Theoretical improvements for luminosity monitoring at low energies

Janusz Gluza (Silesia U.)

29 September 2011 Mamallapuram, India

Himalaya mountains

down to meson factories: 1-10 GeV

Mamallapuram, Temple Bay

down to meson factories: 1-10 GeV

Mamallapuram, Temple Bay

[not less] interesting physics

- C. Carloni Calame, (Southampton U., UK)
- H. Czyz, (Silesia U., Poland)
- V. Yundin, (Silesia U., Poland)
- M. Gunia, (Silesia U., Poland)
- G. Montagna, (Pavia U. & INFN, Pavia, Italy)
- O. Nicrosini, F. Piccinini, (INFN, Pavia, Italy)
- T. Riemann, (DESY, Zeuthen, Germany)
- M. Worek, (Wuppertal U., Germany)

Outline

Introduction

Bhabha NNLO corrections

- Figures: scan over additional events selection
- Table
- Some technical details on hadronic contributions
- Conclusions
- $e^+e^-
 ightarrow \mu^+\mu^-\gamma$ process
- Conclusions

Homi Bhabha, 1909-1966

► Precise calculations of higher order corrections for the process of Bhabha scattering (e⁺e⁻ → e⁺e⁻) are necessary for determine colliders luminosity with high accuracy.

$$L_{tot} = \frac{N}{\sigma_{theory}}$$

► High accuracy of luminosity in low energy region is necessary to research low energy hadron cross section from e + eannihilation process.

$$\sigma_{had} = \frac{N_{had}}{L_{tot}}$$

The muon pair production with real photon emission $e^+e^- \rightarrow \mu^+\mu^-\gamma$ is an important background and normalization reaction in the measurement of the pion form-factor:

$$R_{exp} = \frac{\sigma(e^+e^- \to \pi\pi\gamma)}{\sigma(e^+e^- \to \mu^+\mu^-\gamma)}$$

The muon pair production with real photon emission $e^+e^- \rightarrow \mu^+\mu^-\gamma$ is an important background and normalization reaction in the measurement of the pion form-factor:

$$R_{exp} = \frac{\sigma(e^+e^- \to \pi\pi\gamma)}{\sigma(e^+e^- \to \mu^+\mu^-\gamma)}$$

which is necessary for an accurate determination of the anomalous magnetic moment of the muon $(g-2)_{\mu}$, see R.Szafron's talk

The muon pair production with real photon emission $e^+e^- \rightarrow \mu^+\mu^-\gamma$ is an important background and normalization reaction in the measurement of the pion form-factor:

$$R_{exp} = \frac{\sigma(e^+e^- \to \pi\pi\gamma)}{\sigma(e^+e^- \to \mu^+\mu^-\gamma)}$$

which is necessary for an accurate determination of the anomalous magnetic moment of the muon $(g-2)_{\mu}$, see R.Szafron's talk

KLOE-2 uses both Bhabha and muon pair normalizations, Babar only radiative return The complete NNLO $N_f = 1, 2$ corrections to Bhabha scattering consist of three parts:

$$\frac{d\sigma_{N_f}^{\text{NNLO}}}{d\Omega} = \frac{d\sigma_{virt}^{\text{NNLO}\,1}}{d\Omega} + \frac{d\sigma_{\gamma}^{\text{NLO}\,2}}{d\Omega} + \frac{d\sigma_{real}^{\text{LO}\,3}}{d\Omega}^{3}$$
$$= \frac{d\sigma_{e^+e^-}}{d\Omega} + \frac{d\sigma_{\mu^+\mu^-}}{d\Omega} + \frac{d\sigma_{\tau^+\tau^-}}{d\Omega} + \frac{d\sigma_{had}}{d\Omega}.$$

- 1 bha_nnlo_hf
- 2 BHAGHEN-1PH+...,bha_nnlo_hf
- 3 HELAC–PHEGAS, EKHARA

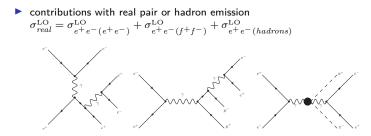
▶ the $\sigma_{virt}^{\rm NNLO}$ consists of virtual two-loop corrections $\sigma_{2L}^{\rm NNLO}$ and loop-by-loop corrections $\sigma_{1L1L}^{\rm NNLO}$

▶ the $\sigma_{virt}^{\rm NNLO}$ consists of virtual two-loop corrections $\sigma_{2L}^{\rm NNLO}$ and loop-by-loop corrections $\sigma_{1L1L}^{\rm NNLO}$

