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Deeply Virtual Compton Scattering (DVCS)

γ∗ (q')(q') (q)(q) γ∗ γγ

P'PP'P

• γ∗p→ γp (exclusive process)

• Momentum of final proton P ′ different from that of the initial proton

• Q2 = −q2 large, squared momentum transfer t = (P ′ − P )2 fixed

• Final photon → real (q′2 = 0)

• Factorization applies : DVCS amplitude → short distance (perturbative part) ∗ ’soft part’

(generalized parton distributions)

. – p.2/29



DVCS Kinematics and Reference Frame

Consider the process γ∗(q) + p(P ) → γ(q′) + p(P ′)

Component notation V ± = V 0 ± V z and V 2 = V +V − − (V ⊥)2

Momentum transfer ∆ = P − P ′, t = ∆2

Momenta of initial and final proton :

P =

„

P+ , ~0⊥ ,
M2

P+

«

, P ′ =

 

(1 − ζ)P+ , −~∆⊥ ,
M2 + ~∆2

⊥

(1 − ζ)P+

!

t = 2P · ∆ = −
ζ2M2 + ~∆2

⊥

1 − ζ

ζ = Q2

2P ·q
: skewness variable;

For DVCS, −q2 = Q2 is large compared to the masses and | t |

Choose a frame where the incident space-like photon carries q+ = 0
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DVCS (contd.)

DVCS amplitude

MIJ(~q⊥, ~∆⊥, ζ) = ǫIµ ǫ
∗J
ν Mµν(~q⊥, ~∆⊥, ζ) = −e2q

1

2P̄+

Z 1

ζ−1

dx

×



tIJ (x, ζ) Ū(P ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P )

ff

,

where P̄ = 1
2
(P ′ + P ),

x is the fraction of the proton momentum carried by the active quark
For circularly polarized initial and final photons

t ↑↑(x, ζ) = t ↓↓(x, ζ) =
1

x− iǫ
+

1

x− ζ + iǫ

Contributions from longitudinally polarized photons are suppressed

Fλ,λ′ =

Z

dy−

8π
eixP+y−/2 〈P ′, λ′|ψ̄(0) γ+ ψ(y) |P, λ〉

˛

˛

˛

˛

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′, λ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P, λ),
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DVCS contd.

DVCS amplitude contains

Z

dy−

8π
eixP+y−/2 〈P ′, λ′|ψ̄(0) γ+ ψ(y) |P, λ〉

˛

˛

˛

˛

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′, λ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P, λ),

H(x, ζ, t) and E(x, ζ, t) are chiral even GPDs; as well as H̃(x, ζ, t) and Ẽ(x, ζ, t)

Z

dy−

8π
eixP+y−/2 〈P ′, λ′|ψ̄(0) γ+γ5 ψ(y) |P, λ〉

˛

˛

˛

˛

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′, λ′)

»

H̃(x, ζ, t) γ+γ5 + Ẽ(x, ζ, t)
γ5∆+

2M

–

U(P, λ),

Momentum transfer ∆ = P − P ′, t = ∆2, ζ = ∆+

P+

x is the fraction of the proton momentum carried by the active quark
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Generalized Parton Distributions : Properties

• GPDs H(x, ζ, t), E(x, ζ, t), H̃(x, ζ, t) and Ẽ(x, ζ, t) contribute at leading order in 1/Q

• In the forward limit, H(x, 0, 0) = q(x) (unpol. quark distribution) and

H̃(x, 0, 0) = ∆q(x, 0, 0) (polarized quark distribution)

• No simple relation for E and Ẽ in the forward limit

• Moments of GPDs give nucleon form factors

Z 1

−1

dxH(x, ζ, t) = F1(t);

Z 1

−1

dxE(x, ζ, t) = F2(t)

Z 1

−1

dxH̃(x, ζ, t) = gA(t);

Z 1

−1

dxẼ(x, ζ, t) = gP (t)

• Second moment [ X. Ji (1997)]

Z 1

−1

dxx[Hq + Eq ] = Aq(t) +Bq(t)

Jq,g = 1

2
[Aq,g(0) + Bq,g(0)]; Jq + Jg = 1

2

• Jq,g → Fraction of the nucleon spin carried by quarks (gluons)
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Why GPDs/DVCS are Interesting ??

• Initial proton momentum differs from final proton momentum : GPDs no longer
represent squared amplitudes (like ordinary pdfs) and thus do not have a probability
interpretation.

