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• SUSY particles are heavy
• Squark-antisquark production
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NNLL Resummation
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Hard Matching 
Coefficients

σthr
NLO = σlog2(8β2) + σlog(8β2) + σCoulomb + σfin

σthr
LO ∼ β
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NLO calculation
Real

1 NNLL resummation

The question I want to answer here is how NNLL resummation works and why the different compo-
nents of the equation look the way they do. Since these things have a basis in factorization, I will
start with that.

1.1 Parton Distribution Functions

We are interested in the factorization of process that involve strongly interacting particles in both
the initial and the final state.

The most basic form of factorization comes from the parton model and states that it is possible
to decouple the parton distribution functions (pdfs) from the hard partonic process, leading to an
expression for the hadronic cross section σh1h2 that is given by:

σh1h2(ρ) =
∑

i,j

∫
dx1dx2dρ̂ δ

(
ρ̂− ρ

x1x2

)
fi/h1(x1, µ

2
F )fj/h2(x2, µ

2
F )σij(ρ̂, αs, µ

2
F ), (1.1)

with µF the factorization scale, x1 and x2 the momentum fractions of the partons and if M is the
sum of the final-state masses:

ρ =
M2

S
, β =

√
1− ρ̂

The partonic cross section σij can be calculated as a perturbative expansion, while the pdfs f are
nonperturbative and need to be extracted from data.

Intuitively, Eq. (1.1) can be understood by looking at the different timescales in the process
c.f. Ref. [1]. In the CM frame, the hadrons are Lorentz contracted in the direction of the collision
and its internal interactions are time dilated. We are looking at interactions with high energies, so
the time it takes for the parton from hadron 1 to traverse hadron 2 is shortened due to the Lorentz
contraction, while the internal interactions of hadron 2 take a longer time due to the time dilation.
As a result, the hard interaction takes place on much shorter timescales than the interactions within
the hadron. Effectively that means that the hadron does not change during the interaction so the
partons can indeed be viewed as being specific states with definite momentum.

That being said, separating the pdfs from the hard process is not entirely straightforward. Con-
sider gluon radiation at NLO. The infrared poles are associated with gluons that are soft or collinear
or both. The soft and collinear poles cancel, but only after integration because diagrams with real
and virtual radiation (see Fig. 1.1) have a different number of particles in the final state. The soft-
collinear contribution does not cancel against anything else, but can be absorbed in the pdf. These
singularities are logarithmic and regularizing them gives rise to logarithms of the energy.

Figure 1.1: A virtual and a real diagram

The easiest way to see what happens is by working with a cut-off. At some point the gluons are
too energetic to be counted as part of the pdf and at that point they should be counted as part of the
hard process. In that case the integral over phase space is essentially split in two, and a logarithm
of the cut-off scale ends up both the hard part and in the pdf. Usually one does not work with a
cut-off, but with dimensional regularization, but the idea remains the same.
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Virtual: Coulomb
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One can read off the dimension of a representation from a Young tableau by the hook formula:

D =
∏

i

N + di

hi
(3.3)

Here the sum is over all boxes. D is the dimension, N is the N in SU(N), di is the distance to the
upperleft box, which is defined in such a way that one is added for every step to the right and one
is subtracted for every step down. Finally hi is the hook length: the number of boxes that a hook
drawn through the box i passes. In other words: higher voodoo, but it works.

3.3.1 Symmetry and Anti-symmetry

A Young tableau signifies that the corresponding tensor is symmetrized along the rows and anti-
symmetrized along the columns. However, that does not say anything about the wave functions of
the particles. After all, gluons are in an 8-dimensional representation, which is partly symmetric and
partly anti-symmetric. Yet the combination of two gluons, yielding for instance a 27-dimensional
representation which is once again partly symmetrized and partly anti-symmetrized, can still be
symmetric with respect to the gluon wave functions. The representation in itself does not say much
about that.