► contributions with real photon emission $\sigma_{\gamma}^{\text{NLO}} = \sigma_{\gamma, soft}^{\text{NLO}}(\omega) + \sigma_{\gamma, hard}^{\text{NLO}}(\omega)$

▶ the $\sigma_{virt}^{\rm NNLO}$ consists of virtual two-loop corrections $\sigma_{2L}^{\rm NNLO}$ and loop-by-loop corrections $\sigma_{1L1L}^{\rm NNLO}$

• contributions with real photon emission $\sigma_{\gamma}^{\text{NLO}} = \sigma_{\gamma,soft}^{\text{NLO}}(\omega) + \sigma_{\gamma,hard}^{\text{NLO}}(\omega)$



Aim of the work: calculations at NNLO

 NNLO virtual corrections linked with real corrections and realistic experimental cuts for low energy machines:
 Φ factory Dafne at Frascati, B factories PEP-II (SLAC) and Belle (KEK) and at the charm/τ factory BEPC II, Beijing

Aim of the work: calculations at NNLO

- NNLO virtual corrections linked with real corrections and realistic experimental cuts for low energy machines:
 Φ factory Dafne at Frascati, B factories PEP-II (SLAC) and Belle (KEK) and at the charm/τ factory BEPC II, Beijing
- calculation of virtual corrections: package bha_nnlo_hf: Actis, Czakon, JG, Riemann calculation of real corrections: Monte Carlo generators EKHARA:, Czyż, Nowak BHAGHEN–1PH Czyż, Caffo Bhabha with additional pairs: HELAC–PHEGAS: Papadopoulos, Kanaki, Worek, Cafarella

Aim of the work: calculations at NNLO

- NNLO virtual corrections linked with real corrections and realistic experimental cuts for low energy machines:
 Φ factory Dafne at Frascati, B factories PEP-II (SLAC) and Belle (KEK) and at the charm/τ factory BEPC II, Beijing
- calculation of virtual corrections: package bha_nnlo_hf: Actis, Czakon, JG, Riemann calculation of real corrections: Monte Carlo generators EKHARA:, Czyż, Nowak BHAGHEN–1PH Czyż, Caffo Bhabha with additional pairs: HELAC–PHEGAS: Papadopoulos, Kanaki, Worek, Cafarella
- comparison complete calculations with approximate ones realized in the MC generator BabaYaga: C.C.Calame, C. Lunardini, G. Montagna, O. Nicrosini, F. Piccinini

"NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories."

Carloni Calame, H. Czyz, JG, M. Gunia , G. Montagna, O. Nicrosini, F. Piccinini, T. Riemann, M. Worek, Published in

JHEP 1107:126,2011

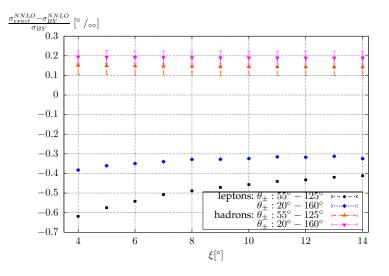
1. Φ factories KLOE/DA Φ NE (Frascati)

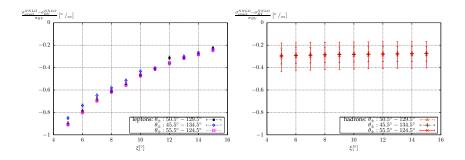
(a) $\sqrt{s} = 1.02 \text{ GeV}$ (b) $E_{min} = 0.4 \text{ GeV}$ (c) For $\theta \pm$ two selections have to be checked i. tighter selection $55^{o} < \theta \pm < 125^{o}$ ii. wider selection $20^{o} < \theta \pm < 160^{o}$ (d) $\zeta_{max} = 4.5, 6.7, 8, ..., 14 \text{ deg., with reference value } \zeta_{max} = 9^{o}$

