NNLL resummation for

 squark-antisquark productionIrene Niessen
Radboud University Nijmegen

In collaboration with Wim Beenakker, Silja Brensing, Michael Krämer, Anna Kulesza and Eric Laenen

RADCOR 201I, 30 September 20II, Mamallapuram, India

Outline

I. Motivation

2. Resummation
3. Ingredients for NNLL resummation
4. Results

Supersymmetry

- Hierarchy problem
- Gauge coupling unification
- Dark matter

Supersymmetry

- Hierarchy problem
- Gauge coupling unification
- Dark matter

Supersymmetry

\checkmark Hierarchy problem \checkmark Gauge coupling unification
\checkmark Dark matter

Supersymmetry

\checkmark Hierarchy problem \checkmark Gauge coupling unification
\checkmark Dark matter

- SUSY particles are heavy
- Squark-antisquark production

Scale dependence

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - p3

Threshold

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p4

Threshold

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p4

Threshold

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p4

Threshold

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p4

Resummation

LO $\quad 1$
$N L O \quad \alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO
$\alpha_{s}^{2} L^{4} \quad \alpha_{s}^{2} L^{3}$
$\alpha_{s}^{2} L^{2} \quad \alpha_{s}^{2} L$
α_{s}^{2}
$N^{3} L O$
$\alpha_{s}^{3} L^{6} \quad \alpha_{s}^{3} L^{5}$
$\alpha_{s}^{3} L^{4} \quad \alpha_{s}^{3} L^{3}$
$\alpha_{s}^{3} L^{2}$
$\alpha_{s}^{3} L \quad \alpha_{s}^{3}$
$N^{4} L O$
...
$L=\log \left(8 \beta^{2}\right)$
$\beta=\sqrt{1-\rho}$
$\rho=\frac{4 m_{\tilde{q}}^{2}}{\hat{s}}$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p5

Resummation

LO 1
$N L O \quad \alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO
$\alpha_{s}^{2} L^{4} \quad \alpha_{s}^{2} L^{3}$
$\alpha_{s}^{2} L^{2} \quad \alpha_{s}^{2} L$
α_{s}^{2}
$N^{3} L O$
$\alpha_{s}^{3} L^{6} \quad \alpha_{s}^{3} L^{5}$
$\alpha_{s}^{3} L^{4} \quad \alpha_{s}^{3} L^{3}$
$\alpha_{s}^{3} L^{2} \quad \alpha_{s}^{3} L \quad \alpha_{s}^{3}$
$N^{4} L O \quad \cdots$
$\tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho)$
$L=\log \left(8 \beta^{2}\right)$
$\beta=\sqrt{1-\rho}$
$\rho=\frac{4 m_{\tilde{q}}^{2}}{\hat{s}}$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p5

Resummation

LO 1

$N L O \quad \alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO
$\alpha_{s}^{2} L^{4} \quad \alpha_{s}^{2} L^{3}$
$\alpha_{s}^{2} L^{2} \quad \alpha_{s}^{2} L$
α_{s}^{2}
$N^{3} L O \quad \alpha^{3} L^{6} \quad \alpha^{3} L^{5} \quad \alpha^{3} L^{4} \quad \alpha^{3} L^{3} \quad \alpha^{3} L^{2}$
$N^{4} L O \quad$...
$\tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho) \quad L \longrightarrow \log (N)$
$L=\log \left(8 \beta^{2}\right)$
$\beta=\sqrt{1-\rho}$
$\rho=\frac{4 m_{\tilde{q}}^{2}}{\hat{s}}$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p5

Resummation

LO 1
$N L O \quad \alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO
$\alpha_{s}^{2} L^{4} \quad \alpha_{s}^{2} L^{3}$
$\alpha_{s}^{2} L^{2} \quad \alpha_{s}^{2} L$
α_{s}^{2}
$N^{3} L O$
$\alpha_{s}^{3} L^{6} \quad \alpha_{s}^{3} L^{5}$
$\alpha_{s}^{3} L^{4} \quad \alpha_{s}^{3} L^{3}$
$\alpha_{s}^{3} L^{2} \quad \alpha_{s}^{3} L \quad \alpha_{s}^{3}$
$N^{4} L O$
$\tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho)$
$L \rightarrow \log (N)$
$\tilde{\sigma}^{\mathrm{resum}}=\tilde{\sigma}^{\mathrm{thr}} e^{L P_{1}\left(\alpha_{s} L\right)} e^{P_{2}\left(\alpha_{s} L\right)} e^{\alpha_{s} P_{3}\left(\alpha_{s} L\right)}$