You know however, whether the total wave function should be symmetric or anti-symmetric,
because you have bosons or fermions. That way you can figure out if a representation is symmetric
or anti-symmetric, by listing spin and stuff. Except... you need L for the spacial part of the wave
function, and you don’t know L for moving particles. Since the final state we are interested in
is produced at threshold, the possible values of L are known for the final state (equal to S) so
it is possible to determine whether representations for a certain diagram are symmetric or anti-
symmetric with respect to particles in the final state near threshold, although this only works for
identical particles in the final state.

3.4 Representations and Diagrams: Leading Order

For the QCD-part, there is a number of processes, that each have several diagrams. Since we can’t
distinguish between colours and we need to take all possibilities into account, there’s actually a lot
of graphs.

3.4.1 qq̄ → q̃ ¯̃q

The possible diagrams are:

∼ T c
12T

c
ba =

1
2

(
δ2bδ1a −

1
3
δ21δba

)
(3.4)

b

a

2

1
T c

T c

∼ T c
1aT c

b2 =
1
2

(
δ12δba −

1
3
δ2bδ1a

)
(3.5)

12

∝ 1
β

f(β)



Virtual: Coulomb

corrections coming from the NLO calculation are given by:

σCoul,(1)
ij→q̃ ¯̃q,I

= −
αs

π

π2

2β
κij→q̃ ¯̃q,Iσ

(0)
ij→q̃ ¯̃q,I

(3.1)

with κ colour coefficients that depend on the process and the dimension of the representa-

tion. For the qq̄-initiated process they are given by [32]:

κqq̄→q̃ ¯̃q,1 = −
4

3
and κqq̄→q̃ ¯̃q,8 =

1

6

while for the gg-initiated process they are:

κgg→q̃ ¯̃q,1 = −
4

3
, κgg→q̃ ¯̃q,8A

=
1

6
and κgg→q̃ ¯̃q,8S

=
1

6

The function CCoul,(1) can be obtained by performing the Mellin transform of Eq. (3.1) and

is presented in appendix B.

The next term in the β-expansion of the Coulomb integrals contributes to the hard

matching coefficients. Due to their 1/β behaviour Coulomb integrals cannot be reduced to

lower-point integrals, so they need to be expanded explicitly.

To obtain the integrated real corrections at threshold, the key observation is that they

are formally phase-space suppressed near threshold unless the integrand compensates this

suppression. Therefore we can construct the real corrections at threshold from the singular

behaviour of the matrix element squared, which can be obtained using dipole subtraction

[47, 48]. We will briefly review the procedure of dipole subtraction and specify how only

the singular contributions survive in the threshold limit.

Dipole subtraction makes use of the fact that the cross section can be split into three

parts: a part with three-particle kinematics σ{3}, one with two-particle kinematics σ{2},

and a collinear counterterm σC that is needed for removing the initial-state collinear sin-

gularities. These parts are well-defined in n = 4 − 2ε dimensions, but their constituents

diverge for ε → 0. With the aid of an auxiliary cross section σA, which captures all singu-

lar behaviour, all parts are made finite and integrable in four space-time dimensions. This

auxiliary cross section is subtracted from the real corrections σR at the integrand level to

obtain σ{3} and added to the virtual corrections σV, which defines σ{2}:

σNLO =

∫

3

[

dσR − dσA
]

ε=0
+

∫

2

[

dσV +

∫

1
dσA

]

ε=0
+ σC ≡ σ{3} + σ{2} + σC

We will first argue that we can neglect σ{3}. Compared to the case of two-parton kinematics,

the phase space of σ{3} is limited by the energy of the third, radiated massless particle.

Near the two-particle threshold, the maximum energy of the radiated particle, and thus

the available phase space, equals Emax =
√

s − 2mq̃ ∝ β2. Since after subtracting σA no

divergences are left in the integrand of σ{3}, the leading contribution of σ{3} is at most

proportional to β2 and can thus be neglected. This leaves us with:

σNLO,thr = σ{2},thr + σC,thr = σV,thr + σC,thr + σA,thr,

– 6 –

κ1 = −4
3

κ8 =
1
6
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Colour decomposition: only LO

8 CHAPTER 4. COLOUR IN NLL RESUMMATION

• Has to be an eigenvector of the quadratic Casimir operator. Also gives the Casimir invariant
(eigenvalue of that equation). Show in diagrams.