2. B-factories BABAR/PEP-II (SLAC) & BELLE/KEKB (KEK)

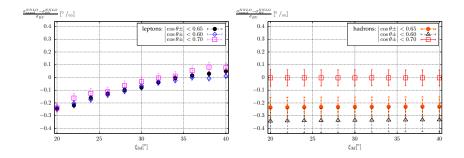
(a) $\sqrt{s} = 10.56 \text{ GeV}$ (b) $|\vec{p}_+|/E_{beam} > 0.75 \text{ and } |\vec{p}_-|/E_{beam} > 0.50$ or $|\vec{p}_-|/E_{beam} > 0.75 \text{ and } |\vec{p}_+|/E_{beam} > 0.50$ (c) For $|\cos(\theta\pm)|$ the following selections have to be checked i. $|\cos(\theta\pm)| < 0.65 \text{ and } |\cos(\theta+)| < 0.60 \text{ or } |\cos(\theta-)| < 0.60$ ii. $|\cos(\theta\pm)| < 0.70 \text{ and } |\cos(\theta+)| < 0.65 \text{ or } |\cos(\theta-)| < 0.65$ iii. $|\cos(\theta\pm)| < 0.60 \text{ and } |\cos(\theta+)| < 0.55 \text{ or } |\cos(\theta-)| < 0.55$ (d) $\zeta_{max}^{3d} = 20,22,24,...,40 \text{ deg., with reference value } \zeta_{max}^{3d} = 30^{\circ}$

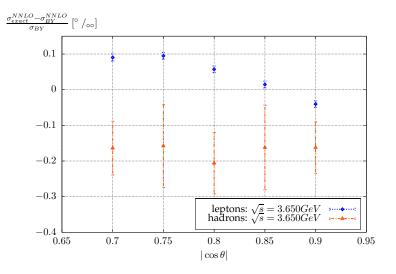
KLOE - relative difference in per-mile





Contributions of leptons and hadrons to NNLO Bhabha process can be constructive (Belle) or destructive (Kloe), they also depends strongly for some colliders/detectors on kinematical cuts.

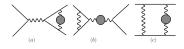




	\sqrt{s}		$\sigma_{ m BY}$	$S_{e^+e^-}$	$S_{lep}[10^{-3}]$	S_{had}	S_{tot}
KLOE	1.020	NNLO		-3.935(4)	-4.472(4)	1.02(2)	-3.45(2)
		BY_{NLO}	455.71	-3.445(2)	-4.001(2)	0.876(5)	-3.126(5)
BES	3.097	NNLO		-2.246(8)	-2.771(8)	-	-
		BY_{NLO}	158.23	-2.019(3)	-2.548(3)	-	-
BES	3.650	NNLO		-1.469(9)	-1.913(9)	-1.3(1)	-3.2(1)
		BY_{NLO}	116.41	-1.521(4)	-1.971(4)	-1.071(4)	-3.042(5)
BES	3.686	NNLO		-1.435(8)	-1.873(8)	-	-
		BY_{NLO}	114.27	-1.502(4)	-1.947(4)	-	-
BaBar	10.56	NNLO		-1.48(2)	-2.17(2)	-1.69(8)	-3.86(8)
		BY_{NLO}	5.195	-1.40(1)	-2.09(1)	-1.49(1)	-3.58(2)
Belle	10.58	NNLO		-4.93(2)	-6.84(2)	-4.1(1)	-10.9(1)
		BY_{NLO}	5.501	-4.42(1)	-6.38(1)	-3.86(1)	-10.24(2)

The $\sigma_{\rm BY}$ is the cross section in nb from BabaYaga(at)NLO, and $S_x = \frac{\sigma_x^{\rm NNLO}}{\sigma_{\rm BY}}$ in per-milles with $x = e^+e^-$, lep, tot, where tot stands for leptonic (lep) + hadronic corrections.

The vacuum polarisation function:



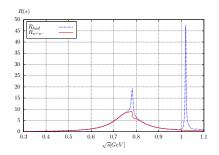
$$\Pi(q^2) = \frac{\alpha q^2}{3\pi} \int_{m_{\Pi 0}^2}^{\inf} \frac{dz}{z} \frac{R(z)}{q^2 - z + i\epsilon}$$

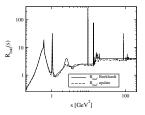
For leptons VP analytical expressions were used.

For pions VP numerical calculations of the integral were used.

For hadrons program VPHLMNT

(T.Teubner et all.) was used.