• Richer in content about proton structure than pdfs

• GPDs give a unified picture of both exclusive and inclusive processes

• Second moment of the GPDs gives the fraction of the nucleon spin carried by the
quarks.

• Polarization of the target may change due to the scattering : rich spin structure of the
GPDs → still unknown orbital angular momentum of the partons (quarks, gluons).

• Momentum transfer has a transverse component; leads to information about the
transverse structure of the target

M. Burkardt, 2000

• 3D spatial structure of the nucleon in terms of the GPDs

X. Ji, 2003

• Being measured in experiments worldwide : JLab, DESY (HERA and HERMES),
CERN (COMPASS).
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Generalized parton distributions of the photon

• Consider DVCS process on a photon γ∗(Q)γ → γγ

• At leading order in α and zeroth order in αs it was shown that the amplitude factorizes

• Upto leading log terms it can be written in terms of the GPDs of the photon

• Mometum transfered between the initial state and the final state photon is purely in the
longitudinal direction

S. Friot, B. Pire, L. Szymanowski, Phys. Lett. B 645 153 (2007)

GPDs of the photon are defined as

F q =

Z

dy−

8π
e

−iP+y−

2 〈γ(P ′) | ψ̄(0)γ+ψ(y−) | γ(P )〉;

F̃ q =

Z

dy−

8π
e

−iP+y−

2 〈γ(P ′) | ψ̄(0)γ+γ5ψ(y−) | γ(P )〉.

Chosen light-front gauge A+ = 0

F̃ q can be calculated from terms of the form ǫ2λǫ
1∗
λ − ǫ1λǫ

2∗
λ in the amplitude

•
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Generalized parton distributions of the photon

We first consider the momentum transfer to be purely in the transverse direction;

t = (P − P ′)2 = −(∆⊥)
2 where P and P ′ are the momenta of the initial and final (real)

photon respectively

Skewness ζ is zero

GPDs of the photon can be expressed in terms of the photon light-front wave functions

F q =

Z

d2q⊥dx1δ(x− x1)ψ∗
2(x1, q

⊥ − (1 − x1)∆⊥)ψ2(x1, q
⊥)

−

Z

d2q⊥dx1δ(1 + x− x1)ψ∗
2(x1, q

⊥ + x1∆⊥)ψ2(x1, q
⊥)

Two-particle light-front wave function corresponds to qq̄

First term corresponds to active quark and the second term antiquark
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GPDs of the photon

Two particle light-front wave functions can be calculated in perturbation theory

We get

F q =
X

q

αe2q

4π2

»

((1 − x)2 + x2)(I1 + I2 + LI3) + 2m2I3
i

θ(x)θ(1 − x)

−
X

q

αe2q

4π2

»

((1 + x)2 + x2)(I′1 + I′2 + L′I′3) + 2m2I′3

–

θ(−x)θ(1 + x)

Sum indicates sum over different quark flavors

L = −2m2 + 2m2x(1 − x) − (∆⊥)
2
(1 − x)2,

L′ = −2m2 − 2m2x(1 + x) − (∆⊥)
2
(1 + x)2

The integrals can be written as

I1 =

Z

d2q⊥

D
= πLog

»

Λ2

µ2 −m2x(1 − x) +m2

–

= I2

I3 =

Z

d2q⊥

DD′
=

Z 1

0

dα
π

P (x, α, (∆⊥)
2
)
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GPDs of the photon

where D = (q⊥)
2
−m2x(1 − x) +m2 and

D′ = (q⊥)
2

+ (∆⊥)
2
(1 − x)2 − 2q⊥ · ∆⊥(1 − x) −m2x(1 − x) +m2, and

P (x, α, (∆⊥)
2
) = −m2x(1 − x) +m2 + α(1 − α)(1 − x)2(∆⊥)

2

Zeroth order in αs results are scale dependent; this scale dependence in our approach
comes from the upper limit of the transverse momentum integration Λ = Q
For the antiquark contributions

I′1 =

Z

d2q⊥

H
= πLog

»

Λ2

µ2 +m2x(1 + x) +m2

–

= I′2

I′3 =

Z

d2q⊥

HH′
=

Z 1

0

dα
π

Q(x, α, (∆⊥)2)

H = (q⊥)
2

+m2x(1 + x) +m2 and H′ = (q⊥)
2

+ (∆⊥)
2
(1 + x)2 + 2q⊥ ·∆⊥(1 + x) +

m2x(1 + x) +m2, and Q(x, α, (∆⊥)
2
) = m2x(1 + x) +m2 + α(1 − α)(1 + x)2(∆⊥)

