

MADLOOP IN AMC@NLO

VALENTIN HIRSCHI EPFL

28 APRIL 2011

PRESENTATION
@ RADCOR

Wednesday, September 28, 2011

- Motivations
- * aMC@NLO in a nutshell
- MadLoop: from MG4 towards MG5
- Results
- Closing words

WHY NLO?

NLO is important because

- * NLO corrections are large in QCD
- NLO corrections significantly affect the shape of distributions

Automation would help!

- It reduces the scale dependence inherent to tree-level cross-sections
- * New production channels open at NLO
- Accurate theoretical prediction are necessary for the search of signals events in large background samples.

Valentin Hirschi, 28 septembre 2011

WHY AUTOMATION?

* Save time

Trade time spent on computing a process with time on studying the physics behind it.

WHY AUTOMATION?

* Save time

Trade time spent on computing a process with time on studying the physics behind it.

* Avoid bugs

Having a trusted program extensively checked once and for all, eliminates obvious bugs when running different processes.

WHY AUTOMATION?

* Save time

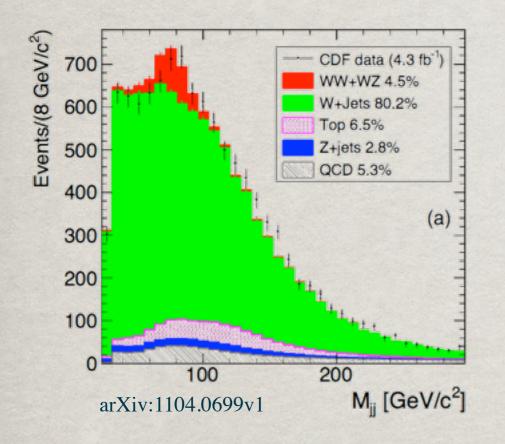
Trade time spent on computing a process with time on studying the physics behind it.

* Avoid bugs

Having a trusted program extensively checked once and for all, eliminates obvious bugs when running different processes.

* Use of the same framework for all processes It only requires to know how to efficiently use one single program to do all NLO phenomenology.

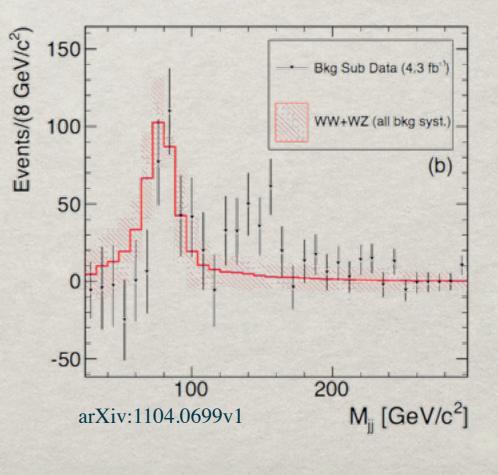
Valentin Hirschi, 28 septembre 2011


EXISTING TOOLS

* Flexible tools for NLO predictions do not exist:

- * MCFM [Campbell & Ellis & ...] has it available almost all relevant process for background studies at the Tevatron and LHC, but gives only fixed-order, parton-level results
- MC@NLO [Frixione & Webber & ...] has matching to the parton shower to describe fully exclusive final states, but the list of available processes is relatively short
- POWHEG BOX [Nason et al.] provides a framework to match any existing parton level NLO computation to a parton shower. However, the NLO computation is not automated and some work by the user is needed to implement a new process
- Idea: write an automatic tool that is flexible and allows for any process to be computed at NLO accuracy, including matching to the parton shower to deliver events ready for experimentalists → <u>a</u>MC@NLO

Valentin Hirschi, 28 septembre 2011


Wjj at Tevatron

Having NLO computations by default lead to more conclusive observations.

CDF observes $3-\sigma$ deviation to the SM signal.

- New Physics, stat. fluctuations?
- Unreliable prediction?
 - → W+jets treated at LO !
 - Mistreatment of background?

RADCOR 2011

AMC@NLO IN A NUTSHELL

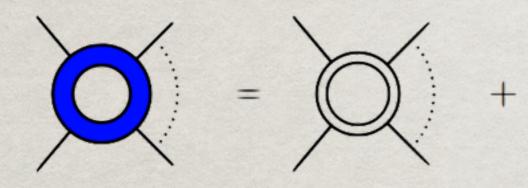
- MadFKS, build on MadGraph, computes all contributions to a NLO computation, except for the finite part of the virtual amplitude
- MadLoop computes the virtual corrections to any process in the SM using the OPP method as implemented in CutTools
- Combine MadFKS and MadLoop to get any distribution/cross section at (parton-level) NLO accuracy
- Add terms to remove double counting when matching to the parton shower: aMC@NLO
- Shower the generated events using Herwig or Pythia to get fully exclusive predictions at NLO accuracy (for IR-safe observables).

arXiv:1104.0699v1

Valentin Hirschi, 28 septembre 2011

NLO BASICS

NLO contributions have two parts


Valentin Hirschi, 28 septembre 2011

RADCOR 2011

Wednesday, September 28, 2011

NLO BASICS

NLO contributions have two parts

$$\sigma^{\text{NLO}} = \int_m d^{(d)} \sigma^V +$$

Virtual part

- * Used to be bottleneck of NLO computations
- Algorithms for automation known in principle but not yet efficiently implemented
- * This work brings automation using MadGraph and CutTools interfaced through MadLoop.

NLO BASICS

+

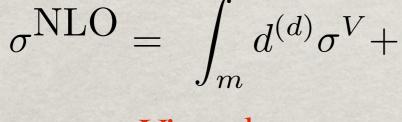
NLO contributions have two parts

 $\sigma^{\rm NLO} = \int d^{(d)} \sigma^V +$

- * Used to be bottleneck of NLO computations
- Algorithms for automation known in principle but not yet efficiently implemented
- This work brings automation using MadGraph and CutTools interfaced through MadLoop.

Real emission part

- Automated for different methods
- Challenge is the systematic extraction of singularities
- MadFKS using the FKS subtraction method successfully implemented on MGv4


RADCOR 2011

 $\int d^{(d)}\sigma^R +$

NLO BASICS

+

NLO contributions have two parts

$$\int_{m+1} d^{(d)}$$

+

$$\int_m d^{(4)} \sigma^B$$

Virtual part

- * Used to be bottleneck of NLO computations
- Algorithms for automation known in principle but not yet efficiently implemented
- This work brings automation using MadGraph and CutTools interfaced through MadLoop.

