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Introduction

In this talk we present an algorithm for the numerical calculation of one-loop
QCD amplitudes.

The algorithm consists of subtraction terms, approximating the soft, collinear
and ultraviolet divergences of QCD one-loop amplitudes.

The algorithm consists of a method to deform the integration contour for the
loop integration into the complex plane.

The algorithm is formulated at the amplitude level and does not rely on Feynman
graphs.

All ingredients of the algorithm can be calculated efficiently using recurrence
relations.



Multiparton
NLO

corrections
by

numerical
methods

Sebastian
Becker

Outline

Introduction

General
setup

The
subtraction
terms

Contour
deforma-
tion

Checks
and
examples

Summary
and
outlook

The subtraction method

The contributions of an infrared observable at next-to-leading order with n final
state particles can be written as

〈O〉NLO =

Z
n+1

On+1dσ
R +

Z
n

Ondσ
V +

Z
n

Ondσ
C .

dσR denotes the real emission contribution, whose matrix elements are given by the

square of the Born amplitudes with (n + 3) partons |A(0)
n+3|

2.

dσV denotes the virtual contribution, whose matrix elements are given by the

interference term of the one-loop and Born amplitude 2 Re(A
(0)∗
n+2 A

(1)
n+2).

dσC denotes a collinear subtraction term, which subtracts the initial state collinear
singularities.

One adds and subtracts a suitably chosen piece to be able to perform the phase
space integrations by Monte Carlo methods.

〈O〉NLO =

Z
n+1

“
On+1dσ

R − Ondσ
A
”

+

Z
n

„
Ondσ

V + Ondσ
C + On

Z
dσA

«
.

On the next slide we extend this subtraction method to the virtual part.
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The subtraction method for the virtual part

The renormalised one-loop amplitude is related to the bare amplitude by

A(1) = A(1)
bare +A(1)

CT ,

where A(1)
CT denotes the ultraviolet counterterm from renormalisation.

The bare amplitude involves the loop integration

A(1)
bare =

Z
dDk

(2π)D
G(1)

bare .

Introducing subtraction terms which match locally the singular behaviour of the
bare integrand.

A(1)
bare +A(1)

CT =

Z
dDk

(2π)D

“
G(1)

bare − G
(1)
soft − G

(1)
coll − G

(1)
UV

”
+
“
A(1)

CT +A(1)
soft +A(1)

coll +A(1)
UV

”
The expression in the first bracket is finite and can therefore be integrated
numerically in four dimensions.

The integrated subtractions terms in the second bracket can be easily calculated
analytically in D dimensions.

Their poles in the dimensional regularisation parameter are cancelled by the
corresponding poles from the ultraviolet counterterms, initial state collinear
subtraction terms and dipole subtraction terms.
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dσV ∝ 2 Re(A(0)∗
n A(1)

n ) → dσV = dσV
bare + dσV

CT

Putting everything together the next-to-leading order contribution reads

〈O〉NLO =

Z
n+1

“
On+1dσ

R − Ondσ
A
”

+

Z
n+loop

“
Ondσ

V
bare − Ondσ

A′
”

+

Z
n

0B@Ondσ
V
CT + Ondσ

C + On

Z
dσA + On

Z
loop

dσA′

1CA .

The complicated process-dependent one-loop integral can be performed
numerically with Monte Carlo techniques.

In practise the one-loop integral and the phase space integration in the second
bracket is done with a single Monte Carlo integration.

The integral in the second line looks rather complicated but is in practise just a
born Amplitude times some prefactors and is therefore easily calculable.

In the remaining talk I will focus on the one-loop integral only.
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Colour decomposition

Amplitudes in QCD may be decomposed into group-theoretical factors (carrying
the colour structures) multiplied by kinematic factors called partial amplitudes.
As an example we consider the colour decomposition of a n-gluon tree-level
amplitude.

A(0)
n (g1, g2, . . . , gn) =

„
g
√

2

«n−2 X
σ∈Sn\Zn

δiσ1
jσ2
δiσ2

jσ3
. . . δiσn jσ1

A
(0)
n (gσ1 , gσ2 , . . . , gσn ),

where the sum is over all non-cyclic permutations of the external gluon legs.

The quantities A
(0)
n (gσ1 , gσ2 , . . . , gσn ), called partial amplitudes, contain the

kinematic information.