2
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GPDs of the photon
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• Only the quark contribution is shown
• We took Q = Λ = 20GeV
• As x→ 1, most of the momentum is carried by the quark in the photon and the GPDs
become independent of t

AM, S. Nair (2011)

•
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GPDs of the photon in impact parameter space

Fourier transform with respect to the transverse momentum transfer ∆⊥ gives GPDs in
impact parameter space

Burkardt (2000)

q(x, b) =
1

(2π)2

Z

d2∆⊥e−i∆⊥·b⊥F q(x, t)

=
1

2π

Z

∆d∆J0(∆b)F q(x, t),

q̃(x, b) =
1

(2π)2

Z

d2∆⊥e−i∆⊥·b⊥ F̃ q(x, t)

=
1

2π

Z

∆d∆J0(∆b)F̃ q(x, t),

where ∆ = |∆⊥| and b = |b⊥|
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GPDs of the photon in impact parameter space

Introduced in analogy with the impact parameter dependent parton distribution of the
proton

Have probabilistic interpretation : q(x, b) is the probability of finding a quark of
momentum fraction x and at transverse distance b from the center of the photon : parton
distributions of the photon in the transverse plane

Impact parameter distribution for a polarized photon is given by q̃(x, b⊥)

New insight to the transverse ’shape’ of the photon

Used a cutoff on ∆⊥ integration satisfying t << Q2; DVCS kinematics
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GPDs of the photon in impact parameter space
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We have taken Λ = 20 GeV and ∆max= 3 GeV where ∆max is the upper limit in the ∆

integration. b is in GeV−1 and q(x, b) is in GeV2

In the ideal definition the Fourier transform over ∆ should be from 0 to ∞. In this case
the ∆⊥ independent terms in F q and F̃ q would give δ2(b⊥) in the impact parameter
space
This means in the case of no transverse momentum transfer, the photon behaves like a
point particle in transverse position space. The distribution in transverse space is a
unique feature accessible only when there is non-zero momentum transfer in the
transverse direction . – p.15/29



GPDs of the photon in impact parameter space
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The behavior in impact parameter space is qualitatively different phenomenological
models of proton GPDs
Parton distribution is more dispersed when the q and q̄ share almost equal momenta

AM, S. Nair (2011)

. – p.16/29



GPD model of the proton in impact parameter space
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• Used parametrization of

Ahmad, Honkanen, Liuti, Taneja (2009)

• Parametrization obtained by simultaneously fitting the experimental data on nucleon
form factor and DIS structure functions; generalized form for non-zero skewness

• Spectator model with Regge-type term at input scale

Manohar, Mukherjee, Chakrabarti, PRD (2011)
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GPD model of the proton in impact parameter space
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• Used parametrization of

Ahmad, Honkanen, Liuti, Taneja (2009)

•We have used parametrizations (u and d quark) at scale 0.09 GeV 2

Manohar, Mukherjee, Chakrabarti, PRD (2011)
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Non-zero Skewness ζ

More general case : momentum transfer between the initial and final photon has both
transverse and longitudinal components

q(x, ζ, b) =
1

(2π)2

Z

d2∆⊥e−i∆⊥·b⊥F q(x, ζ, t)

=
1

2π

Z

∆d∆J0(∆b)F q(x, ζ, t),

q̃(x, ζ, b) =
1

(2π)2

Z

d2∆⊥e−i∆⊥·b⊥ F̃ q(x, ζ, t)

=
1

2π

Z

∆d∆J0(∆b)F̃ q(x, ζ, t),

We took the frame

P =
“

P+ , 0⊥ , 0
”

,

P ′ =

„

(1 − ζ)P+ , −∆⊥ ,
∆⊥2

(1 − ζ)P+

«

,
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Non-zero Skewness ζ

Repeat the calculation of F q and F̃ q when both ζ and ∆⊥ are non-zero

We limit ourselves to the kinematical region 1 > x > ζ and −1 < x < ζ − 1 where only
the two-particle LFWFs contribute

When the skewness ζ is non-zero, GPDs in impact parameter space do not have a
probabilistic interpretation

They are still interesting as they now probe the partons when the initial photon is
displaced from the final photon in the transverse impact parameter space. This relative
shift does not vanish when the GPDs are integrated over x in the amplitude