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p5

Resummation

LO 1
$N L O \quad \alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO
$\alpha_{s}^{2} L^{4}$
$\alpha_{s}^{2} L^{3}$
$\alpha_{s}^{2} L^{2} \quad \alpha_{s}^{2} L$
α_{s}^{2}
$N^{3} L O$
$\alpha_{s}^{3} L^{6} \quad \alpha_{s}^{3} L^{5}$
$\alpha_{s}^{3} L^{4}$
$\alpha_{s}^{3} L^{3}$
$\alpha_{s}^{3} L^{2} \quad \alpha_{s}^{3} L \quad \alpha_{s}^{3}$
$N^{4} L O$...
$\tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho)$
$L \rightarrow \log (N)$
$\tilde{\sigma}^{\text {resum }}=\tilde{\sigma}^{\mathrm{thr}} e^{L P_{1}\left(\alpha_{s} L\right)} e^{P_{2}\left(\alpha_{s} L\right)} e^{\alpha_{s} P_{3}\left(\alpha_{s} L\right)}$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p5

Resummation

LO 1
NLO $\quad \alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO
$\alpha_{s}^{2} L^{4}$
$\alpha_{s}^{2} L^{3} \quad \alpha_{s}^{2} L^{2} \quad \alpha_{s}^{2} L$
α_{s}^{2}
$N^{3} L O \quad \alpha^{3} L^{6} \quad \alpha^{3} L^{5} \quad \alpha^{3} L^{4} \quad \alpha^{3} L^{3} \quad \alpha^{3} L^{2}$
$N^{4} L O \quad \ldots$
$\tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho) \quad L \longrightarrow \log (N)$
$\tilde{\sigma}^{\text {resum }}=\tilde{\sigma}^{\text {thr }} e^{L P_{1}\left(\alpha_{s} L\right)} e^{P_{2}\left(\alpha_{s} L\right)} e^{\alpha_{s} P_{3}\left(\alpha_{s} L\right)}$
LL
NLL
RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - p5

LO 1
NLO $\alpha_{s} L^{2} \quad \alpha_{s} L \quad \alpha_{s}$
NNLO $\alpha_{s}^{2} L^{4}$ $\alpha_{s}^{2} L^{3} \quad \alpha_{s}^{2} L^{2}$
 α_{s}^{2}
$N^{3} L O$
$\alpha_{s}^{3} L^{6}$
$\alpha_{s}^{3} L^{5} \quad \alpha_{s}^{3} L^{4}$
$\alpha_{s}^{3} L^{3}$
$\alpha_{s}^{3} L^{2}$
$\alpha_{s}^{3} L \quad \alpha_{s}^{3}$
$N^{4} L O$...

Resummation

$$
\begin{aligned}
& \tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho) \quad L \rightarrow \log (N) \\
& \tilde{\sigma}^{\text {resum }}=\tilde{\sigma}_{\uparrow}^{\operatorname{thr}} e^{L P_{1}\left(\alpha_{s} L\right)} e^{P_{2}\left(\alpha_{s} L\right)} e^{\alpha_{s} P_{3}\left(\alpha_{s} L\right)} \\
& \text { RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - } \mathrm{P} 5
\end{aligned}
$$

Resummation

LO 1

NLO
$\alpha_{s} L^{2}$
$\alpha_{s} L$
α_{s}
NNLO
$\alpha_{s}^{2} L^{4}$
$\alpha_{s}^{2} L^{3}$
$\alpha_{s}^{2} L^{2}$
$\alpha_{s}^{2} L \quad \alpha_{s}^{2}$
$N^{3} L O$
$\alpha_{s}^{3} L^{6}$
$\alpha_{s}^{3} L^{5}$
$\alpha_{s}^{3} L^{4}$
$\alpha_{s}^{3} L^{3}$
$\alpha_{s}^{3} L^{2} \quad \alpha_{s}^{3} L$
α_{s}^{3}
$N^{4} L O$
.. .
$\tilde{f}(N)=\int_{0}^{1} d \rho \rho^{N-1} f(\rho) \quad L \longrightarrow \log (N)$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p5

