W^+W^- production at LHC at NLO in extra dimension models

Anurag Tripathi

TIFR, Mumbai,

RADCOR 2011

September 30, 2011

イロン イヨン イヨン ・ ヨン

Plan of talk

- Hierarchy Problem
- ADD model
- W^+W^- production in ADD model
- Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The LHC Search

- Mechanism for spontaneous symmetry breaking The Higgs Boson
- Physics beyond the Standard Model
- New Physics
 - Super Symmetry
 - Large extra-dimensions
 - Something more exotic
- **Eventual Aim**
 - Discover the model
 - Determine the parameters of the model

(4回) (4回) (4回)

Gauge hierarchy problem

- $SU(2) \times U(1)$ broken by scalar Higgs
- W and Z boson masses $ightarrow \mu_H^2 \sim (100 \, \, {\it GeV})^2$
- ▶ Scalar (mass)² receives additive renormalization
- Bare mass² is of order $-\Lambda^2_{Plank}$ and cancel to μ^2_H
 - $\blacktriangleright \ \rightarrow \textit{fine-tuning problem}$
 - \blacktriangleright \rightarrow hierarchy problem

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Solution to Hierarchy Problem

- Supersymmetry
- Extra dimension models
 - ADD
 - RS
- etc.

ADD model

- Introduces extra spatial dimensions
 - World is D = 4 + d dimensional
 - d spatial dimensions are compact
- Brings D-dimensional Planck scale M_S down to EW scale
- Only one fundamental scale, EW scale
- Thereby solves hierarchy problem

N. Arkani-Hamed, S. Dimopoulos and G. Dvali,

Phys. Lett. B429, 263 (1998)

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali,

Phys. Lett. B436, 257 (1998)

・ 回 と ・ ヨ と ・ ヨ と

$$egin{array}{ll} F_{grav} &\sim rac{1}{r^2} & 3-spatial dimensions \ egin{array}{ll} (1) \ F_{grav} &\sim rac{1}{r^{d+2}} & d-extraspatial dimensions \ egin{array}{ll} (2) \end{array}$$

Deviation from square law !

$$F_{elec} \sim rac{1}{r^{d+2}} \qquad d-extradimensions \qquad (3)$$

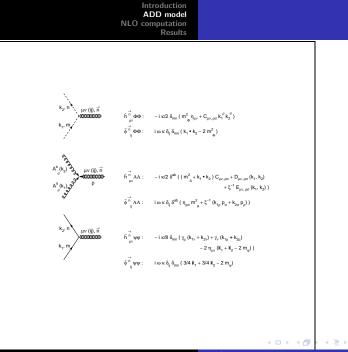
Deviation from squar law ! SM fields are localized on D-3 brane

イロト イポト イヨト イヨト

Effect of gravity on SM fields

- KK reduction
- ► For a given KK level
 - one spin-2 state
 - ▶ d − 1 spin-1 states
 - ► d(d − 1)/2 spin-0 states
 - all are mass degenerate
- Coupling of KK states to matter
 - through energy momentum tensor

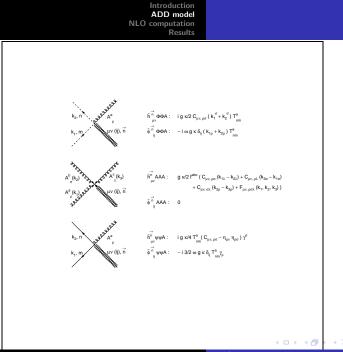
(1日) (日) (日)


• Interaction:
$$-\frac{k}{2}\int d^4x h^{\mu\nu} T_{\mu\nu}$$

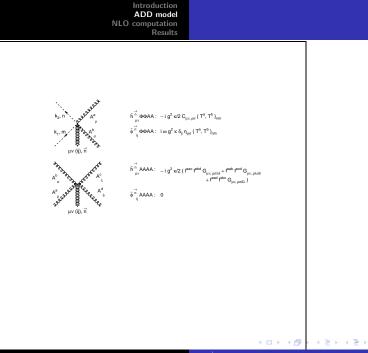
• where $\kappa = \sqrt{16\pi G_N}$
 G_N : Newton's constant in 4-dim
• $\kappa^2 R^d = 8\pi (4\pi)^{d/2} \Gamma(d/2) M_s^{-(d+2)}$