Real emission part

- Automated for different methods
- Challenge is the systematic extraction of singularities
- MadFKS using the FKS subtraction method successfully implemented on MGv4

SUBTRACTION TERMS

IR divergences are dealt with using subtraction terms

* Each integral is finite.

- The only missing input required from MadFKS is the *finite* part of the virtual amplitude.
- * This is the part MadLoop provides!

Valentin Hirschi, 28 septembre 2011

O

MADFKS

Valentin Hirschi, 28 septembre 2011

RADCOR 2011

Wednesday, September 28, 2011

10

MADFKS PHASE-SPACE: DIVIDE AND CONQUER

* Real emission part : $d\sigma^R = |M^{n+1}|^2 d\phi_{n+1}$

$$|M^{n+1}|^2 \text{ diverges as } \frac{1}{\chi_i^2} \frac{1}{1 - y_{ij}} \text{ with } \begin{array}{l} \chi_i = \frac{E_i}{\sqrt{\hat{s}}} \\ y_{ij} = \cos \theta_{ij} \end{array}$$

 Divide phase-space so that each partition has at most one soft and one collinear singularity

$$d\sigma^{R} = \sum_{ij} S_{ij} |M^{n+1}|^{2} d\phi_{n+1} \qquad \sum_{ij} S_{ij} = 1$$

Use plus distribution to
regulate the singularities
$$\int d\chi \left(\frac{1}{\chi}\right)_{+} f(\chi) = \int d\chi \frac{f(\chi) - f(0)}{\chi}$$

$$d\tilde{\sigma}^{R} = \sum_{ij} \left(\frac{1}{\chi_{i}}\right)_{+} \left(\frac{1}{1-y_{ij}}\right)_{+} \chi_{i}^{2}(1-y_{ij})S_{ij}|M^{n+1}|^{2}d\phi_{n+1}$$

Valentin Hirschi, 28 septembre 2011

.5

FKS VS CS DIPOLES N² VS N³

CS uses soft singularities to organize the subtractions :

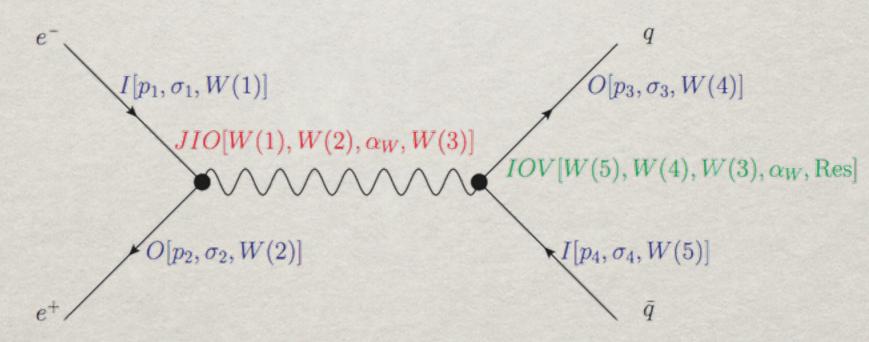
- \rightarrow Three-body kernels, so naive n³ scaling
- → Each subtraction term has a different kinematics
- \rightarrow All subtraction terms must be subtracted to $\mathcal{M}^{(r)}$
- * MadFKS, based on the collinear structures :
 - → The majority of the subtractions can be grouped together. *Ex:* The 2 → N gluons process as 3 subtractions \forall N
 - \rightarrow Soft and collinear counter-terms can be defined as to have the same kinematics so that the subtraction term is unique.
 - → The collinear structure is better suited to existing formalisms for NLO parton shower matching.

Valentin Hirschi, 28 septembre 2011

NADLOOP

Valentin Hirschi, 28 septembre 2011

RADCOR 2011


Wednesday, September 28, 2011

13

MADGRAPH

THE EVOLUTIVE WAY OF COMPUTING TREE-DIAGRAMS

- * First generates all tree-level Feynman Diagrams
- Compute the amplitude of each diagram using a chain of calls to HELAS subroutines

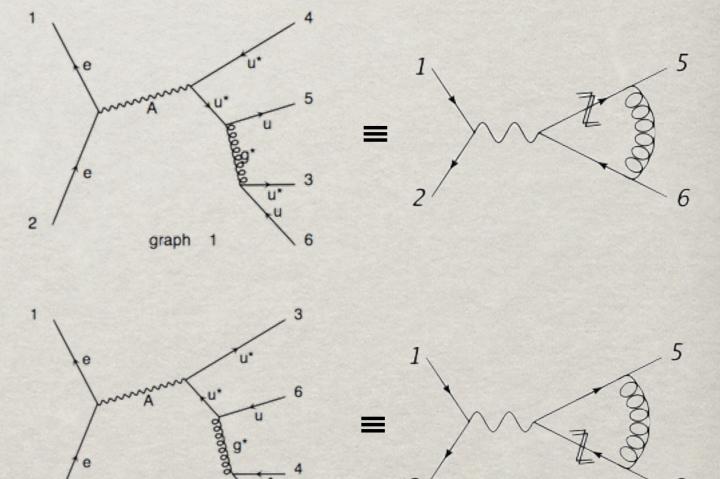
Finally square all the related amplitude with their right color factors to construct the full LO amplitude

Valentin Hirschi, 28 septembre 2011

CUT-LOOP DIAGRAMS

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \to \gamma \to u\bar{u}$:

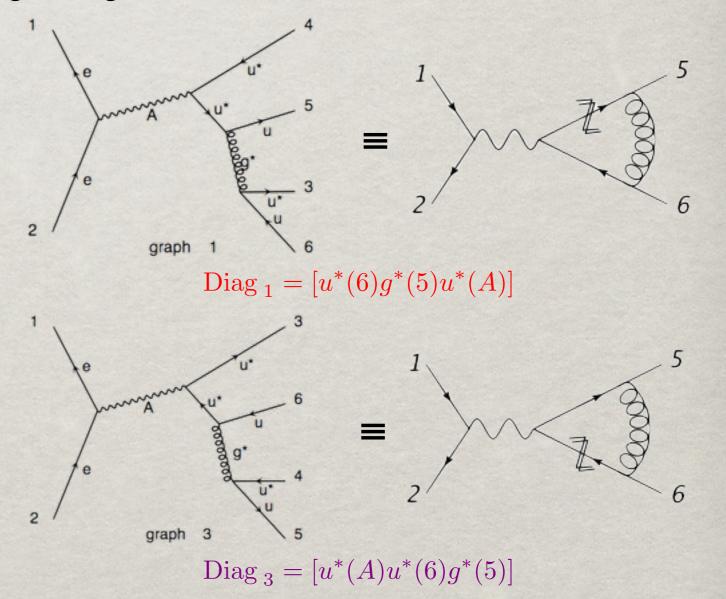

* Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:

CUT-LOOP DIAGRAMS

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \rightarrow \gamma \rightarrow u\bar{u}$:

- * Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:
- Selection is performed to keep only one cut-diagram per loop <u>contributing</u> in the process

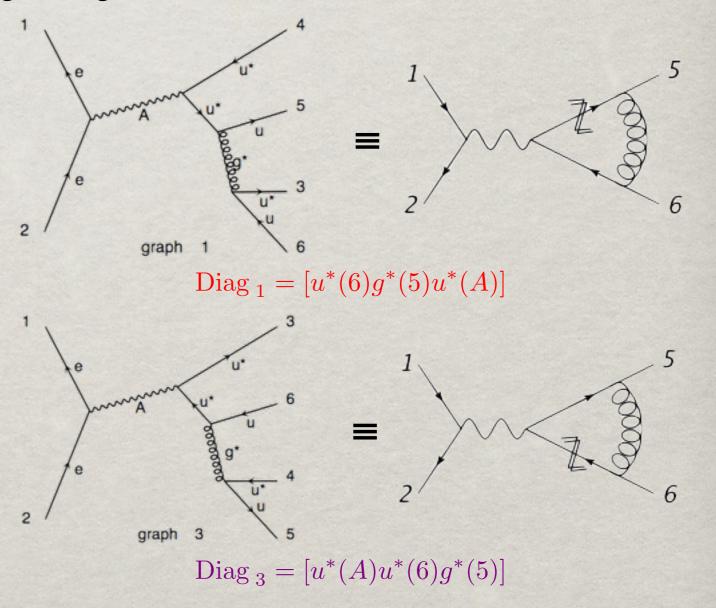

graph 3

CUT-LOOP DIAGRAMS

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \rightarrow \gamma \rightarrow u\bar{u}$:

- * Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:
- Selection is performed to keep only one cut-diagram per loop <u>contributing</u> in the process
- Tags are associated to each cut-diagram. Those whose tags are mirror and/or cyclic permutations of tags of diagram already in the loop-basis are taken out.



CUT-LOOP DIAGRAMS

WITH A SPECIFIC EXAMPLE

Consider $e^+e^- \rightarrow \gamma \rightarrow u\bar{u}$:

- * Loop particles are denoted with a star. When MG is asked for $e^+e^- \rightarrow u^*\bar{u}^*u\bar{u}$ it gives back eight diagrams. Two of them are:
- Selection is performed to keep only one cut-diagram per loop <u>contributing</u> in the process
- Tags are associated to each cut-diagram. Those whose tags are mirror and/or cyclic permutations of tags of diagram already in the loop-basis are taken out.
- Additional custom filter to eliminate tadpoles and bubbles attached to external legs.

CUTTOOLS

OR HOW TO COMPUTE LOOPS WITHOUT DOING SO

CutTools uses the OPP method for loop reduction at the integrand level

$$\bar{q}^2 = q^2 + \tilde{q}^2 \qquad (q \cdot \tilde{q}) = 0 \qquad N(q) = 0$$

$$\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2, \quad p_0 \neq 0.$$

$$\int d^{(d)}\sigma^V = \int d^{(4+\epsilon)} \left(A(\bar{q}) + \tilde{A}(\bar{q}) \right)$$

$$A(\bar{q}) = \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \left(\tilde{A}(\bar{q}) \to \mathbf{R2} \right)$$

- R2 can be obtained with a tree-level-like computation with special Feynman-Rules.
- Evaluation of N(q) for different specific q's allows to algebraically obtain the coefficients a, b, c and d
- * Reconstruction of the \tilde{q} dependance of the numerator gives the **cut-constructible part R1** of the finite part of the virtual amplitude

Valentin Hirschi, 28 septembre 2011

$$= \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} \left[d(i_{0}i_{1}i_{2}i_{3}) + \tilde{d}(q;i_{0}i_{1}i_{2}i_{3}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1} < i_{2}}^{m-1} \left[c(i_{0}i_{1}i_{2}) + \tilde{c}(q;i_{0}i_{1}i_{2}) \right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}$$

$$+ \sum_{i_{0} < i_{1}}^{m-1} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] \prod_{i \neq i_{0}}^{m-1} D_{i}$$

$$+ \sum_{i_{0}}^{m-1} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] \prod_{i \neq i_{0}}^{m-1} D_{i}$$

$$+ \tilde{P}(q) \prod_{i}^{m-1} D_{i}$$

Finite part = R1 + R2

MADLOOP

FIGHTING EXCEPTIONAL PHASE SPACE POINTS

CutTools can asses the numerical stability of the computation of a loop by

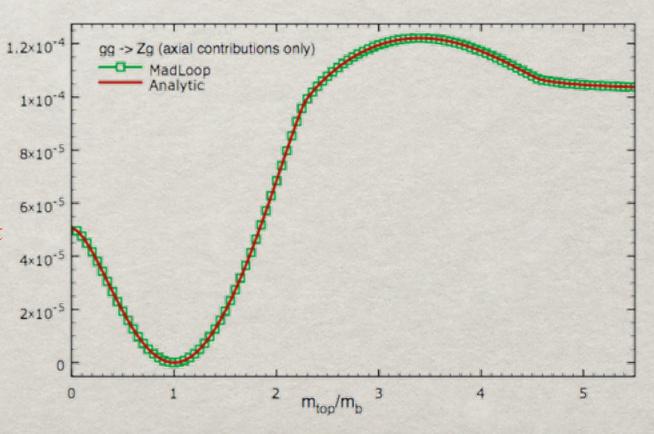
⇒ By sending $m_i^2 \rightarrow m_i^2 + M^2$, CT has an independent reconstruction of the numerator and can check if both match.