Diehl(2002)
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Photon GPDs for non-zero ζ
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At leading order in α and zeroth order in αs the results are logarithmically dependent on
the scale

We took a fixed scale Λ = 20GeV

AM, S. Nair (In Preparation)
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Photon GPDs for non-zero ζ
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We took a fixed scale Λ = 20GeV

Helicity non-flip contributions; x > ζ region

AM, S. Nair (In Preparation)
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Photon GPDs for non-zero ζ
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We have taken Λ = 20 GeV and ∆max= 3GeV where ∆max is the upper limit in the ∆

integration. b is in GeV−1

AM, S. Nair (In Preparation)
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Photon GPDs for non-zero ζ
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we have taken Λ = 20 GeV and ∆max= 3GeV where ∆max is the upper limit in the ∆

integration. b is in GeV−1

AM, S. Nair (In Preparation)
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GPDs in Longitudinal Position Space

Connection with Wigner distribution : Belitsky, Ji, Yuan (2003)

DVCS amplitude for the proton in longitudinal position space : analogy with diffraction
pattern in optics

Brodsky, Chakrabarti, Harindranath, Mukherjee, Vary (2006)

We define a boost invariant impact parameter conjugate to the longitudinal momentum
transfer as σ = 1

2
b−P+

F(x, σ, t) =
1

2π

Z ζf

0

dζei 1
2

P+ζb−H(x, ζ, t)

=
1

2π

Z ζf

0

dζeiσζF (x, ζ, t).

Upper limit is the maximum ζ value allowed for fixed −t

To get the complete picture both x > ζ and x < ζ contributions will have to be
considered
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Proton GPDs in longitudinal position space

Diffraction pattern somewhat similar to that in optics is observed with well defined
maxima and minima
Pattern with similar general behaviour is observed in other models
The diffraction pattern remains when both contributions x > ζ and x < ζ are taken into
account in the DVCS amplitude

Manohar, Mukherjee, Chakrabarti, PRD (2011)
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Optics Analog

(i) Finite range of ζ integration act as a slit of finite width and provides a necessary
condition for the occurrence of diffraction pattern in the Fourier transform
(ii) In analogy with optical diffraction, where the positions of the first minima are inversely
proportional to the slit width, here we expect their positions to be inversely proportional
to ζmax. Since ζmax increases with -t, the position of the first minimum moves to a
smaller value of σ
(iii) For fixed −t, higher minima appear at positions which are integral multiples of the
lowest minimum : in analogy with diffraction in optics
(iv) However the appearance of the pattern also depends on the x, ζ interplay in the
GPD of the proton

• Scattering photons in DVCS provides the complete Lorentz-invariant light front
coordinate space structure of a hadron

Brodsky,Chakrabarti,Harindranath,AM,Vary;2006,2007.
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Photon GPDs in longitudinal position space

-30 -20 -10 0 10 20 30
σ

0

0.01

0.02

0.03

0.04

0.05

0.06
q
(x

,σ
)

-t = 0.1
-t = 1.0
-t = 3.0
-t = 5.0

x = 0.4

-30 -20 -10 0 10 20 30
σ

0

0.01

0.02

0.03

0.04

q~
(x

,σ
)

-t = 0.1
-t = 1.0
-t = 3.0
-t = 5.0

x = 0.4

No prominent diffraction pattern in F̃
Position of the minima does not depend on t
For a complete analysis also x < ζ contribution needs to be taken into account

AM, S. Nair (In Preparation)
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Discussions

•Presented a first calculation of the generalized parton distributions of the photon, both
polarized and unpolarized, when the momentum transfer in the transverse direction is
non-zero; at zeroth order in αs and leading order in α

•We calculated at leading logarithmic order and also kept the mass terms at the vertex.
The GPDs are logarithmically dependent on the scale

• Considered both quark and the antiquark contributions : GPDs probe the two-particle
qq̄ structure of the photon

• Taking a Fourier transform (FT) with respect to ∆⊥ we obtain impact parameter
dependent parton distribution of the photon : distinctive features compared to the proton

• Taking the Fourier transform with respect to the skewness we express the GPDs in
longitudinal coordinate space : diffraction pattern similar to optics

•It is to be noted that a complete understanding of the photon GPDs beyond leading logs
would require also the non-pointlike hadronic contributions which will be model
dependent. However, the GPDs of the photon calculated here may act as interesting
tools to understand the partonic substructure of the photon. Accessing them in
experiment is a challenge
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