```
Multiparton
    NLO
corrections
    by
numerical
    methods
Sebastian
    Becker
Outline
Introductior
General
setup
The
subtraction
terms
Contour
deforma-
tion
Checks
and
examples
Summary
and
outlook
```


Multiparton NLO corrections by numerical methods

Sebastian Becker

```
Johannes Gutenberg Universität Mainz
Institut für Physik, THEP
26.09.-31.09. RADCOR 2011
```

3 The subtraction terms
1 Introduction

2 General setup

4 Contour deformation

5 Checks and examples

6 Summary and outlook

Introduction

- In this talk we present an algorithm for the numerical calculation of one-loop QCD amplitudes.
- The algorithm consists of subtraction terms, approximating the soft, collinear and ultraviolet divergences of QCD one-loop amplitudes.
- The algorithm consists of a method to deform the integration contour for the loop integration into the complex plane.
- The algorithm is formulated at the amplitude level and does not rely on Feynman graphs.
- All ingredients of the algorithm can be calculated efficiently using recurrence relations.

The subtraction method

- The contributions of an infrared observable at next-to-leading order with n final state particles can be written as

$$
\langle O\rangle^{N L O}=\int_{n+1} O_{n+1} d \sigma^{R}+\int_{n} O_{n} d \sigma^{V}+\int_{n} O_{n} d \sigma^{C}
$$

- $d \sigma^{R}$ denotes the real emission contribution, whose matrix elements are given by the square of the Born amplitudes with $(n+3)$ partons $\left|A_{n+3}^{(0)}\right|^{2}$.
- $d \sigma^{V}$ denotes the virtual contribution, whose matrix elements are given by the interference term of the one-loop and Born amplitude $2 \operatorname{Re}\left(A_{n+2}^{(0)^{*}} A_{n+2}^{(1)}\right)$.
- $d \sigma^{C}$ denotes a collinear subtraction term, which subtracts the initial state collinear singularities.
- One adds and subtracts a suitably chosen piece to be able to perform the phase space integrations by Monte Carlo methods.

$$
\langle O\rangle^{N L O}=\int_{n+1}\left(O_{n+1} d \sigma^{R}-O_{n} d \sigma^{A}\right)+\int_{n}\left(O_{n} d \sigma^{V}+O_{n} d \sigma^{C}+O_{n} \int d \sigma^{A}\right) .
$$

■ On the next slide we extend this subtraction method to the virtual part.

The subtraction method for the virtual part

- The renormalised one-loop amplitude is related to the bare amplitude by

$$
\mathcal{A}^{(1)}=\mathcal{A}_{\text {bare }}^{(1)}+\mathcal{A}_{C T}^{(1)}
$$

where $\mathcal{A}_{C T}^{(1)}$ denotes the ultraviolet counterterm from renormalisation.

- The bare amplitude involves the loop integration

$$
\mathcal{A}_{\text {bare }}^{(1)}=\int \frac{d^{D} k}{(2 \pi)^{D}} \mathcal{G}_{\text {bare }}^{(1)}
$$

- Introducing subtraction terms which match locally the singular behaviour of the bare integrand.

$$
\begin{aligned}
\mathcal{A}_{\text {bare }}^{(1)}+\mathcal{A}_{C T}^{(1)}= & \int \frac{d^{D} k}{(2 \pi)^{D}}\left(\mathcal{G}_{\text {bare }}^{(1)}-\mathcal{G}_{\text {soft }}^{(1)}-\mathcal{G}_{\text {coll }}^{(1)}-\mathcal{G}_{U V}^{(1)}\right) \\
& +\left(\mathcal{A}_{C T}^{(1)}+\mathcal{A}_{\text {soft }}^{(1)}+\mathcal{A}_{\text {coll }}^{(1)}+\mathcal{A}_{U V}^{(1)}\right)
\end{aligned}
$$

■ The expression in the first bracket is finite and can therefore be integrated numerically in four dimensions.