→ CT ask MadLoop to evaluate the integrand at a given loop momentum and check if the result is close enough to the one from the reconstructed integrand.

- * When an EPS occurs, MadLoop tries to cure it:
 - Check if Ward Identities hold at a satisfactory level
 - ⇒ Shift the PS point by rescaling momenta : $k_i^3 = (1 + \lambda_{\pm})k_i^3$
 - → Provide an estimate of the virtual for the original PS point with uncertainty: $v_{\lambda_{\pm}}^{FIN} = \frac{V_{\lambda_{\pm}}^{FIN}}{|\mathcal{A}_{\lambda=0}^{born}|^2}$ $c = \frac{1}{2} \left(v_{\lambda_{+}}^{FIN} + v_{\lambda_{-}}^{FIN} \right)$ $\Delta = \left| v_{\lambda_{+}}^{FIN} - v_{\lambda_{-}}^{FIN} \right|$ $V_{\lambda=0}^{FIN} = \left| \mathcal{A}_{\lambda=0}^{born} \right|^2 (c \pm \Delta)$
 - → If nothing works, then use the median of the results of the last 100 stable points

Valentin Hirschi, 28 septembre 2011

LOCAL CHECKS


YOU DON'T WANT THE EXHAUSTIVE LIST ...

$u\bar{u} ightarrow W^+W^-bar{b}$	MADLOOP	Ref. [33]		
a_0	2.338047209268890E-008	2.338047130649064E-008		
C-2	-2.493920703542680E-007	-2.493916939359002E-007		
<i>c</i> ₋₁	-4.885901939046758E-007	-4.885901774740355E-007		
<i>c</i> ₀	-2.775800623041098E-007	-2.775787767591390E-007		
$gg \rightarrow W^+W^-b\bar{b}$				
<i>a</i> ₀	1.549795815702494E-008	1.549794572435312E-008		
C=2	-2.686312747217639E-007	-2.686310592221201E-007		
c_{-1}	-6.078687041491385E-007	-6.078682316434646E-007		
co	-5.519004042667462E-007	-5.519004727276688E-007		

Ref. [33] : A. van Hameren *et al*.

 We believe the code is very robust - e.g., MadLoop helped spot mistakes in published loop computations (*Zjj*, W⁺W⁺jj)

- The numerics are pin-point on analytical data, even with several mass scales.
- Analytic computations from an independent implementation of the helicity amplitudes by J.J van der Bij *et al.*

RADCOR 2011

INTEGRATED RESULTS

- Running time: Two weeks
 on a 150+ node cluster
- * Proof of efficient EPS handling with $Zt\bar{t}$
- Successful cross-check against known results
- Large K-factors sometimes
- * No cuts on b, robust numerics with small P_T

	Process	μ	n _{II}	Cross section (pb)			
				LO	NLO		
a.1	$pp \rightarrow t\bar{t}$	m _{top}	5	123.76 ± 0.05	162.08 ± 0.12		
a.2	$pp \rightarrow tj$	mlop	5	34.78 ± 0.03	41.03 ± 0.07		
a.3	$pp \rightarrow tjj$	m_{iop}	5	11.851 ± 0.006	13.71 ± 0.02		
a.4	$pp \rightarrow t \overline{b} j$	$m_{top}/4$	4	25.62 ± 0.01	30.96 ± 0.06		
a.5	$pp \rightarrow t b j j$	$m_{top}/4$	4	8.195 ± 0.002	8.91 ± 0.01		
b.1	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e$	m_W	5	5072.5 ± 2.9	6146.2 ± 9.8		
b.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e j$	m_W	5	828.4 ± 0.8	1065.3 ± 1.8		
b.3	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e jj$	m_W	5	298.8 ± 0.4	300.3 ± 0.6		
b.4	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^-$	m_Z	5	1007.0 ± 0.1	1170.0 ± 2.4		
b.5	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- j$	m_Z	5	156.11 ± 0.03	203.0 ± 0.2		
b.6	$pp\!\rightarrow\!(\gamma^{\star}/Z\rightarrow)e^+e^-jj$	$m_{\overline{Z}}$	5	54.24 ± 0.02	56.69 ± 0.07		
c.1	$pp ightarrow (W^+ ightarrow) e^+ u_e b ar{b}$	$m_W + 2m_b$	4	11.557 ± 0.005	22.95 ± 0.07		
c.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e t \bar{t}$	$m_W + 2m_{top}$	5	0.009415 ± 0.000003	0.01159 ± 0.00001		
c.3	$pp \rightarrow (\gamma^*/Z \rightarrow) e^+ e^- b\bar{b}$	$m_Z + 2m_b$	4	9.459 ± 0.004	15.31 ± 0.03		
c.4	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-t\bar{t}$	$m_Z + 2m_{lop}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002		
c.5	$pp \rightarrow \gamma t \bar{t}$	$2m_{top}$	5	0.2906 ± 0.0001	0.4169 ± 0.0003		
d.1	$pp \rightarrow W^+W^-$	$2m_W$	4	29.976 ± 0.004	43.92 ± 0.03		
d.2	$pp \rightarrow W^+W^- j$	$2m_W$	4	11.613 ± 0.002	15.174 ± 0.008		
d.3	$pp \!\rightarrow\! W^+W^+ jj$	$2m_W$	4	0.07048 ± 0.00004	0.1377 ± 0.0005		
e.1	$pp \rightarrow HW^+$	$m_W + m_H$	5	0.3428 ± 0.0003	0.4455 ± 0.0003		
e.2	$pp \rightarrow HW^{+}j$	$m_W + m_H$	5	0.1223 ± 0.0001	0.1501 ± 0.0002		
e.3	$pp \rightarrow HZ$	$m_Z + m_H$	5	0.2781 ± 0.0001	0.3659 ± 0.0002		
e.4	$pp \rightarrow HZj$	$m_Z + m_H$	5	0.0988 ± 0.0001	0.1237 ± 0.0001		
e.5	$pp \rightarrow H t \bar{t}$	$m_{top} + m_H$	5	0.08896 ± 0.00001	0.09869 ± 0.00003		
e.6	$pp \rightarrow Hb\overline{b}$	$m_b + m_H$	4	0.16510 ± 0.00009	0.2099 ± 0.0006		
e.7	$pp \rightarrow Hjj$	m _H	5	1.104 ± 0.002	1.036 ± 0.002		