NNLL Resummation

$$
\begin{aligned}
\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{res})}(N, & \left.\left\{m^{2}\right\}, \mu^{2}\right)=\sum_{I} \tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}, I}^{(0)}\left(N,\left\{m^{2}\right\}, \mu^{2}\right) C_{i j \rightarrow \tilde{q} \tilde{q}, I}\left(N,\left\{m^{2}\right\}, \mu^{2}\right) \\
& \times \Delta_{i}\left(N+1, Q^{2}, \mu^{2}\right) \Delta_{j}\left(N+1, Q^{2}, \mu^{2}\right) \Delta_{i j \rightarrow \tilde{q} \tilde{q}, I}^{(\mathrm{s})}\left(Q /(N \mu), \mu^{2}\right)
\end{aligned}
$$

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

$$
\begin{aligned}
& \text { LO cross section } \\
& \tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{res})}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)=\sum_{I} \underbrace{(0)}_{i j \rightarrow \tilde{q} \tilde{q}, I}\left(N,\left\{m^{2}\right\}, \mu^{2}\right) \\
& \quad \times \Delta_{i}\left(N+1, Q^{2}, \mu^{2}\right) \Delta_{j \rightarrow \tilde{q} \tilde{q}, I}\left(N+1, Q^{2}, \mu^{2}\right) \Delta_{i j \rightarrow \tilde{q} \tilde{q}, I}^{(\mathrm{s})}\left(Q /(N \mu), \mu^{2}\right)
\end{aligned}
$$

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

NNLL Resummation

LO cross section
NLO matching coefficient
$\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}}^{(\text {res })}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)=\sum_{I} \underbrace{C_{i j \rightarrow \tilde{q} \tilde{q}, I}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)}_{\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}, I}^{(0)}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)}$

$$
\times \Delta_{i}\left(N+1, Q^{2}, \mu^{2}\right) \Delta_{j}\left(N+1, Q^{2}, \mu^{2}\right) \Delta_{i j \rightarrow \tilde{q} \tilde{q}, I}^{(\mathrm{s})}\left(Q /(N \mu), \mu^{2}\right)
$$

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

NNLL Resummation

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

NNLL Resummation

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

NNLL Resummation

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

$C^{\mathrm{NNLL}}=\left(1+\frac{\alpha_{\mathrm{s}}}{\pi} \mathcal{C}^{\mathrm{Coul},(1)}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)\right)\left(1+\frac{\alpha_{\mathrm{s}}}{\pi} \mathcal{C}^{(1)}\left(\left\{m^{2}\right\}, \mu^{2}\right)\right)$

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p6

Hard Matching Coefficients

$$
\begin{gathered}
\sigma_{L O}^{\mathrm{thr}} \sim \beta \\
\sigma_{N L O}^{\mathrm{thr}}=\sigma_{\log ^{2}\left(8 \beta^{2}\right)}+\sigma_{\log \left(8 \beta^{2}\right)}+\sigma_{\mathrm{Coulomb}}+\sigma_{\text {fin }}
\end{gathered}
$$

Hard Matching Coefficients

$$
\sigma_{L O}^{\mathrm{thr}} \sim \beta
$$

$$
\sigma_{N L O}^{\mathrm{thr}}=\sigma_{\log ^{2}\left(8 \beta^{2}\right)}+\sigma_{\log \left(8 \beta^{2}\right)}+\sigma_{\mathrm{Coulomb}}+\sigma_{\mathrm{fin}}
$$

- $\log (N)$ in exponential
- finite terms from Mellin transform in $\sigma_{\text {fin }}$
RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - p7

Hard Matching Coefficients

$$
\sigma_{L O}^{\mathrm{thr}} \sim \beta
$$

- $\log (\mathrm{N})$ in exponential
- finite terms from Mellin transform in $\sigma_{\text {fin }}$

Hard Matching Coefficients

$$
\sigma_{L O}^{\mathrm{thr}} \sim \beta
$$

- $\log (N)$ in exponential
- finite terms from Mellin transform in $\sigma_{\text {fin }}$
- rest of the cross section
- linear term in β

NLO calculation

Calculate up to $O(\beta)$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - p8