• Base tensor needs to normalise to its dimension (you can get the dimension from Young
tableaux)

The inner product of the colour tensors is defined in accordance with the calculation of the matrix
element squared:

c c∗

c∗

Diagrammatically, the demand of the quadratic Casimir invariant amounts to:
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One can check explicitly that this basis is complete for gluon resummation: representing the
combined colour structure of the external particles by one of the base tensors cI and connecting
any two external particles by an additional gluon yields no additional colour structures. In Fig. ??
an example of such a gluon insertion is shown. For processes for which the LO colour basis is not
complete, this procedure can also be used to identify additional base tensors.

If a particle is exchanged in the s-channel, the corresponding base tensor has a direct physical
interpretation. An example is the Feynman diagram for the qg → q̃g̃ process shown in Fig. ??.
Since the quark exchanged in the s-channel is in the fundamental representation, the corresponding
NC -dimensional base tensor (cqg

1 in Eq. (4.10)) can be read off immediately from the colour structure
of this diagram. make fig!

4.2 Colour decomposition

• How to colour-decompose once you have a basis

• Colour-decomposed matrix elements (needed for NNLL later on)

• Colour-decomposed LO cross sections, at and away from threshold

• Colour-decomposed 1-loop anomalous dimensions, at (and away?) from threshold.

Having defined all necessary ingredients, we can now present the results for the colour-decomposed
q̃q̃ and q̃g̃ partonic cross sections at LO. These partonic cross sections are averaged over initial-state
spin and colour. The colour-decomposed LO cross sections for the qq̄ → q̃ ¯̃q , gg → q̃ ¯̃q , qq̄ → g̃g̃ and
gg → g̃g̃ processes, together with their Mellin-moment transforms, can be found in Ref. [4].
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Special attention has to be paid to the Coulomb integrals. The Mellin transform of the

leading term in β of these integrals yields the Coulomb corrections CCoul,(1). The Coulomb

corrections coming from the NLO calculation are given by:

σCoul,(1)
ij→q̃ ¯̃q,I

= −
αs

π

π2

2β
κij→q̃ ¯̃q,Iσ

(0)
ij→q̃ ¯̃q,I

(3.1)

with κ colour coefficients that depend on the process and the dimension of the representa-

tion. For the qq̄-initiated process they are given by [32]:

κqq̄→q̃ ¯̃q,1 = −
4

3
and κqq̄→q̃ ¯̃q,8 =

1

6

while for the gg-initiated process they are:

κgg→q̃ ¯̃q,1 = −
4

3
, κgg→q̃ ¯̃q,8A

=
1

6
and κgg→q̃ ¯̃q,8S

=
1

6
.

The Mellin transform σ̃Coul,(1) of Eq. (3.1) is presented in appendix B. The function CCoul,(1)

can be obtained by dividing σ̃Coul,(1) by the Mellin transform of the LO cross section, which

can be found in Ref. [32].

The next term in the β-expansion of the Coulomb integrals contributes to the hard

matching coefficients. Due to their 1/β behaviour Coulomb integrals cannot be reduced to

lower-point integrals, so they need to be expanded explicitly.

To obtain the integrated real corrections at threshold, the key observation is that they

are formally phase-space suppressed near threshold unless the integrand compensates this

suppression. Therefore we can construct the real corrections at threshold from the singular

behaviour of the matrix element squared, which can be obtained using dipole subtraction

[47, 48]. We will briefly review the procedure of dipole subtraction and specify how only

the singular contributions survive in the threshold limit.