At one-loop level partial amplitudes can be further decomposed into primitive
amplitudes.

A(1)
n =

X
j,k

CjA
(1)
n,j,k

The colour structures are denoted by Cj , while the primitive amplitudes are

denoted by A
(1)
n,j,k .

Primitive amplitudes are gauge invariant.
Primitive amplitudes have a fixed cyclic ordering of the external legs and a definite
routing of the of the external fermion lines.
This ensures that the type of each loop propagator is uniquely defined, being either a
quark or a gluon/ghost propagator.
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Kinematics

In a bare primitive Amplitude with n external legs, A
(1)
bare , only n different

propagators occur in the loop integral.

We define the kinematics as follows:

kj = k − qj ,

qj =

jX
l=1

pl .

We define the bare one-loop integrand G
(1)
bare via:

A
(1)
bare =

Z
dDk

(2π)D
G

(1)
bare , G

(1)
bare = P(k)

nY
j=1

1

k2
j −m2

j + iδ
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The subtraction terms

On the next slides I will present the subtraction terms for the bare one-loop
amplitude. There are

soft subtraction terms

collinear subtraction terms

UV subtraction terms

Even if our algorithm does not depend on single Feynman diagrams, it is helpful

for the derivation of the subtraction terms to define the integrand G
(1)
bare by a sum

of colour ordered Feynman diagrams

G
(1)
bare =

X
G

F (G)
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The soft subtraction terms for massless QCD

Definition of the soft singularity:
Propagator j is soft and
propagator j corresponds to a gluon and
the external particles j and j + 1 are on-shell.

kj → 0 and p2
j = 0 and p2

j+1 = 0 ⇒ k2
j−1 = k2

j = k2
j+1 = 0

For each gluon in the loop we define the soft subtraction function

Sj,soft(G) =

lim
kj→0

n
k2
j−1k

2
j k2

j+1F (G, k)
o

k2
j−1k

2
j k2

j+1

The sum of the soft subtraction function over all one-loop diagrams is

proportional to the tree-level amplitude A
(0)
j .

To get the full soft subtraction term we have to sum over all gluons in the loop,

G
(1)
soft = i

X
j∈Ig

4pj · pj+1

k2
j−1k

2
j k2

j+1

A
(0)
j

The integrated soft subtraction term yields the expected pole-structure.

S−1
ε µ2ε

Z
dDk

(2π)D
G

(1)
soft = −

1

(4π)2

eεγE

Γ(1− ε)
X
j∈Ig

2

ε2

„−2pj · pj+1

µ2

«−ε
A

(0)
j +O(ε).
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Derivation of the soft subtraction term

In the soft limit we replace the metric tensor gµν of propagator j by a
polarisation sum and gauge terms.

gµν =
X
λ

εµλ(kj , n)εν−λ(kj , n)− 2
kµj nν − kνj nµ

2kj · n

where nµ is a light like reference vector.

lim
kj→0

P
G

= lim
kj→0

P
G

The terms proportional to kµj nν and kνj nµ vanish due gauge invariance.

The two “inserted” gluons lead in the soft limit to a tree-level amplitude, where
these gluons are absent, times a eikonal factor 4pj · pj+1.
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The collinear subtraction terms

Definition of the collinear singularity:
Propagator j − 1 is collinear to propagator j and
propagator j or propagator j − 1 corresponds to a gluon and
the external particle j is massless and on-shell.

kj−1||kj and mj = 0 and p2
j = 0 ⇒ k2

j−1 = k2
j = 0

For each gluon in the loop we define the collinear subtraction function

Sj,coll (G) =

lim
kj−1‖kj

n
k2
j−1k

2
j F (G, k)

o
k2
j−1k

2
j

− soft double counting

The sum of the collinear subtraction function over all one-loop diagrams is

proportional to the tree level amplitude A
(0)
j .

We have to sum over all gluons in the loop,

G
(1)
coll = i

X
j∈Ig

(−2)

 
SjgUV (k2

j−1, k
2
j )

k2
j−1k

2
j

+
Sj+1gUV (k2

j , k
2
j+1)

k2
j k2

j+1

!
A

(0)
j .

Sq = 1, Sg =
1

2
, lim

kj−1||kj

gUV (k2
j−1, k

2
j ) = 1, lim

k→∞
gUV (k2

j−1, k
2
j ) = O

„
1

k

«
.