Virtual: Coulomb

Virtual: Coulomb

$$
\begin{gathered}
\operatorname{Coul},(1)^{\sigma_{i j \rightarrow \tilde{q}}^{\tilde{q}}, I}=-\frac{\alpha_{\mathrm{S}}}{\pi} \frac{\pi^{2}}{2 \beta} \kappa_{i j \rightarrow \tilde{q}} \tilde{\tilde{q}}, I \sigma_{i j \rightarrow \tilde{q}}^{(0)} \overline{\tilde{q}, I} \\
\kappa_{1}=-\frac{4}{3} \quad \kappa_{8}=\frac{1}{6}
\end{gathered}
$$

Colour decomposition: only LO

Colour decomposition: only LO

Linear term in β :

- Most scalar integrals: $\beta=0$
- Coulomb integrals: expand in β

RADCOR 201I-NNLL resummation for squark-antisquark production - Irene Niessen - plo

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pll

Real Corrections

$$
\begin{aligned}
\sigma_{N L O} & =\sigma^{R}+\sigma^{V}+\sigma^{C} \\
& =\int_{3}\left[\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\int_{2}\left[\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\sigma^{\mathrm{C}}
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pll

Real Corrections

$$
\begin{aligned}
\sigma_{N L O} & =\sigma^{R}+\sigma^{V}+\sigma^{C} \\
& =\int_{3}\left[\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\int_{2}\left[\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\sigma^{\mathrm{C}} \\
& =\sigma^{\{3\}}+\sigma^{\{2\}}+\sigma^{C}
\end{aligned}
$$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - pll

Real Corrections

$$
\begin{aligned}
\sigma_{N L O} & =\sigma^{R}+\sigma^{V}+\sigma^{C} \\
& =\int_{3}\left[\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\int_{2}\left[\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\sigma^{\mathrm{C}} \\
& =\sigma^{\{3\}}+\sigma^{\{2\}}+\sigma^{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For a finite function: } \\
& \int_{1-\beta^{2}}^{1} f(x) d x \propto \beta^{2}
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pll

Real Corrections

$$
\sigma_{N L O}=\sigma^{R}+\sigma^{V}+\sigma^{C}
$$

$$
=\int_{3}\left[\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\int_{2}\left[\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\sigma^{\mathrm{C}}
$$

$$
=\sigma_{\uparrow}^{\{3\}}+\sigma^{\{2\}}+\sigma^{C}
$$

$$
\begin{aligned}
& \text { For a finite function: } \\
& \int_{1-\beta^{2}}^{1} f(x) d x \propto \beta^{2}
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pll

Real Corrections

$$
\sigma_{N L O}=\sigma^{R}+\sigma^{V}+\sigma^{C}
$$

$$
=\int_{3}\left[\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\int_{2}\left[\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\sigma^{\mathrm{C}}
$$

$$
=\mathscr{q}_{\uparrow}^{8\}}+\sigma^{\{2\}}+\sigma^{C}
$$

$$
\begin{aligned}
& \text { For a finite function: } \\
& \int_{1-\beta^{2}}^{1} f(x) d x \propto \beta^{2}
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pll

Real Corrections

$$
\sigma_{N L O}=\sigma^{R}+\sigma^{V}+\sigma^{C}
$$

$$
=\int_{3}\left[\mathrm{~d} \sigma^{\mathrm{R}}-\mathrm{d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\int_{2}\left[\mathrm{~d} \sigma^{\mathrm{V}}+\int_{1} \mathrm{~d} \sigma^{\mathrm{A}}\right]_{\epsilon=0}+\sigma^{\mathrm{C}}
$$

$$
\left.=\mathscr{Q}_{\uparrow}^{8}\right\}+\sigma^{\{2\}}+\sigma^{C}=\sigma^{V}+\sigma^{A}+\sigma^{C}
$$

$$
\begin{aligned}
& \text { For a finite function: } \\
& \int_{1-\beta^{2}}^{1} f(x) d x \propto \beta^{2}
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pl l

