Gα

β ·Q
]
ε2β (−q), where Q = {1, qµ1 , . . . , qµ1 . . .qµR }.

A is the amplitude of the tree-level diagram obtained by cutting the loop
diagram and can be compared to the same diagram calculated by a tree
generator.

⇒ Checks the implementation of vertices and propagators
⇒ for the loop structures.



Introduction Tensor coefficient construction Implementation and Benchmarks

Remarks

The tree generator has been thoroughly checked against MadGraph.

One can easily switch between tensor integrals and OPP for consistency
checks, numerical stability performance studies.

Since the tensor integrals are totally symmetric, only the symmetric part
of the coefficient has to be constructed. For rank up to R the number of
components is

(
R+4

4

)
instead of 1

3 (4
R+1− 1).

max. rank 0 1 2 3 4 5 6
components 1 5 15 35 70 126 210

Each component is a 4× 4 matrix for the spinor/Lorentz index of the
incoming and outgoing particles of the cut loop (except for
scalars/ghosts).

Increasing tensor rank decreases the effectivness of sharing loop
structures, because the highest rank (and therefore most expensive)
structures cannot be reused.



Introduction Tensor coefficient construction Implementation and Benchmarks

Organisation of the calculation

FeynArts
• diagram generation

User input
• Process definition file

Fortran templates

Code generator (Mathematica)

Tree generator
• tree-level process
• tree structures connected to loops
• real corrections
• UV counter terms
• rational terms of type 2
• colour and helicity correlations
• for Catani-Seymour dipoles
• full Standard Model
• unitary gauge and Feynman gauge
• complex masses and momenta
• identification of common structures

Loop generator
• QCD corrections for
• Standard Model processes
• complex masses
• dipole I-operators
• optimised identification of
• common structures

Fortran 90 code

CutTools COLI (private tensor
integral library by
Denner & Dittmaier)



Introduction Tensor coefficient construction Implementation and Benchmarks

Runtime vs. number of diagrams

CPU cost for virtual correction;
polarised;
full colour sums;
on Intel Core i5-750;
ifort 10.1 -O2;
preliminary

Process TIR OPP

gg → tt̄ 1.0 3.0
gg → tt̄g 15.5 57.0
gg → tt̄gg 508.8 1244.0
uū → W+W− 0.3 0.9
uū → W+W−g 3.3 10.3
uū → W+W−gg 102.3 176.0

ud̄ → W+g 0.4 1.2
ud̄ → W+gg 6.3 18.7
ud̄ → W+ggg 220.0 370.0
qq̄ → tt̄ 0.3 0.8
qq̄ → tt̄g 3.5 12.0
qq̄ → tt̄gg 69.2 243.0

<1s for 104 diagrams,
all processes from the
Les Houches wishlist in-
cluded.

Tensor integral
reduction

to
ta

l
ti
m

e
[m

s]

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

10 50 100 500 1000 5000
0.1

1

10

100

1000

ò qq ® tt +ng
ì ud ®Wg+ng
à uu ®WW+ng
æ gg® tt +ng

OPP reduction
to

ta
l
ti
m

e
[m

s]

æ

æ

æ

à

à

à

ì

ì

ì

ò

ò

ò

10 50 100 500 1000 5000
0.1

1

10

100

1000

ò qq ® tt +ng
ì ud ®Wg+ng
à uu ®WW+ng
æ gg® tt +ng

number of diagrams



Introduction Tensor coefficient construction Implementation and Benchmarks

Benchmark results using tensor intgerals

polarised unpolarised

gg → tt̄

gg → tt̄g

gg → tt̄gg

20 40 60 80 100 20 40 60 80 100

qq̄ → tt̄

qq̄ → tt̄g

qq̄ → tt̄gg

20 40 60 80 100 20 40 60 80 100

fractions of total runtime for scalar integrals, tensor reduction, coefficients;
helicity sums contain one state per W/top-quark

(decay into left-handed massless fermions)



Introduction Tensor coefficient construction Implementation and Benchmarks

Remarks and Outlook

Code generation is fast: O(1min)

Executables are small: O(10MB)

}

for a 2 → 4 process

Diagrammatic approach allows for colour factorisation
and therefore colour summing at low CPU cost.

Helicity sampling is possible to further reduce CPU cost.

UV counter terms, IR subtractions and rational terms
only partially implemented and tested.

Optimise construction of tensor integral components, maybe
without first constructing a covariant decomposition. [Hofer]

Detailed numerical stability studies needed.

Extend loop generator to full Standard Model.

Interface with an event generator.



Introduction Tensor coefficient construction Implementation and Benchmarks

Conclusions

We implemented a numerical algorithm to construct tensor integral
coefficients for NLO calculations.

Coefficients are constructed in a tree-like way.

Easily extensible by implementing new vertices and propagators.

Can be used with tensor integral reduction and OPP reduction.

Common loop structures are shared between diagrams.

Performance studies for 2 → 4 processes look extremly promising
and there is still potential for optimisation.

CPU time is dominated by tensor integral rsp. OPP reduction.

There is still a lot to do, before we can produce first physical results.


	Introduction
	State of the Art @ NLO
	Tensor reduction
	OPP method from the users' point of view

	Tensor coefficient construction
	Tensor coefficients can be used with tensor integrals and OPP
	Tree-like construction of tensor coefficients
	Sharing loop structures between diagrams
	Checks and Remarks

	Implementation and Benchmarks
	Organisation of the calculation
	Benchmark results
	Remarks, Outlook, Conclusions