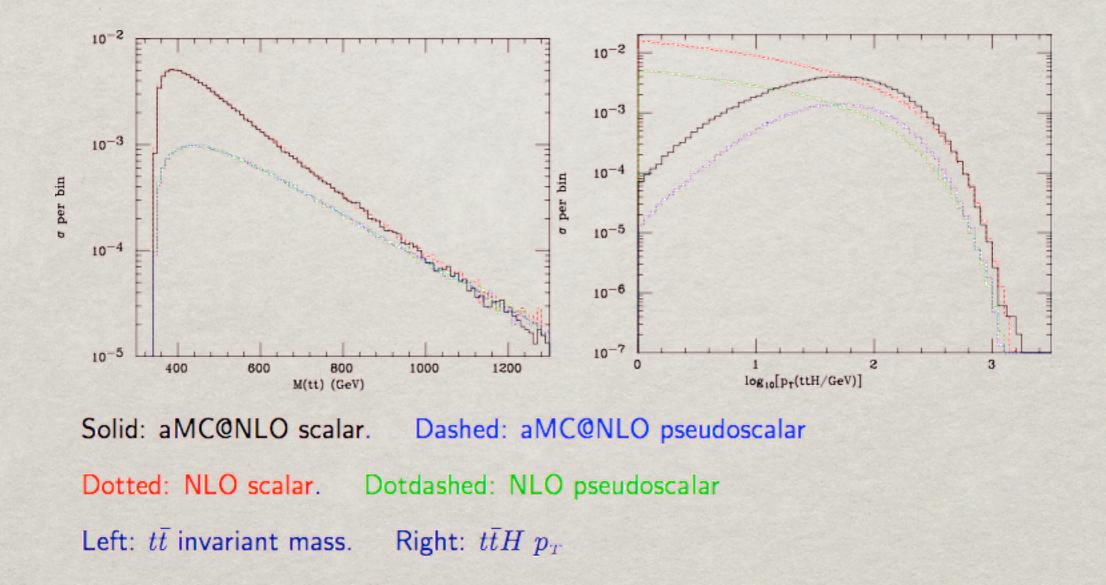
RADCOR 2011

NLO PARTON SHOWER MATCHING A LA MC@NLO

[Torrielli, RF & Frixione]

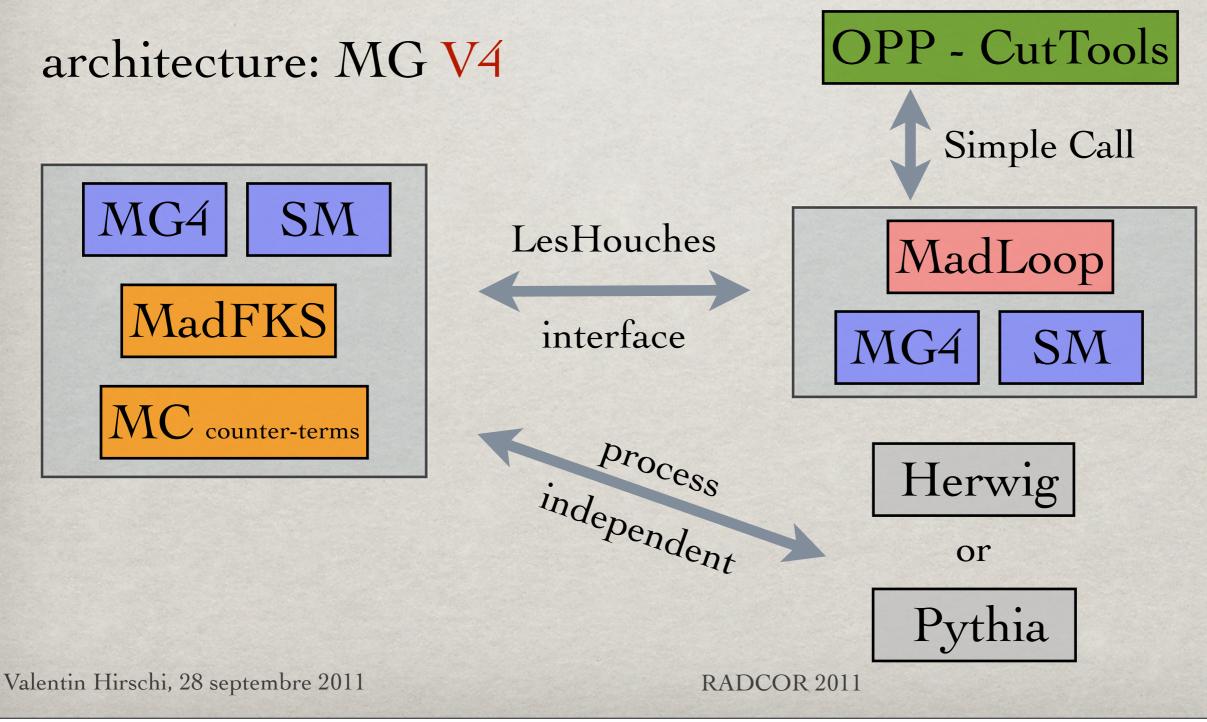
$$d\sigma_{\text{mconlo}}^{(\mathbb{H})} = d\phi_{n+1} \left(\mathcal{M}^{(r)}(\phi_{n+1}) - \mathcal{M}^{(\text{mc})}(\phi_{n+1}) \right)$$

 $d\sigma_{\text{MC@NLO}}^{(\mathbb{S})} = \int_{+1}^{\cdot} d\phi_{n+1} \Big(\mathcal{M}^{(b+v+rem)}(\phi_n) - \mathcal{M}^{(c.t.)}(\phi_{n+1}) + \mathcal{M}^{(\text{MC})}(\phi_{n+1}) \Big)$


- In black: pure NLO, fully tested in MadFKS
- In red: MC counter terms have been implemented for Herwig6, Pythia and Herwig++ (but only fully tested for Herwig)
 - FKS subtraction is based on a collinear picture, so are the MC counter terms: branching structure is for free
 - Automatic determination of color partners
 - * Works also when MC-ing over helicities