The integrated collinear subtraction terms yields the expected pole structure:

S−1
ε µ2ε

Z
dDk

(2π)D
G

(1)
coll = −

1

(4π)2

eεγE

Γ(1− ε)
X
j∈Ig

(Sj +Sj+1)

 
µ2

UV

µ2

!−ε
2

ε
A

(0)
j +O(ε).
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Derivation of the collinear subtraction term

Only diagrams with collinear q → qg or g → gg splitting lead to a divergence
after integration.

As an example, the q → qg splitting.

lim
kj−1‖kj

P
G

= − lim
kj−1‖kj

P̃
G

The sum of the left side is almost gauge invariant, only the self energies of
external legs are missing.

The self-energy insertions on the external lines introduce a spurious
1/p2

j -singularity. We define pj = kj−1 − kj slightly off shell by introducing the
Sudakov parametrisation.

kj−1 = xp + k⊥ −
k2
⊥
x

n

(2p · n)
, −kj = (1− x)p − k⊥ −

k2
⊥

(1− x)

n

(2p · n)
.

The singular parts of the self-energies are proportional to

P long
q→qg = −

2

2kj−1 · kj

„
−

2

1− x
+ 2

«
6p

The terms with 2/(1− x) correspond to the soft singularities.
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The ultraviolet subtraction terms I

We write a generic one-loop Feynman diagram

Fa,n(G, k) = Pa(G, k)
nY

j=1

1

k2
j −m2

j

where Pa(G, k) is a polynomial of degree a in the loop momenta k.

The one-loop integral of this diagram is UV-divergent, if 4 + a− 2n ≥ 0.Z
d4k

(2π)4
Fa,n(G, k) → ∞ : 4 + a− 2n ≥ 0

In QCD only vertex and propagator corrections are UV-divergent.

The subtraction term has to match the UV behaviour of the one-loop integrand
and has to be infrared finite. Therefore we expand the propagators k2

i −m2
i

around the “UV-propagator” k̄2 − µ2
UV , with k̄ = k − Q.

Fa,n(G, k) ≈
Pa(G, k)

(k̄2 − µ2
UV )n

0@1 +
lX

j=1

Xj (k̄)

(k̄2 − µ2
UV )j

1A
where Xj (k̄) is a polynomial of degree j in k̄ and l = 0 for logarithmic, l = 1 for
linear and l = 2 for quadratic UV-divergent diagrams.
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The ultraviolet subtraction terms II

We demand that the integrated subtraction term is proportional to a common
pole part times the corresponding born term.Z

dDk

(2π)D
SUV (G) ∝

„
1

ε
− ln

µ2
uv

µ2

«
A(0) +O(ε)

The subtraction term for a UV divergent one loop diagram is

SUV (G) =
Pa(G, k)

(k̄2 − µ2
UV )n

0@1 +
lX

j=1

Xj (k̄)

(k̄2 − µ2
UV )n

1A− −2µ2
UV

(k̄2 − µ2
UV )3

R(G)

where R(G) is a finite term which ensures that the integrated subtraction term
has the demanded form.

After construction of the subtraction terms for all QCD vertex- and

propagator-corrections, the unintegrated total ultraviolet subtraction term G
(1)
UV

can be constructed efficiently via Berends-Giele type recurrence relations.
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Consistency check of the UV subtraction

The plot shows |2 Re(A(0)G
(1)
bare)| and |2 Re(A(0)(G

(1)
bare − G

(1)
UV ))| over the UV

scaling parameter λ for the process e+e− → 4jets.
The bare Amplitude decrease like 1/k2 and is therefore quadratic divergent.
The (bare − UV ) Amplitude decrease like 1/k5 and is therefore UV-safe.

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1  10  100  1000  10000

 
2R
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A
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[ G
(1

)
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-G

(1
)

uv
 ] 



λ

NLO contribution to the ew amplitude with 6 external particles.
 Scaling of the Integrand with increasing -k = k - Q, where -k = λ-kfixed and Q stays fixed.

Wed Mar 02 15:31:19 2011

bare - uv
slope = -5.132206

bare
slope = -1.999211

Figure: Plot by Christian Reuschle.
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Summary of the subtraction terms

We show that the total UV-subtraction term matches the bare integrand locally
in the UV-limit.

The UV-subtraction terms are constructed efficiently via Berends-Giele type
recurrence relations.