- The integrated subtractions terms in the second bracket can be easily calculated analytically in D dimensions.
■ Their poles in the dimensional regularisation parameter are cancelled by the corresponding poles from the ultraviolet counterterms, initial state collinear subtraction terms and dipole subtraction terms.
- $d \sigma^{V} \propto 2 \operatorname{Re}\left(\mathcal{A}_{n}^{(0)^{*}} \mathcal{A}_{n}^{(1)}\right) \quad \rightarrow \quad d \sigma^{V}=d \sigma_{\text {bare }}^{V}+d \sigma_{C T}^{V}$
- Putting everything together the next-to-leading order contribution reads

$$
\begin{aligned}
\langle O\rangle^{N L O}= & \int_{n+1}\left(O_{n+1} d \sigma^{R}-O_{n} d \sigma^{A}\right)+\int_{n+\text { loop }}\left(O_{n} d \sigma_{\text {bare }}^{V}-O_{n} d \sigma^{A^{\prime}}\right) \\
& +\int_{n}\left(O_{n} d \sigma_{C T}^{V}+O_{n} d \sigma^{C}+O_{n} \int d \sigma^{A}+O_{n} \int_{\text {loop }} d \sigma^{A^{\prime}}\right) .
\end{aligned}
$$

- The complicated process-dependent one-loop integral can be performed numerically with Monte Carlo techniques.
- In practise the one-loop integral and the phase space integration in the second bracket is done with a single Monte Carlo integration.
- The integral in the second line looks rather complicated but is in practise just a born Amplitude times some prefactors and is therefore easily calculable.
- In the remaining talk I will focus on the one-loop integral only.

Colour decomposition

- Amplitudes in QCD may be decomposed into group-theoretical factors (carrying the colour structures) multiplied by kinematic factors called partial amplitudes. As an example we consider the colour decomposition of a n-gluon tree-level amplitude.

$$
\mathcal{A}_{n}^{(0)}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\left(\frac{g}{\sqrt{2}}\right)^{n-2} \sum_{\sigma \in S_{n} \backslash Z_{n}} \delta_{i_{\sigma_{1}} j_{\sigma_{2}}} \delta_{i_{\sigma_{2}} j_{\sigma_{3}}} \ldots \delta_{i_{\sigma_{n}} j_{\sigma_{1}}} A_{n}^{(0)}\left(g_{\sigma_{1}}, g_{\sigma_{2}}, \ldots, g_{\sigma_{n}}\right)
$$

where the sum is over all non-cyclic permutations of the external gluon legs.

- The quantities $A_{n}^{(0)}\left(g_{\sigma_{1}}, g_{\sigma_{2}}, \ldots, g_{\sigma_{n}}\right)$, called partial amplitudes, contain the kinematic information.
- At one-loop level partial amplitudes can be further decomposed into primitive amplitudes.

$$
\mathcal{A}_{n}^{(1)}=\sum_{j, k} C_{j} A_{n, j, k}^{(1)}
$$

The colour structures are denoted by C_{j}, while the primitive amplitudes are denoted by $A_{n, j, k}^{(1)}$.

- Primitive amplitudes are gauge invariant.
- Primitive amplitudes have a fixed cyclic ordering of the external legs and a definite routing of the of the external fermion lines.
- This ensures that the type of each loop propagator is uniquely defined, being either a quark or a gluon/ghost propagator.

Kinematics

- In a bare primitive Amplitude with n external legs, $A_{\text {bare }}^{(1)}$, only n different propagators occur in the loop integral.
- We define the kinematics as follows:

$$
\begin{aligned}
k_{j} & =k-q_{j}, \\
q_{j} & =\sum_{l=1}^{j} p_{l} .
\end{aligned}
$$

- We define the bare one-loop integrand $G_{\text {bare }}^{(1)}$ via:

$$
A_{\text {bare }}^{(1)}=\int \frac{d^{D} k}{(2 \pi)^{D}} G_{\text {bare }}^{(1)}, \quad G_{\text {bare }}^{(1)}=P(k) \prod_{j=1}^{n} \frac{1}{k_{j}^{2}-m_{j}^{2}+i \delta}
$$