"rest": genuine massive QED NNLO virtual corrections

$$\begin{aligned} \frac{d\sigma_{\text{rest}}}{d\Omega} &= \frac{\alpha^4}{\pi^2 s} \Biggl[\int_{M_0^2}^{\infty} dz \, \frac{R(z)}{z} \frac{1}{t-z} \, F_1(z) \\ &+ \int_{M_0^2}^{\infty} dz \, \frac{1}{z \, (s-z)} \left\{ R(z) F_2(z) - R(s) F_2(s) + [R(z) F_3(z) + \frac{R(s)}{s} \left\{ F_2(s) \, \ln\left(\frac{s}{M_0^2} - 1\right) - 6 \, \zeta_2 \, F_4(s) \right. \\ &+ \left. F_3(s) \left[2 \, \zeta_2 + \frac{1}{2} \, \ln^2\left(\frac{s}{M_0^2} - 1\right) + \text{Li}_2\left(1 - \frac{s}{M_0^2}\right) \right] \Biggr\} \Biggr]. \end{aligned}$$

 F_3 , the shortest of auxiliary functions (Actis, Czakon, JG, Riemann, PRL, PRD, 2008:

$$F_{3}(z) = \frac{1}{3} \left\{ \left[\frac{z^{2}}{s} - 2z\left(1 + \frac{t}{s}\right) + 4\frac{t^{2}}{s} + 2\frac{s^{2}}{t} + 7s + 8t \right] \ln\left(1 + \frac{t}{s}\right) - \left[z^{2}\left(\frac{1}{s} + \frac{1}{t}\right) + 2z\left(1 + \frac{t}{s}\right) + 4\frac{t^{2}}{s} + \frac{s^{2}}{s} + 3s + 4t \right] \ln\left(-\frac{t}{s}\right) - \left[z^{2}\left(\frac{1}{t} + \frac{2}{s} + 2\frac{t}{s^{2}}\right) - 2z\left(2 + \frac{s}{t} + 2\frac{t}{s}\right) + \frac{s^{2}}{t} + 2\left(s + t\right) \right] \right\}$$

resonance	$M_{\rm res}~[{\rm GeV}]$	$\Gamma^{e^+e^-}_{ m res}$ [keV]
$J/\psi(1S)$	3.096916	5.55
ψ (2S)	3.686093	2.33
Ύ(1S)	9.46030	1.34
Ύ(2S)	10.02326	0.612
Ύ(3S)	10.3552	0.443
Ύ(4S)	10.5794	0.272
Υ(5S)	10.865	0.31
Υ(6S)	11.019	0.13

	\sqrt{s}	$\sigma_{ m rest, res}^{ m NNLO}$	$\sigma^{ m NNLO}_{ m rest, res'}$	σ_B
KLOE	1.020	[all n.r.]	[n.r. without $J/\psi(1S)$]	
		-0.04538	-0.0096	529.5
BES	3.097	[all n.r.]	[n.r. without $J/\psi(1S)$]	
		228.08	-0.0258	14.75
BES	3.650	[all n.r.]	[n.r. without $\psi(2S)$]	
		-0.1907	-0.023668	123.94
BES	3.686	[all n.r.]	[n.r. without $\psi(2S)$]	
		-62.537	-0.0254	121.53
BaBar	10.56	[all n.r.]	[n.r. without Υ(4S)]	
		-0.0163	-0.01438	6.744
Belle	10.58	[all n.r.]	[n.r. without Υ(4S)]	
		0.04393	-0.0137	6.331

$$R_{res}(z) = \frac{9\pi}{\alpha^2} M_{res} \Gamma_{res}^{e^+e^-} \delta(z - M_{res}^2) \,.$$
$$\frac{d\sigma_{rest}}{d\Omega} = \frac{9\alpha^2}{\pi \, s} \, \frac{\Gamma_{res}^{e^+e^-}}{M_{res}} \left\{ \frac{F_1(M_{res}^2)}{t - M_{res}^2} + \frac{1}{s - M_{res}^2} \left[F_2(M_{res}^2) + F_3(M_{res}^2) \ln \left| 1 - \frac{M_{res}^2}{s} \right| \right] \right\}$$

adaptive VEGAS is able to identify narrow resonances! we used it instead of above approximation in numerical calculations

Comparison of hadronic contributions modelled by $R_{\pi^+\pi^-}$ and $R_{had.}$ For hadrons, real emission is restricted to pions only

	KLOE	BES	BaBar
σ_{S+V} , $R_{\pi^+\pi^-}$	-1.36	-0.818	-0.0533
σ_{S+V} , R_{had}	-1.06	-1.81	-0.1888
σ_{S+V+H} , $R_{\pi^+\pi^-}$	-0.186	-0.0447	-0.00229
σ_{S+V+H} , R_{had}	0.47	-0.15	-0.0088

 Exact calculations of NNLO massive corrections to Bhabha scattering were presented.

- Exact calculations of NNLO massive corrections to Bhabha scattering were presented.
- The theoretical accuracy of the generator BABAYAGA@NLO was tested. For reference realistic event selections the maximum observed difference is at the level of 0.07%. When cuts are varied the sum of the missing pieces can reach 0.1%, but for very tight acollinearity cuts only.