The infrared subtraction terms are formulated on amplitude level and therefore
are also constructed efficiently via Berends-Giele type recurrence relations.

All integrated subtraction terms are proportional to tree-level amplitudes

After subtraction it is possible that one or more propagators go on-shell.
Therefor we need a suitable deformation of the integration contour into the
complex plane to avoid these poles.
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Overview of the contour deformation

Again the one loop integrandZ
d4k

(2π)4
G

(1)
bare =

Z
d4k

(2π)4
P(k)

nY
j=1

1

k2
j −m2

j + iδ

We deform the integration contour into the complex plane to match Feynman’s
+iδ rule.

Use direct deformation of the loop momenta

k → k̃ = k + iκ(k).

After the deformation the integral reads

=

Z
d4k

(2π)4

˛̨̨̨
˛∂k̃

∂k

˛̨̨̨
˛P(k̃(k))

nY
j=1

1

k2
j −m2

j − κ2 + 2ikj · κ

We have to construct the deformation vector κ such

k2
j −m2

j = 0 → kj · κ ≥ 0.

The numeric stability of the Monte Carlo integration depends strongly on the
definition of the deformation vector κ.

At the moment we use the a algorithm by W. Gong, Z. Nagy and D. Soper to
construct the deformation vector.
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Proof of principle - e+e− → jets

The cross section for n jets normalised to the LO cross section for
e+e− → hadrons.

σn−jet

σ0
=

„
αs(µ)

2π

«n−2

An(µ) +

„
αs(µ)

2π

«n−1

Bn(µ) +O(αn
s ).

We expand the NLO perturbative coefficient Bn in 1/Nc .

Bn = Nc

„
Nc

2

«n−1 »
Bn,lc +O

„
1

Nc

«–
We calculate the NLO coefficient in leading colour up to n = 5 i.e. up to
six-point functions.
We plot Nc (Nc/2)n−1Bn,lc over the resolution parameter ycut in the Durham
algorithm.

numerical
analytical

Durham 2-jet

ycut

1 2
N

2 c
B

2,
lc

10.10.010.001

5

0

-5

-10

-15

-20

-25

-30

-35

-40

-45
numerical
analytical

Durham 3-jet

ycut

1 4
N

3 c
B

3,
lc

10.10.010.001

400

300

200

100

0

-100

-200

Figure: Preliminary plots for e+e− → n − jets
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Proof of principle - e+e− → jets

The cross section for n − jets normalised to the LO cross section for
e+e− → hadrons.

σn−jet

σ0
=

„
αs(µ)

2π

«n−2

An(µ) +

„
αs(µ)

2π

«n−1

Bn(µ) +O(αn
s ).

We expand the NLO perturbative coefficient Bn in 1/Nc .

Bn = Nc

„
Nc

2

«n−1 »
Bn,lc +O

„
1

Nc

«–
We calculate the NLO coefficient in leading colour up to n = 5 i.e. up to
six-point functions.
We plot Nc (Nc/2)n−1Bn,lc over the resolution parameter ycut which is
corresponded to the Durham algorithm.

numerical
analytical

Durham 4-jet

ycut

1 8
N

4 c
B

4,
lc

0.10.010.001

40000

35000

30000

25000

20000

15000

10000

5000

0

Durham 5-jet

ycut
N5

c
16

B5,lc

0.002 (4.275± 0.006) · 105

0.001 (1.050± 0.026) · 106

0.0006 (1.84± 0.15) · 106

Figure: Preliminary plots for e+e− → n − jets
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Summary and outlook

Summary

In this talk the extension of the subtraction method to the virtual corrections was
presented.

The major ingredients of this subtraction method, the subtraction terms, were
also presented.

All required ingredients can be calculated efficiently using recurrence relations
and a suitable contour deformation is provided.

We demonstrated the functionality of the algorithm on the process e+e− → jets.

Outlook

Improving the efficiency of the Monte Carlo.

Extend the contour deformation to massive QCD.

Z -Production for the LHC.

Full colour calculations.



Multiparton
NLO

corrections
by

numerical
methods

Sebastian
Becker

Outline

Introduction

General
setup

The
subtraction
terms

Contour
deforma-
tion

Checks
and
examples

Summary
and
outlook

Thank you for your attention!

ltr: Daniel Götz, Sebastian Becker, Stefan Weinzierl, Christopher Schwan, Christian
Reuschle.
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