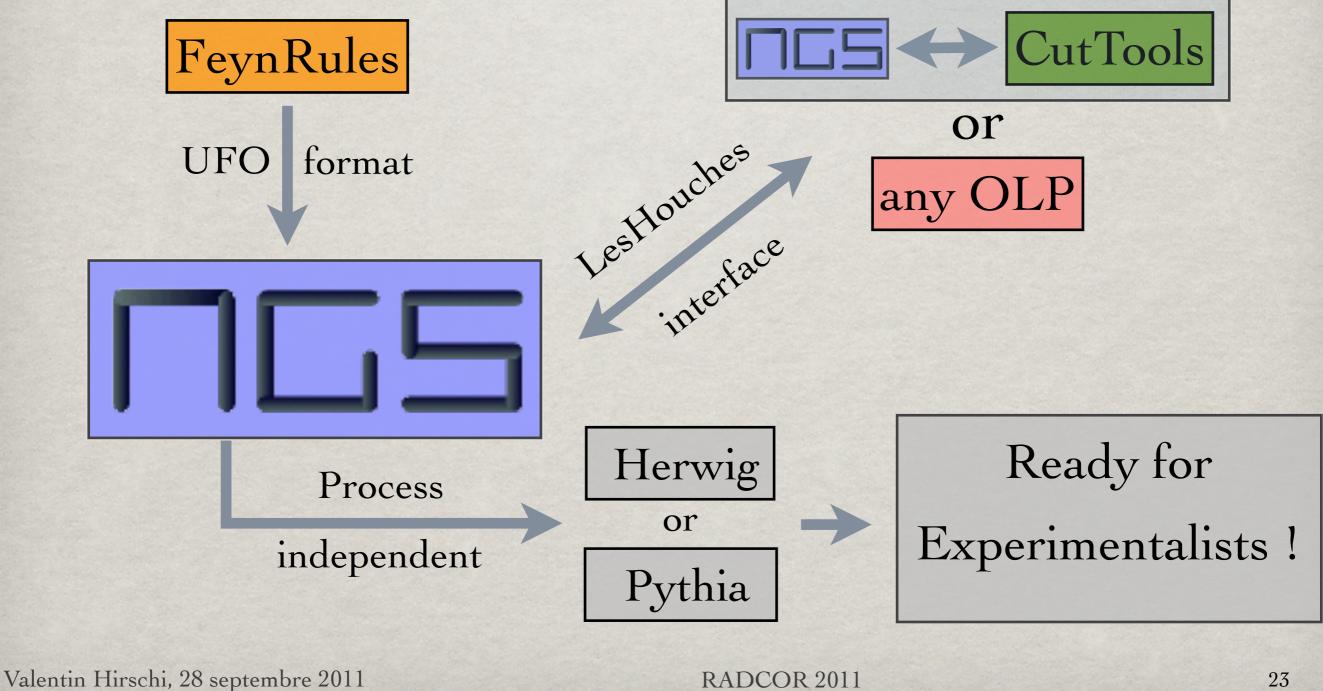
DISTRIBUTIONS

FULL MACHINERY AT WORK


* Case study of $[H/A]t\bar{t}$ with starring actors: (but also $[W/Z/\gamma]b\bar{b}$ and Wjj to come)

MGv4, CT, MadFKS, MadLoop and aMC@NLO interfaced to Herwig6 !

TOWARDS FULL AUTOMATION



Wednesday, September 28, 2011

AMC@NLO

FULL AUTOMATION

architecture: MG V5

Wednesday, September 28, 2011

MADLOOP V4 TO V5

GREAT IMPROVEMENTS

 \checkmark = non-optimal | \checkmark = done optimally | X = not done | X = not done YET

Task	MadLoop V4	MadLoop V5	
Generation of L-Cut diagrams, loop-basis selection	√-	√ ++	
Drawing of Loop diagrams	×	\checkmark	
Full SM implementation	1	×	
Counter-term (UV/R2) diagrams generation	√-	\checkmark	
Complex mass scheme and massive bosons in the loop	×	×	
Color Factor computation	√-	\checkmark	
File output	√	1	
4-gluon R2 computation	×	✓ (checks still needed)	
Virtual squared	√-	×	
Decay Chains	×	×	
EPS handling	√ (no mp)	×	
Sanity checks (Ward, E ⁻²)	\checkmark	×	
Mixed order perturbation (generation level)	×	\checkmark	
Automatic loop-model creation	×	×	
Symmetry factor automatic computation	×	×	

Valentin Hirschi, 19 September 2011

MadGraph Workshop 2011 @ Academia Belgica, Rome

LOOP-CUT DIAGRAMS

How faster are they generated?

Valentin Hirschi, 19 September 2011

LOOP-CUT DIAGRAMS

* How faster are they generated?

Process	Generation time ¹		Output size ²		Compilation time ³		Running time ⁴	
d d~ > u u~	8.750 s	5.378 s	200 Kb	268 Kb	0.931 s	2.996 s	0.0088 s	0.0094 s
d d~ > d d~ g	17.04 s	104.8 s	124 Kb	1.7 Mb	4.799 s	19.181 s	0.64 s	0.74 s
d d~ > d d~ u u~	22.50 s	2094 s	232 Kb	3.3 Mb	37.75 s	45.02 s	1.93 s	2.34 s
gg>gggg	2277 s	×	25 Mb	×	NOT COMPILING YET	×	NOT COMPILING YET	×

¹: Process generated in a massless $n_f=2$ QCD model with reduced particle content.

²: Of the equivalent matrix.f file. ⁴: Per PS points, computed over 1000 PS points.

³: In MG5, no smart line-breaks for the JAMP definition. MG5@NLO = \blacklozenge , MadLoop = \blacklozenge

Valentin Hirschi, 19 September 2011

LOOP-CUT DIAGRAMS

* How faster are they generated?

Process	Generation time ¹		Output size ²		Compilation time ³		Running time ⁴	
d d~ > u u~	8.750 s	5.378 s	200 Kb	268 Kb	0.931 s	2.996 s	0.0088 s	0.0094 s
d d~ > d d~ g	17.04 s	104.8 s	124 Kb	1.7 Mb	4.799 s	19.181 s	0.64 s	0.74 s
d d~ > d d~ u u~	22.50 s	2094 s	232 Kb	3.3 Mb	37.75 s	45.02 s	1.93 s	2.34 s
gg>gggg	2277 s	×	25 Mb	×	NOT COMPILING YET	×	NOT COMPILING YET	×

¹: Process generated in a massless $n_{f=2}$ QCD model with reduced particle content.