- Exact calculations of NNLO massive corrections to Bhabha scattering were presented.
- The theoretical accuracy of the generator BABAYAGA@NLO was tested. For reference realistic event selections the maximum observed difference is at the level of 0.07%. When cuts are varied the sum of the missing pieces can reach 0.1%, but for very tight acollinearity cuts only.
- Stability of the results with changing of the event selections was examined there aren't dramatical changes of errors between points with real experimental cuts and their neighbours.

- Exact calculations of NNLO massive corrections to Bhabha scattering were presented.
- The theoretical accuracy of the generator BABAYAGA@NLO was tested. For reference realistic event selections the maximum observed difference is at the level of 0.07%. When cuts are varied the sum of the missing pieces can reach 0.1%, but for very tight acollinearity cuts only.
- Stability of the results with changing of the event selections was examined there aren't dramatical changes of errors between points with real experimental cuts and their neighbours.
- NNLO massive corrections are relevant for precision luminosity measurements with 10⁻³ accuracy. The electron pair contribution is the largely dominant part of the correction. The muon pair and hadronic corrections are the next-to-important effects and quantitatively on the same grounds. The tau pair contribution is negligible for the energies of meson factories.

- Exact calculations of NNLO massive corrections to Bhabha scattering were presented.
- The theoretical accuracy of the generator BABAYAGA@NLO was tested. For reference realistic event selections the maximum observed difference is at the level of 0.07%. When cuts are varied the sum of the missing pieces can reach 0.1%, but for very tight acollinearity cuts only.
- Stability of the results with changing of the event selections was examined there aren't dramatical changes of errors between points with real experimental cuts and their neighbours.
- NNLO massive corrections are relevant for precision luminosity measurements with 10⁻³ accuracy. The electron pair contribution is the largely dominant part of the correction. The muon pair and hadronic corrections are the next-to-important effects and quantitatively on the same grounds. The tau pair contribution is negligible for the energies of meson factories.
- ▶ to be done: scan over c.m. energies (~1 MeV spread) near BES(3.097) and BES(3.686GeV) resonances

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ — ideal benchmark process for massive tensor reduction

- Two different masses
- Large difference of scales (up to 7 orders in magnitude)
- Quasi-collinear region (due to small electron mass)
- Small number of diagrams

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$

- Diagram generation with DIANA [Tentyukov, Fleischer]
- Algebraic processing in FORM [Vermaseren]
- Tensor reduction PJFry [VY]
- Scalar integrals OneLOop [van Hameren]
- Monte-Carlo PHOKHARA [Rodrigo, Czyż, Kühn]

Compact result for squared one loop amplitude ($\sim 3 \text{ ms per point}$).

Monte-Carlo integration as a stability test

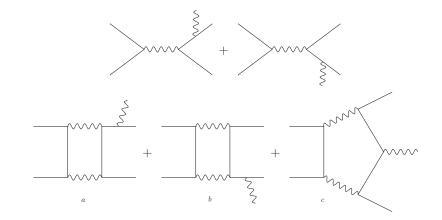
Two realistic sets of kinematical cuts

	BaBar	KLOE	
Ecms	10.56 GeV	1.02 GeV	
$E_{\gamma,\min}$	3 GeV	0.02 GeV	
θ_{γ}	$20^{\circ}-138^{\circ}$	0°–15°, 165°–180°	
Q^2	$0.25 - 50 \text{ GeV}^2$	$0.25 1.06 \text{ GeV}^2$	
$\theta_{\mu^{\pm}}$	$40^{\circ}-140^{\circ}$	$50^{\circ} - 130^{\circ}$	

 $m_e = 0.5109989 \cdot 10^{-3}$ GeV, $m_\mu = 0.105658367$ GeV, $\alpha(0) = 1/137.03599968.$

Phase-space cuts for KLOE and BaBar settings. Q^2 is the invariant mass squared of the muon pair.

$$e^+e^-
ightarrow \mu^+\mu^-\gamma$$
 KLOE Q^2



FSR gauge invariance between tree diagrams (upper picture), and gauge invariance among four and five point one-loop integrals (below). Here diagrams were limited to FSR cases, the same property is present for ISR amplitudes.