The subtraction terms

On the next slides I will present the subtraction terms for the bare one-loop amplitude. There are

- soft subtraction terms
- collinear subtraction terms
- UV subtraction terms
- Even if our algorithm does not depend on single Feynman diagrams, it is helpful for the derivation of the subtraction terms to define the integrand $G_{b a r e}^{(1)}$ by a sum of colour ordered Feynman diagrams

$$
G_{\text {bare }}^{(1)}=\sum_{\mathfrak{G}} F(\mathfrak{G})
$$

The soft subtraction terms for massless QCD

- Definition of the soft singularity:

■ Propagator j is soft and

- propagator j corresponds to a gluon and
- the external particles j and $j+1$ are on-shell.

$$
k_{j} \rightarrow 0 \quad \text { and } \quad p_{j}^{2}=0 \quad \text { and } \quad p_{j+1}^{2}=0 \quad \Rightarrow \quad k_{j-1}^{2}=k_{j}^{2}=k_{j+1}^{2}=0
$$

- For each gluon in the loop we define the soft subtraction function

$$
S_{j, \text { soft }}(\mathfrak{G})=\frac{\lim _{k_{j} \rightarrow 0}\left\{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2} F(\mathfrak{G}, k)\right\}}{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2}}
$$

- The sum of the soft subtraction function over all one-loop diagrams is proportional to the tree-level amplitude $A_{j}^{(0)}$.
- To get the full soft subtraction term we have to sum over all gluons in the loop,

$$
G_{\text {soft }}^{(1)}=i \sum_{j \in I_{g}} \frac{4 p_{j} \cdot p_{j+1}}{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2}} A_{j}^{(0)}
$$

- The integrated soft subtraction term yields the expected pole-structure.

$$
S_{\epsilon}^{-1} \mu^{2 \epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}} G_{\text {soft }}^{(1)}=-\frac{1}{(4 \pi)^{2}} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \sum_{j \in I_{g}} \frac{2}{\epsilon^{2}}\left(\frac{-2 p_{j} \cdot p_{j+1}}{\mu^{2}}\right)^{-\epsilon} A_{j}^{(0)}+\mathcal{O}(\epsilon)
$$

Derivation of the soft subtraction term

- In the soft limit we replace the metric tensor $g_{\mu \nu}$ of propagator j by a polarisation sum and gauge terms.

$$
g_{\mu \nu}=\sum_{\lambda} \epsilon_{\lambda}^{\mu}\left(k_{j}, n\right) \epsilon_{-\lambda}^{\nu}\left(k_{j}, n\right)-2 \frac{k_{j}^{\mu} n^{\nu}-k_{j}^{\nu} n^{\mu}}{2 k_{j} \cdot n}
$$

where n^{μ} is a light like reference vector.

- The terms proportional to $k_{j}^{\mu} n^{\nu}$ and $k_{j}^{\nu} n^{\mu}$ vanish due gauge invariance.
- The two "inserted" gluons lead in the soft limit to a tree-level amplitude, where these gluons are absent, times a eikonal factor $4 p_{j} \cdot p_{j+1}$.

The collinear subtraction terms

- Definition of the collinear singularity:
- Propagator $j-1$ is collinear to propagator j and
- propagator j or propagator $j-1$ corresponds to a gluon and
- the external particle j is massless and on-shell.

$$
k_{j-1} \| k_{j} \text { and } m_{j}=0 \quad \text { and } p_{j}^{2}=0 \Rightarrow k_{j-1}^{2}=k_{j}^{2}=0
$$

- For each gluon in the loop we define the collinear subtraction function

$$
S_{j, \text { coll }}(\mathfrak{G})=\frac{\lim _{k_{j-1} \| k_{j}}\left\{k_{j-1}^{2} k_{j}^{2} F(\mathfrak{G}, k)\right\}}{k_{j-1}^{2} k_{j}^{2}}-\text { soft double counting }
$$