Dipole subtraction makes use of the fact that the cross section can be split into three

parts: a part with three-particle kinematics σ{3}, one with two-particle kinematics σ{2},

and a collinear counterterm σC that is needed for removing the initial-state collinear sin-

gularities. These parts are well-defined in n = 4 − 2ε dimensions, but their constituents

diverge for ε → 0. With the aid of an auxiliary cross section σA, which captures all singu-

lar behaviour, all parts are made finite and integrable in four space-time dimensions. This

auxiliary cross section is subtracted from the real corrections σR at the integrand level to

obtain σ{3} and added to the virtual corrections σV, which defines σ{2}:

σNLO =

∫

3

[

dσR − dσA
]

ε=0
+

∫

2

[

dσV +

∫

1
dσA

]

ε=0
+ σC ≡ σ{3} + σ{2} + σC

We will first argue that we can neglect σ{3}. Compared to the case of two-parton kinematics,

the phase space of σ{3} is limited by the energy of the third, radiated massless particle.

Near the two-particle threshold, the maximum energy of the radiated particle, and thus

the available phase space, equals Emax =
√

s − 2mq̃ ∝ β2. Since after subtracting σA no

divergences are left in the integrand of σ{3}, the leading contribution of σ{3} is at most

proportional to β2 and can thus be neglected. This leaves us with:

σNLO,thr = σ{2},thr + σC,thr = σV,thr + σC,thr + σA,thr,

– 6 –
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σNLO,thr = σ{2},thr + σC,thr = σV,thr + σC,thr + σA,thr,

– 6 –



Result for 
C(1)

gg→q̃ ¯̃q,I
= Re

{
π2

(
5Nc

12
− CF

4

)
+ γg log

(
µ2

R

µ2
F

)

−
m2

g̃Nc

2m2
q̃

log2 (
xg̃g̃(4m2

q̃)
)

+ CF

(
m2

+m2
−

2m4
q̃

log
(

m2
+

m2
−

)
−

m2
g̃

m2
q̃

− 3
)

+
m2

+Nc

2m2
q̃

(
Li2

(
−

m2
q̃

m2
g̃

)
− Li2

(
m2

q̃

m2
g̃

))

+
[
π2

8
− 1

2
Li2

(
−

m2
q̃

m2
g̃

)
+

1
2
Li2

(
m2

q̃

m2
g̃

)
+

m2
g̃

4m2
q̃

log2(xg̃g̃(4m2
q̃)

) ]
C2(I)

+ 2CA

(
γ2

E − 2γE log(2) + γE log
(

µ2
F

m2
q̃

))
+ (2 + γE) C2(I)

}
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gg→ q̃¯̃q



gg→ q̃¯̃q
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qq̄→ q̃¯̃q
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Matching to NLO

σ(NNLL+NLO matched)
h1h2→q̃ ¯̃q

(
ρ, {m2}, µ2

)
= σ(NLO)

h1h2→q̃ ¯̃q

(
ρ, {m2}, µ2

)

+
∑

i,j

∫

CT

dN

2πi
ρ−N f̃i/h1(N + 1, µ2) f̃j/h2(N + 1, µ2)

×
[
σ̃(res,NNLL)

ij→q̃ ¯̃q

(
N, {m2}, µ2

)
− σ̃(res,NNLL)

ij→q̃ ¯̃q

(
N, {m2}, µ2

)
|(NLO)

]
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Scale dependence
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Scale dependence
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Scale dependence
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K factor@central scale
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Conclusion
NNLL resummation for squark-antisquark 
production performed
• Scale dependence reduced
• Cross section increased at central scale
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Conclusion
NNLL resummation for squark-antisquark 
production performed
• Scale dependence reduced
• Cross section increased at central scale

• Include other processes
• Apply this to exclusion bounds

Still to do:
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Backup
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Gluino mass dependence
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NLO+NNLL, r = 2.0
NLO +NNLL, r = 0.5
NLO +NNLL, r = 1.0
NLO +NNLLw/oCoulomb, r = 2.0
NLO +NNLLw/oCoulomb, r = 0.5
NLO +NNLLw/oCoulomb, r = 1.0

PRELIMINARYKx(pp → q̃¯̃q +X)
√
S = 7TeV, r =

mg̃

mq̃

mq̃[GeV]

200018001600140012001000800600

1.50

1.40

1.30

1.20

1.10

1.00

0.90

0.80



Scale uncertainty
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Scale dependence 14 TeV
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Scale uncertainty 14 TeV
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K factor 14 TeV
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