²: Of the equivalent matrix.f file. ⁴: Per PS points, computed over 1000 PS points.

³: In MG5, no smart line-breaks for the JAMP definition. MG5@NLO = \blacklozenge , MadLoop = \diamondsuit

* Why ?

- * The MG5 from_group algorithm is already much faster for tree-level diagrams.
- It is modified so that bubbles and tadpoles are not generated.
- When generating diagrams for a given L-Cut particle, all previously considered L-Cut particles are vetoed from being loop-lines.

Valentin Hirschi, 19 September 2011

FINAL WORD

FULL AUTOMATION IS AT THE DOOR

* aMC@NLO shows that an experimental analysis fully at NLO done without theory support is not science fiction any more !

First fully working loop model in MG5: Nf = 2 massless QCD

* Have a look at our website! <u>http://amcatnlo.cern.ch</u>/, where you will find :

NLO event samples to be showered by the user

On-line running of validated aMC@NLO code for specific proc. (soon)

On-line running of MadLoop for a single phase-space point check.

Valentin Hirschi, 28 septembre 2011

THANKS

Valentin Hirschi, 28 septembre 2011

RADCOR 2011

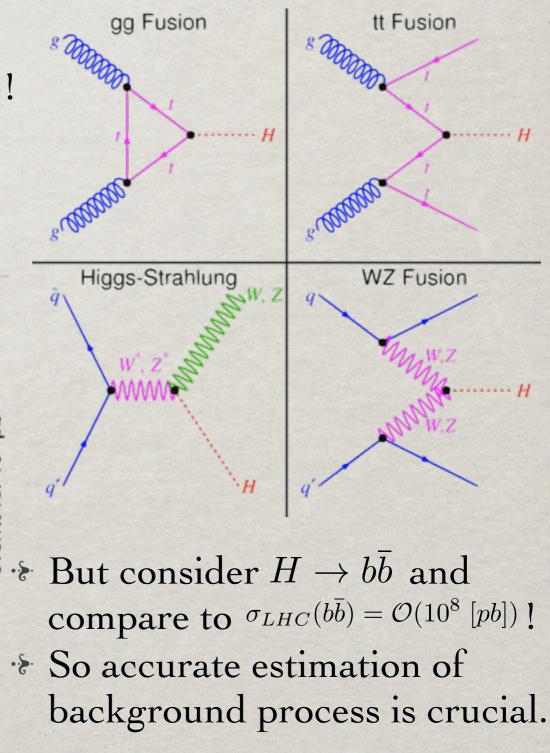
Wednesday, September 28, 2011

27

ADDITIONAL SLIDES

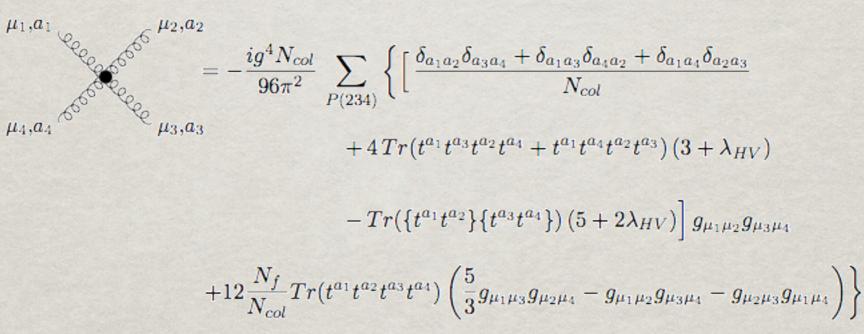
Valentin Hirschi, 28 septembre 2011


RADCOR 2011


Wednesday, September 28, 2011

28

HIGGS PRODUCTION


- Gluon fusion exclusively loop induce!
- Still very relevant compared to other production channels.

MADLOOP IN MG4 WHAT IT COULD NOT DO

✓ No four-gluon vertex at born level :

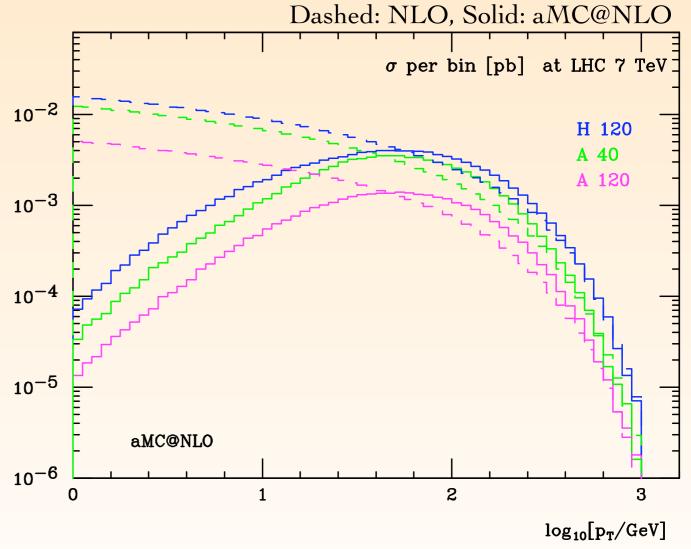
All born contribution must factorize the same power of all coupling orders.
 No finite-width effects of unstable massive particles also appearing in the loop.

SET-UP

Three scenarios

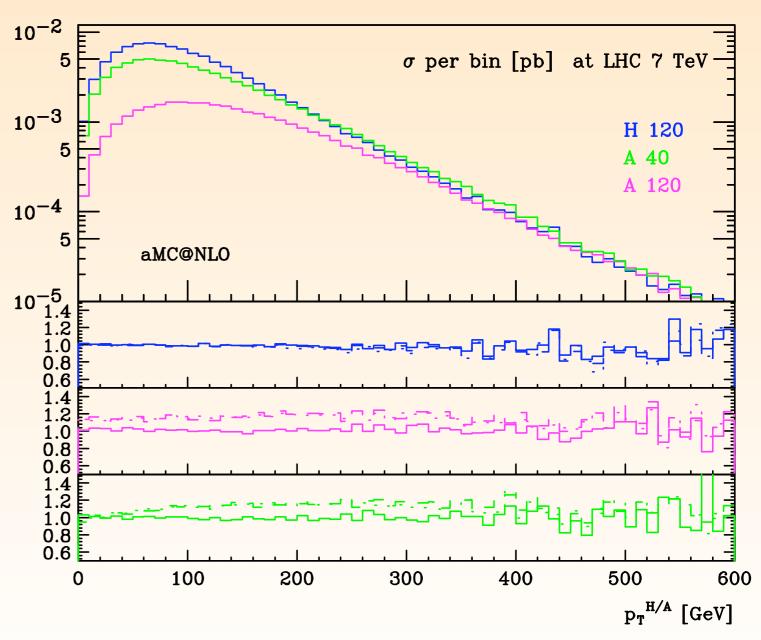
I) scalar Higgs H, with $m_H = 120 \text{ GeV}$