Result for $\mathbf{g g} \rightarrow \tilde{\mathbf{q}} \tilde{\mathbf{q}}$

$$
\begin{aligned}
& \mathcal{C}_{g g \rightarrow \tilde{q} \tilde{q}, I}^{(1)}=\operatorname{Re}\left\{\pi^{2}\left(\frac{5 N_{c}}{12}-\frac{C_{F}}{4}\right)+\gamma_{g} \log \left(\frac{\mu_{R}^{2}}{\mu_{F}^{2}}\right)\right. \\
& -\frac{m_{\tilde{g}}^{2} N_{c}}{2 m_{\tilde{q}}^{2}} \log ^{2}\left(x_{\tilde{g} \tilde{g}}\left(4 m_{\tilde{q}}^{2}\right)\right)+C_{F}\left(\frac{m_{+}^{2} m_{-}^{2}}{2 m_{\tilde{q}}^{4}} \log \left(\frac{m_{+}^{2}}{m_{-}^{2}}\right)-\frac{m_{\tilde{g}}^{2}}{m_{\tilde{q}}^{2}}-3\right) \\
& +\frac{m_{+}^{2} N_{c}}{2 m_{\tilde{q}}^{2}}\left(\operatorname{Li}_{2}\left(-\frac{m_{\tilde{q}}^{2}}{m_{\tilde{g}}^{2}}\right)-\operatorname{Li}_{2}\left(\frac{m_{\tilde{q}}^{2}}{m_{\tilde{g}}^{2}}\right)\right) \\
& +\left[\frac{\pi^{2}}{8}-\frac{1}{2} \operatorname{Li}_{2}\left(-\frac{m_{\tilde{q}}^{2}}{m_{\tilde{q}}^{2}}\right)+\frac{1}{2} \operatorname{Li}_{2}\left(\frac{m_{\tilde{q}}^{2}}{m_{\tilde{g}}^{2}}\right)+\frac{m_{\tilde{g}}^{2}}{4 m_{\tilde{q}}^{2}} \log ^{2}\left(x_{\tilde{g} \tilde{g}}\left(4 m_{\tilde{q}}^{2}\right)\right)\right] C_{2}(I) \\
& \left.+2 C_{A}\left(\gamma_{E}^{2}-2 \gamma_{E} \log (2)+\gamma_{E} \log \left(\frac{\mu_{F}^{2}}{m_{\tilde{q}}^{2}}\right)\right)+\left(2+\gamma_{E}\right) C_{2}(I)\right\}
\end{aligned}
$$

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - pl2
$\mathbf{g g} \rightarrow \tilde{\mathbf{q}} \overline{\widetilde{\mathbf{q}}}$

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - pl3

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - pl4

Matching to NLO

$$
\begin{aligned}
& \sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{q}}^{(\text {NNLL }+N L O ~ m a t c h e d) ~}\left(\rho,\left\{m^{2}\right\}, \mu^{2}\right)=\sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{\tilde{q}}}^{(\mathrm{NLO})}\left(\rho,\left\{m^{2}\right\}, \mu^{2}\right) \\
& +\sum_{i, j} \int_{\mathrm{CT}} \frac{d N}{2 \pi i} \rho^{-N} \tilde{f}_{i / h_{1}}\left(N+1, \mu^{2}\right) \tilde{f}_{j / h_{2}}\left(N+1, \mu^{2}\right) \\
& \times\left[\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{\tilde{q}}}^{(\mathrm{res}, \mathrm{NNLL})}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)-\left.\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{\tilde{q}}}^{(\mathrm{res}, \mathrm{NNLL})}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)\right|_{(\mathrm{NLO})}\right]
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pl5

Matching to NLO

$$
\begin{aligned}
& \sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{NNLL}+\mathrm{NLO}} \text { matched) }\left(\rho,\left\{m^{2}\right\}, \mu^{2}\right)=\sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{NLO})}\left(\rho,\left\{m^{2}\right\}, \mu^{2}\right) \\
& +\sum_{i, j} \int_{\mathrm{CT}} \frac{d N}{2 \pi i} \rho^{-N} \tilde{f}_{i / h_{1}}\left(N+1, \mu^{2}\right) \tilde{f}_{j / h_{2}}\left(N+1, \mu^{2}\right) \\
& \times\left[\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{res}, \mathrm{NNL}}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)-\left.\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{res}, \mathrm{NNL})}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)\right|_{(\mathrm{NLO})}\right]
\end{aligned}
$$

RADCOR 20II - NNLL resummation for squark-antisquark production - Irene Niessen - pl5