- The sum of the collinear subtraction function over all one-loop diagrams is proportional to the tree level amplitude $A_{j}^{(0)}$.
- We have to sum over all gluons in the loop,

$$
\begin{gathered}
G_{\text {coll }}^{(1)}=i \sum_{j \in I_{g}}(-2)\left(\frac{S_{j} g_{U V}\left(k_{j-1}^{2}, k_{j}^{2}\right)}{k_{j-1}^{2} k_{j}^{2}}+\frac{S_{j+1} g_{U V}\left(k_{j}^{2}, k_{j+1}^{2}\right)}{k_{j}^{2} k_{j+1}^{2}}\right) A_{j}^{(0)} . \\
S_{q}=1, S_{g}=\frac{1}{2}, \quad \lim _{k_{j-1} \| k_{j}} g_{U V}\left(k_{j-1}^{2}, k_{j}^{2}\right)=1, \quad \lim _{k \rightarrow \infty} g_{U V}\left(k_{j-1}^{2}, k_{j}^{2}\right)=\mathcal{O}\left(\frac{1}{k}\right) .
\end{gathered}
$$

- The integrated collinear subtraction terms yields the expected pole structure:

$$
S_{\epsilon}^{-1} \mu^{2 \epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}} G_{c o l l}^{(1)}=-\frac{1}{(4 \pi)^{2}} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \sum_{j \in I_{g}}\left(S_{j}+S_{j+1}\right)\left(\frac{\mu_{U V}^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{2}{\epsilon} A_{j}^{(0)}+\mathcal{O}(\epsilon)
$$

Derivation of the collinear subtraction term

- Only diagrams with collinear $q \rightarrow q g$ or $g \rightarrow g g$ splitting lead to a divergence after integration.
- As an example, the $q \rightarrow q g$ splitting.

The sum of the left side is almost gauge invariant, only the self energies of external legs are missing.

- The self-energy insertions on the external lines introduce a spurious $1 / p_{j}^{2}$-singularity. We define $p_{j}=k_{j-1}-k_{j}$ slightly off shell by introducing the Sudakov parametrisation.

$$
k_{j-1}=x p+k_{\perp}-\frac{k_{\perp}^{2}}{x} \frac{n}{(2 p \cdot n)}, \quad-k_{j}=(1-x) p-k_{\perp}-\frac{k_{\perp}^{2}}{(1-x)} \frac{n}{(2 p \cdot n)} .
$$

- The singular parts of the self-energies are proportional to

$$
P_{q \rightarrow q g}^{\text {long }}=-\frac{2}{2 k_{j-1} \cdot k_{j}}\left(-\frac{2}{1-x}+2\right) \not p
$$

- The terms with $2 /(1-x)$ correspond to the soft singularities.

The ultraviolet subtraction terms I

- We write a generic one-loop Feynman diagram

$$
F_{a, n}(\mathfrak{G}, k)=P_{a}(\mathfrak{G}, k) \prod_{j=1}^{n} \frac{1}{k_{j}^{2}-m_{j}^{2}}
$$

where $P_{a}(\mathfrak{G}, k)$ is a polynomial of degree a in the loop momenta k.

- The one-loop integral of this diagram is UV-divergent, if $4+a-2 n \geq 0$.

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} F_{a, n}(\mathfrak{G}, k) \rightarrow \infty \quad: \quad 4+a-2 n \geq 0
$$

- In QCD only vertex and propagator corrections are UV-divergent.
- The subtraction term has to match the UV behaviour of the one-loop integrand and has to be infrared finite. Therefore we expand the propagators $k_{i}^{2}-m_{i}^{2}$ around the "UV-propagator" $\bar{k}^{2}-\mu_{U V}^{2}$, with $\bar{k}=k-Q$.

$$
F_{a, n}(\mathfrak{G}, k) \approx \frac{P_{a}(\mathfrak{G}, k)}{\left(\bar{k}^{2}-\mu_{U V}^{2}\right)^{n}}\left(1+\sum_{j=1}^{\prime} \frac{X_{j}(\bar{k})}{\left(\bar{k}^{2}-\mu_{U V}^{2}\right)^{j}}\right)
$$

where $X_{j}(\bar{k})$ is a polynomial of degree j in \bar{k} and $I=0$ for logarithmic, $I=1$ for linear and $I=2$ for quadratic UV-divergent diagrams.