II) pseudo-scalar Higgs A, with $m_A = 120 \text{ GeV}$


III) pseudo-scalar Higgs A, with $m_A = 40 \text{ GeV}$

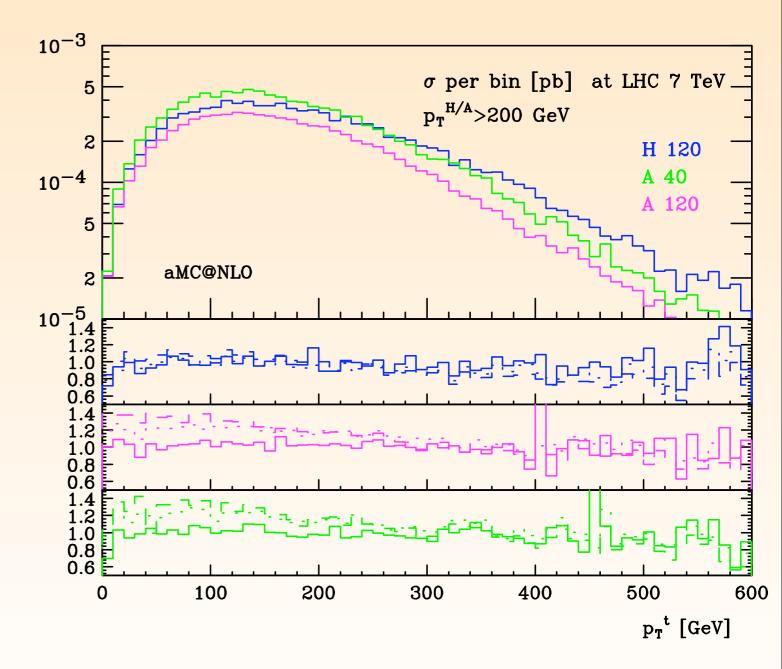
- ** SM-like Yukawa coupling, $y_t/\sqrt{2}=m_t/v$
- ** Renormalization and factorization scales $\mu_F = \mu_R = \left(m_T^t m_T^{\overline{t}} m_T^{H/A} \right)^{\frac{1}{3}}$ with $m_T = \sqrt{m^2 + p_T^2}$ and $m_t^{pole} = m_t^{\overline{MS}} = 172.5 \text{ GeV}$
- W Note: first time that pp \rightarrow ttA has been computed beyond LO

IMPACT OF THE SHOWER


- Three particle transverse momentum, p_T(H/A t tbar), is obviously sensitive to the impact of the parton shower
- * Infrared sensitive observable at the pure-NLO level for $p_T \rightarrow 0$
- * aMC@NLO displays the usual Sudakov suppression
- At large pT's the two descriptions coincide in shape and rate

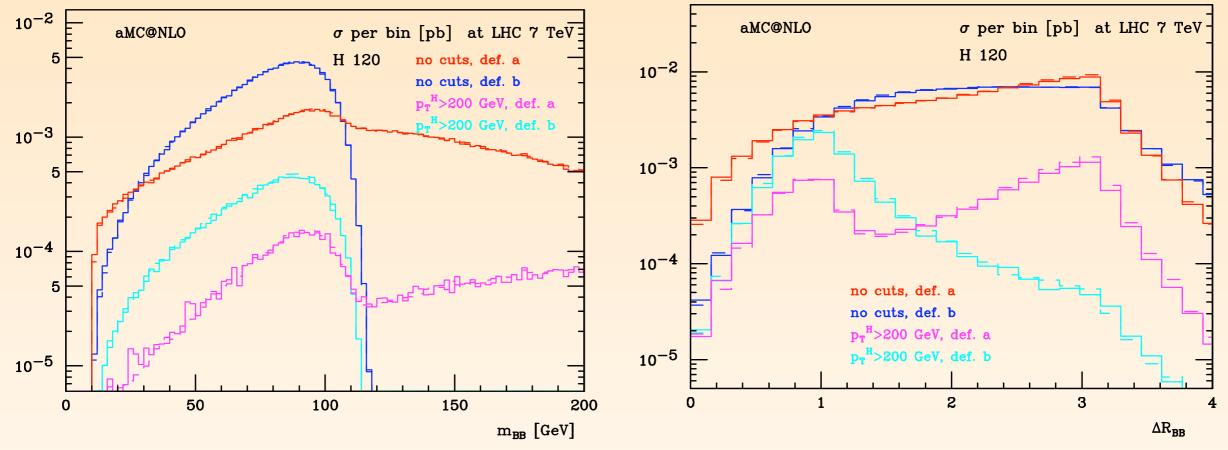
HIGGS PT

- Transverse momentum of the Higgs boson
- Lower panels show the ratio with LO (dashed), NLO (solid) and aMC@LO (dotted)
- Corrections are small and fairly constant
- At large p_T, scalar and pseudoscalar production coincide: boosted Higgs scenario
 [Butterworth et al., Plehn et al.] should work equally well for pseudoscalar Higgs



Rikkert Frederix, May 5, 2011

BOOSTED HIGGS


- Boosted Higgs: pT^{H/A} > 200 GeV
- Transverse momentum of the top quark
- Lower panels show the ratio with LO (dashed), NLO (solid) and aMC@LO (dotted)
- Corrections compared to (MC@)LO are significant and cannot be approximated by a constant K-factor

TTH DECAYED

Dashed: aMC@LO, Solid: aMC@NLO

- * Two definitions of the B hadron pair in these plots (assuming 100% btagging efficiency)
 - a) hardest pair in the event
 - b) decay products of the Higgs (uses MC truth)
- A cut on the pT of the Higgs improves the selection of B hadrons from the Higgs decay

Rikkert Frederix, May 5, 2011