Matching to NLO

$$
\begin{aligned}
& \left.\sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{q}}^{(\text {NNLL }} \mathrm{NLO} \text { matched }\right) \\
& \left.+\sum_{i, j} \int_{\mathrm{CT}} \frac{d N}{2 \pi i} \rho^{-N} \tilde{f}_{i / h_{1}}\left(N+1, \mu^{2}\right\}, \mu^{2}\right)=\tilde{f}_{j / h_{2}}^{(\mathrm{NLO})}\left(N+1, \mu^{2}\right) \\
& \times\left[\tilde{\sigma}_{i j \rightarrow \tilde{q} h_{2} \rightarrow \tilde{q} \tilde{q}}^{(\text {res, NNLL })}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)\right. \\
&
\end{aligned}
$$

Matching to NLO

$$
\begin{aligned}
& \sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{\tilde{q}}}^{(\mathrm{NNLL}} \mathrm{NLO} \text { matched) }\left(\rho,\left\{m^{2}\right\}, \mu^{2}\right)=\underbrace{\sigma_{h_{1} h_{2} \rightarrow \tilde{q} \tilde{q}}\left(\rho,\left\{m^{2}\right\}, \mu^{2}\right)}_{\sum_{i, j}^{(\mathrm{NLO})}} \\
& +\int_{\mathrm{CT}} \frac{d N}{2 \pi i} \rho^{-N} \tilde{f}_{i / h_{1}}\left(N+1, \mu^{2}\right) \tilde{f}_{j / h_{2}}\left(N+1, \mu^{2}\right) \\
& \times\left[\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{q}}^{(\mathrm{res}, \mathrm{NNLL})}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)-\left.\tilde{\sigma}_{i j \rightarrow \tilde{q} \tilde{\tilde{q}}}^{(\mathrm{res}, \mathrm{NNLL})}\left(N,\left\{m^{2}\right\}, \mu^{2}\right)\right|_{(\mathrm{NLO})}\right]
\end{aligned}
$$

Scale dependence

$\begin{aligned} & 0.0020 \\ & 0.0018 \end{aligned}$	$\sigma(\mathrm{pp} \rightarrow \tilde{\mathrm{q}} \tilde{\tilde{q}}+\mathrm{X})[\mathrm{pb}]$			
	$\sqrt{S}=7 \mathrm{TeV}$			
0.0016	$\mu_{0}=\mathrm{m}_{\tilde{q}}=\mathrm{m}_{\tilde{\mathrm{g}}}=1200 \mathrm{GeV}$			
0.0012 Of PRELIMINARY				
0.0010-				
0.0008				
0.0006------ LO				
$0.0004-\mathrm{NLO}+\mathrm{NLL}$				
0.0002				
0.2	0.5	1	2	5
		μ / μ_{0}		

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - pl6

Scale dependence

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - pl6

Scale dependence

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - pl6

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - pl7

Conclusion

NNLL resummation for squark-antisquark production performed

- Scale dependence reduced
- Cross section increased at central scale

Conclusion

NNLL resummation for squark-antisquark production performed

- Scale dependence reduced
- Cross section increased at central scale

Still to do:

- Include other processes
- Apply this to exclusion bounds

RADCOR 201I-NNLL resummation for squark-antisquark production - Irene Niessen - pl8

Backup

RADCOR 201I - NNLL resummation for squark-antisquark production - Irene Niessen - backup

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - backup

Scale uncertainty

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - backup

0.15				
0.14	$\sigma(\mathrm{pp} \rightarrow \tilde{q} \overline{\bar{q}}+\mathrm{X})$ [pb]			
0.13	$\sqrt{S}=14 \mathrm{TeV}$			
0.12	$\mu_{0}=\mathrm{m}_{\tilde{q}}=\mathrm{m}_{\tilde{g}}=1200 \mathrm{GeV}$			
0.11				
0.10				
0.09				
0.08				
0.07 - ------ L				
$0.06-\mathrm{NLO}+\mathrm{NL}$				
0.05 - \cdots....... NLO + NNLL w/oCoul				
0.04				
0.2	0.5	1	2	5
		μ / μ_{0}		

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - backup

RADCOR 2011-NNLL resummation for squark-antisquark production - Irene Niessen - backup

K factor 14 TeV

RADCOR 2011 - NNLL resummation for squark-antisquark production - Irene Niessen - backup