The ultraviolet subtraction terms II

- We demand that the integrated subtraction term is proportional to a common pole part times the corresponding born term.

$$
\int \frac{d^{D} k}{(2 \pi)^{D}} S_{U V}(\mathfrak{G}) \propto\left(\frac{1}{\epsilon}-\ln \frac{\mu_{u v}^{2}}{\mu^{2}}\right) A^{(0)}+\mathcal{O}(\epsilon)
$$

- The subtraction term for a UV divergent one loop diagram is

$$
S_{U V}(\mathfrak{G})=\frac{P_{a}(\mathfrak{G}, k)}{\left(\bar{k}^{2}-\mu_{U V}^{2}\right)^{n}}\left(1+\sum_{j=1}^{1} \frac{X_{j}(\bar{k})}{\left(\bar{k}^{2}-\mu_{U V}^{2}\right)^{n}}\right)-\frac{-2 \mu_{U V}^{2}}{\left(\bar{k}^{2}-\mu_{U V}^{2}\right)^{3}} R(\mathfrak{G})
$$

where $R(\mathfrak{G})$ is a finite term which ensures that the integrated subtraction term has the demanded form.

- After construction of the subtraction terms for all QCD vertex- and propagator-corrections, the unintegrated total ultraviolet subtraction term $G_{U V}^{(1)}$ can be constructed efficiently via Berends-Giele type recurrence relations.

Consistency check of the UV subtraction

- The plot shows $\left|2 \operatorname{Re}\left(A^{(0)} G_{\text {bare }}^{(1)}\right)\right|$ and $\left|2 \operatorname{Re}\left(A^{(0)}\left(G_{\text {bare }}^{(1)}-G_{U V}^{(1)}\right)\right)\right|$ over the UV scaling parameter λ for the process $e^{+} e^{-} \rightarrow 4 j e t s$.
- The bare Amplitude decrease like $1 / k^{2}$ and is therefore quadratic divergent.
- The (bare - UV) Amplitude decrease like $1 / k^{5}$ and is therefore UV-safe.

NLO contribution to the ew amplitude with 6 external particles.
Scaling of the Integrand with increasing $\overline{\mathrm{k}}=\mathrm{k}-\mathrm{Q}$, where $\overline{\mathrm{k}}=\lambda \overline{\mathrm{k}}_{\text {fixed }}$ and Q stays fixed.

Summary of the subtraction terms

- We show that the total UV-subtraction term matches the bare integrand locally in the UV-limit.
- The UV-subtraction terms are constructed efficiently via Berends-Giele type recurrence relations.
- The infrared subtraction terms are formulated on amplitude level and therefore are also constructed efficiently via Berends-Giele type recurrence relations.
- All integrated subtraction terms are proportional to tree-level amplitudes
- After subtraction it is possible that one or more propagators go on-shell. Therefor we need a suitable deformation of the integration contour into the complex plane to avoid these poles.

Overview of the contour deformation

- Again the one loop integrand

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} G_{b a r e}^{(1)}=\int \frac{d^{4} k}{(2 \pi)^{4}} P(k) \prod_{j=1}^{n} \frac{1}{k_{j}^{2}-m_{j}^{2}+i \delta}
$$

- We deform the integration contour into the complex plane to match Feynman's $+i \delta$ rule.
- Use direct deformation of the loop momenta

$$
k \rightarrow \tilde{k}=k+i \kappa(k)
$$

- After the deformation the integral reads

$$
=\int \frac{d^{4} k}{(2 \pi)^{4}}\left|\frac{\partial \tilde{k}}{\partial k}\right| P(\tilde{k}(k)) \prod_{j=1}^{n} \frac{1}{k_{j}^{2}-m_{j}^{2}-\kappa^{2}+2 i k_{j} \cdot \kappa}
$$