	KLOE	BaBar
double precision	10^{-2}	10^{-5}
quadrupole precision	10^{-12}	10^{-10}

Gauge invariance for loop diagrams of the previous slide for KLOE and BaBar setting and different real number declarations. The numbers give relative accuracy defined as

$$max\{\frac{\sum_{i=a,b,c} Re(M_{\mathsf{loop}}^{i}M_{\mathsf{tree}}^{\dagger})}{min(Re(M_{\mathsf{loop}}^{i}M_{\mathsf{tree}}^{\dagger}))}\}$$

Indices a, b, c refer to a, b, c diagrams in previous slide.

	KLOE	BaBar
double precision	10^{-2}	10^{-5}
quadrupole precision	10^{-12}	10^{-10}

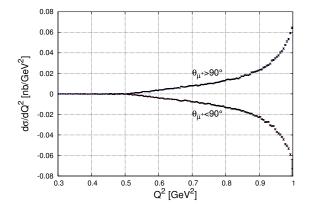
Gauge invariance for loop diagrams of the previous slide for KLOE and BaBar setting and different real number declarations. The numbers give relative accuracy defined as

$$max\{\frac{\sum_{i=a,b,c} Re(M_{\mathsf{loop}}^{i}M_{\mathsf{tree}}^{\dagger})}{min(Re(M_{\mathsf{loop}}^{i}M_{\mathsf{tree}}^{\dagger}))}\}$$

Indices a, b, c refer to a, b, c diagrams in previous slide. so, all looks all right

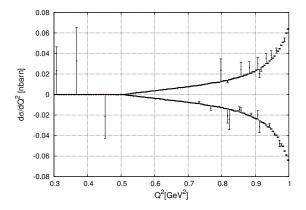
"Matter to the deepest", Ustroń 2009, Kajda, Sabonis, Yundin, Acta Physica Polonica, 2009

results using LT and FF package, $3 \cdot 10^6$ points in Phokhara MC



KLOE NLO results for $\theta_{\mu} > 90^{\circ}$ and $\theta_{\mu} < 90^{\circ}$

however:



Muon pair invariant mass distribution, results using LT and FF package, PhD thesis of K.Kajda, 2009, 10^9 points in Phokhara MC

why?

Reducing tensor rank introduces inverse Gram determinant (5 point example, rank $R \rightarrow R - 1$):

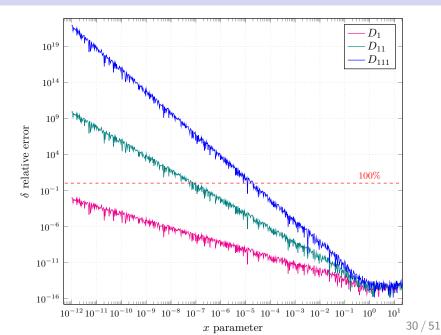
$$I_5^{\mu_1\cdots\mu_{R-1}\mu_R} = \sum_{i=1}^5 \frac{q_i^{\mu_R}}{|G^{(5)}|} \left(K_{0i} I_5^{\mu_1\cdots\mu_{R-1}} - \sum_{s=1}^5 K_{si} I_4^{\mu_1\cdots\mu_{R-1},s} \right)$$

Gram matrix:

$$|G^{(5)}| \equiv \det G^{(5)}_{ik}, \quad G^{(n)}_{ik} = 2 q_i q_k, \quad i, k = 1, \dots, n-1$$

 K_{0i} and K_{si} — kinematic coefficients

Passarino-Veltman reduction accuracy loss in small Gram region



PJFry — numerical package

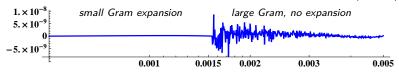
Numerical implementation of [Fleischer, Riemann 2010] algorithms: C++ package \mbox{PJFry}

- Reduction of 5-point 1-loop tensor integrals up to rank 5
 4- and 3-point tensor integrals come "for free" as a by-product
- No limitations on internal/external masses combinations
- Automatic selection of optimal formula for each coefficient
- Leading $|G^{(5)}|$ are eliminated in the reduction
- Small $|G^{(4)}|$ are avoided using asymptotic expansion
- Cache system for tensor coefficients and signed minors
- ► Interfaces for C, C++, FORTRAN and MATHEMATICA
- Uses QCDLoop or OneLOop for 4-dim scalar integrals
- Available from project page: https://github.com/Vayu/PJFry/

Average time per phase-space point on Core2 2GHz laptop for evaluation of all 81 **rank 5** tensor form-factors: **2 ms**

Expansion accuracy example:

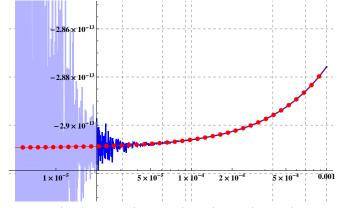
Relative accuracy of E_{3333} coef. around small $|G^{(4)}|$



PJFry — small Gram region example

Example: E_{3333} coefficient in small $|G^{(4)}|$ region (x = 0)

Comparison of Regular and Expansion formulae:



 $x=0: E_{3333}(0, 0, -6\cdot 10^4(x+1), 0, 0, 10^4, -3.5\cdot 10^4, 2\cdot 10^4, -4\cdot 10^4, 1.5\cdot 10^4, 0, 6550, 0, 0, 8315)$

Stable Numerics: $e^+e^- \rightarrow \mu^+\mu^-\gamma$ KLOE Pentagons forward-backward Q^2



Bottom: absolute error estimate.

- Pole structure
- Gauge invariance test
- Known pieces compared to Phokhara
- Comparison with published points

[Actis, Mastrolia, Ossola]

► Application to full one-loop corrections to $e^+e^- \rightarrow \mu^+\mu^-\gamma$ with analysis focused on KLOE-2 data (work in progress)

Final Word

There is a progress in low energy physics, 2 examples given, see also the next 2 talks.

Shukriyaa Bahut dhanyavaad! Thank you for your attention!

Backup slides

massless $|G^{(5)}|$ in Mandelstam variables $s_{ik} = (p_i + p_k)^2$

$$|G^{(5)}| = -s_{12}^2(s_{15} - s_{23})^2 - (s_{23}s_{34} + (s_{15} - s_{34})s_{45})^2 + 2s_{12}\left(s_{23}s_{34}(s_{23} - s_{45}) + s_{15}^2s_{45} - s_{15}(s_{34}s_{45} + s_{23}(s_{34} + s_{45}))\right)$$

Reducing $I_4^{\mu_1\cdots\mu_{R-1},s}$ gives five $|G^{(4)}|$ in the denominators: $|G^{(4)}(s,t)|=2st(s+t)$

 $|G^{(4)}(s_{12}, s_{23})|, |G^{(4)}(s_{23}, s_{34})|, |G^{(4)}(s_{34}, s_{45})|,$ $|G^{(4)}(s_{45}, s_{15})|, |G^{(4)}(s_{15}, s_{12})|$ Zero Gram determinant is not a physical singularity It is an artefact of the reduction procedure Numerator and denominator go to 0 simultaneously Leading to large cancellations and loss of accuracy

One loop tensor integrals

2. element of alternative methods tensorial reconstruction at the integrand level [Heinrich, Ossola, Reiter, Tramontano 2010]

loop level recursion

[van Hameren 2009]

Status of publicly available tools

Scalar integrals: No problems here

- ▶ QCDLoop/FF (n ≤ 4) [Ellis, Zanderighi 2007; van Oldenborgh 1990] dim-reg, real masses
- ► OneLOop (n ≤ 4) dim-reg, complex masses

Tensor integrals:

- ► LoopTools/FF $(n \le 5, R \le 4)$ [Hahn 2006; van Oldenborgh 1990] no $1/\epsilon^2$, no R=5, unstable for small Gram determinants
- ▶ Golem95 (n ≤ 6) [Binoth, Guillet, Heinrich, Pilon, Reiter 2008] massless is OK, massive is unstable for small Gram determinants (work in progress)
- private codes by various groups

Goal:

- stable and fast public implementation of tensor reduction
- suitable for any physically relevant kinematics

[van Hameren 2010]

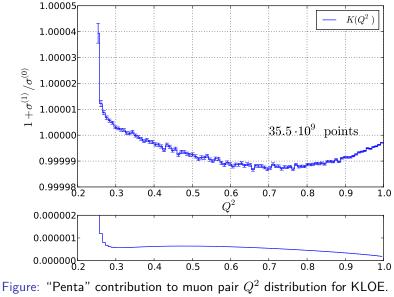
Tensor form-factors (rank 3 example):

$$I_n^{\mu_1\mu_2\mu_3} = \sum_{\substack{i,j,k=1\\i\leq j\leq k}}^{n-1} q_i^{[\mu_1}q_j^{\mu_2}q_k^{\mu_3]}F_{ijk}^{(n)} + \sum_{i=1}^{n-1} g^{[\mu_1\mu_2}q_i^{\mu_3]}F_{00i}^{(n)}$$

Standard naming convention:

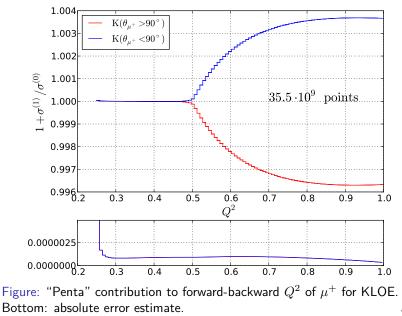
$$F^{(1)}_{\cdots} = A_{\cdots}, \ F^{(2)}_{\cdots} = B_{\cdots}, \ F^{(3)}_{\cdots} = C_{\cdots}, \ F^{(4)}_{\cdots} = D_{\cdots}, \ F^{(5)}_{\cdots} = E_{\cdots}, \ \textit{etc}$$

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ KLOE Pentagons Q^2



Bottom: absolute error estimate.

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ KLOE Pentagons forward-backward Q^2



$$e^+e^- \to \mu^+\mu^-\gamma$$

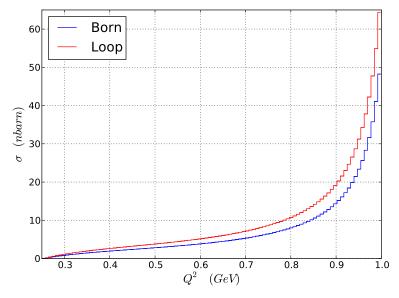
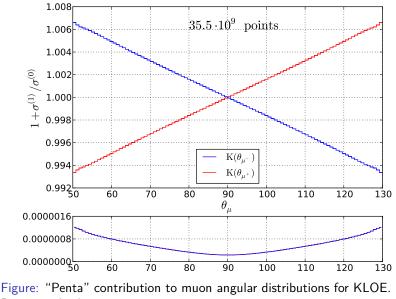


Figure: Muon pair invariant mass distribution for KLOE

$e^+e^- \rightarrow \mu^+\mu^-\gamma$ KLOE Pentagons angular distributions



Bottom: absolute error estimate.

$$e^+e^-
ightarrow \mu^+\mu^-\gamma$$
 BaBar Q^2

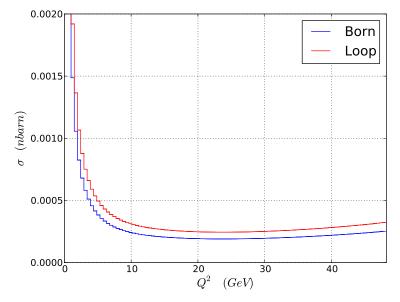


Figure: Muon pair invariant mass distribution for BaBar

$e^+e^- \rightarrow \mu^+\mu^-\gamma$ BaBar Pentagons Q^2

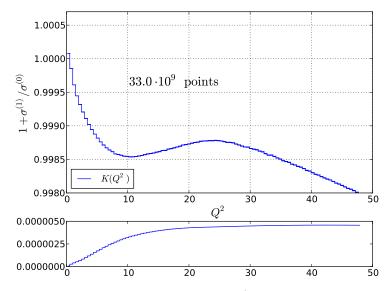


Figure: "Penta" contribution to muon pair Q^2 distribution for BaBar. Bottom: absolute error estimate. 49/51

$e^+e^- \rightarrow \mu^+\mu^-\gamma$ BaBar Pentagons angular distributions

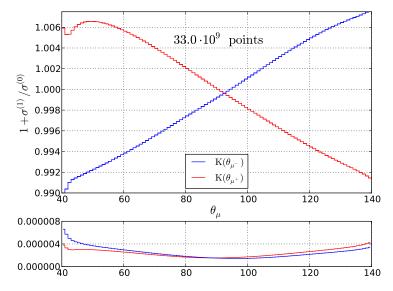


Figure: "Penta" contribution to muon angular distributions for BaBar. Bottom: absolute error estimate. 50/51

 $e^+e^-
ightarrow \mu^+\mu^-\gamma$ BaBar Pentagons forward-backward Q^2

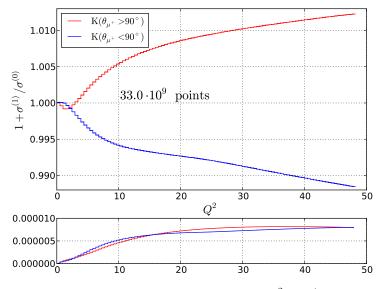


Figure: "Penta" contribution to forward-backward Q^2 of μ^+ for BaBar. Bottom: absolute error estimate. 51/51