- We have to construct the deformation vector κ such

$$
k_{j}^{2}-m_{j}^{2}=0 \quad \rightarrow \quad k_{j} \cdot \kappa \geq 0
$$

- The numeric stability of the Monte Carlo integration depends strongly on the definition of the deformation vector κ.
- At the moment we use the a algorithm by W. Gong, Z. Nagy and D. Soper to construct the deformation vector.

Proof of principle $-e^{+} e^{-} \rightarrow$ jets

- The cross section for n jets normalised to the $L O$ cross section for $e^{+} e^{-} \rightarrow$ hadrons.

$$
\frac{\sigma_{n-j e t}}{\sigma_{0}}=\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n-2} A_{n}(\mu)+\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n-1} B_{n}(\mu)+\mathcal{O}\left(\alpha_{s}^{n}\right) .
$$

- We expand the NLO perturbative coefficient B_{n} in $1 / N_{c}$.

$$
B_{n}=N_{c}\left(\frac{N_{c}}{2}\right)^{n-1}\left[B_{n, l c}+\mathcal{O}\left(\frac{1}{N_{c}}\right)\right]
$$

- We calculate the NLO coefficient in leading colour up to $n=5$ i.e. up to six-point functions.
- We plot $N_{c}\left(N_{c} / 2\right)^{n-1} B_{n, l c}$ over the resolution parameter $y_{c u t}$ in the Durham algorithm.

Proof of principle $-e^{+} e^{-} \rightarrow$ jets

- The cross section for $n-j e t s$ normalised to the $L O$ cross section for $e^{+} e^{-} \rightarrow$ hadrons.

$$
\frac{\sigma_{n-j e t}}{\sigma_{0}}=\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n-2} A_{n}(\mu)+\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n-1} B_{n}(\mu)+\mathcal{O}\left(\alpha_{s}^{n}\right) .
$$

- We expand the NLO perturbative coefficient B_{n} in $1 / N_{c}$.

$$
B_{n}=N_{c}\left(\frac{N_{c}}{2}\right)^{n-1}\left[B_{n, l c}+\mathcal{O}\left(\frac{1}{N_{c}}\right)\right]
$$

- We calculate the NLO coefficient in leading colour up to $n=5$ i.e. up to six-point functions.
- We plot $N_{c}\left(N_{c} / 2\right)^{n-1} B_{n, l c}$ over the resolution parameter $y_{c u t}$ which is corresponded to the Durham algorithm.

Durham 4-jet		Durham 5-jet	
35000 - 30000	$\underbrace{\text { numerical }} \ldots \ldots+\cdots$	$y_{\text {cut }}$	$\frac{N_{c}^{5}}{16} B_{5,1 c}$
25000	8	0.002	$(4.275 \pm 0.006) \cdot 10^{5}$
		0.001	$(1.050 \pm 0.026) \cdot 10^{6}$
${\underset{\sim}{1} \times 15000}^{2}$		0.0006	$(1.84 \pm 0.15) \cdot 10^{6}$

Summary and outlook

Summary
■ In this talk the extension of the subtraction method to the virtual corrections was presented.

- The major ingredients of this subtraction method, the subtraction terms, were also presented.
- All required ingredients can be calculated efficiently using recurrence relations and a suitable contour deformation is provided.
- We demonstrated the functionality of the algorithm on the process $e^{+} e^{-} \rightarrow$ jets.

Outlook

- Improving the efficiency of the Monte Carlo.
- Extend the contour deformation to massive QCD.
- Z-Production for the LHC.
- Full colour calculations.

Thank you for your attention!

Itr: Daniel Götz, Sebastian Becker, Stefan Weinzierl, Christopher Schwan, Christian Reuschle.