T. Han, J. D. Lykken and R. J. Zhang, Phys. Rev. D **59** (1999) 105006

G. F. Giudice, R. Rattazzi and J. D. Wells,


Nucl. Phys. B 544 (1999) 3

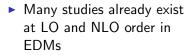
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



< ∃ >

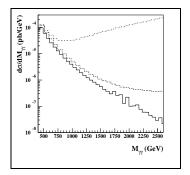
E 990

< ∃⇒


æ

- LHC could shed light on the existence of new physics
- There are many important discovery modes such as
 - ▶ di-lepton I⁺I[−]
 - di-photon $\gamma\gamma$
 - di-jets jj
 - di-bosons W^+W^- , ZZ etc.
- In the above processes a KK graviton can appear as a propagator and modify the predictions based on SM
- Enhancement/Reduction over SM prediction gives an indication to existence of New Physics

イロン イヨン イヨン ・ ヨン



diphoton at LO: Eboli et al

Phys.Rev.D61:094007,2000.

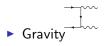
 $d = 3, M_s = 3, 6.7 TeV$

イロト イポト イヨト イヨト

 Karg, Kramer, Li and Zeppenfeld, NLO QCD corrections to graviton production at hadron colliders
 Phys. Rev. D 81, 094036 (2010)
 Karg et al., ZZ+jet and Graviton+jet at NLO QCD: recent applications using GOLEM methods arXiv:1001.2537 [hep-ph]
 Kumar, Mathews, Ravindran and Seth, Vector boson production in association with KK modes of the ADD model to NLO in QCD at LHC arXiv:1004.5519 [hep-ph]. J.Phys.G G38 (2011) 055001
 Kumar, Mathews, Ravindran, Seth, Graviton plus vector boson production to NLO in QCD at the LHC. PRD NPB847 (2011) 54-92

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Cross-section


$$\sigma = \int \int dx_1 dx_2 \ f_{a/P}(x_1, \mu_F^2) f_{b/P}(x_2, \mu_F^2) \ \hat{\sigma}_{a,b}(x_1, x_2, \mu_F^2, \mu_R^2)$$

- ▶ pdf's f_{a/P} not predicted by PQCD but evolution determined by the DGLAP eqn.
- μ_F not a parameter of QCD.
- Successive higher order calculations reduce sensitivity to μ_F and μ_R.

イロン イ部 とくほど イヨン 二日

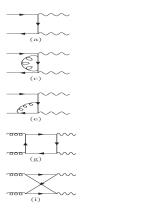
Leading order diagrams

SM

$$D(s) = \sum_{\vec{n}} \frac{i}{s - m_{\vec{n}}^2 + i\varepsilon}$$

- Gluon initiated Feynman diagrams appear at LO.
- \implies Cannot borrow SM K- factors

イロト イポト イヨト イヨト

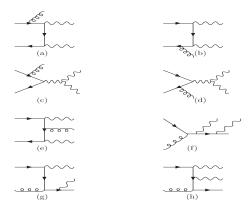

э

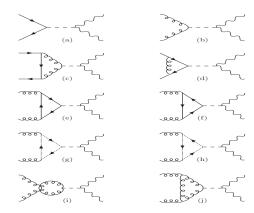
- ► We will show that $d\sigma/dM_{W^+W^-}$ varies by 18.8% as the factorization scale is varied between Q/2 and 2Q
- A next-to-leading order (NLO) calculation in QCD is needed to reduce this theoretical uncertainty.
- We will report at the end a significant reduction in uncertainity
- N. Agarwal, V. Ravindran, V. K. Tiwari and AT,

Nucl. Phys. B 830 (2010) 248

イロン イボン イヨン イヨン 三日

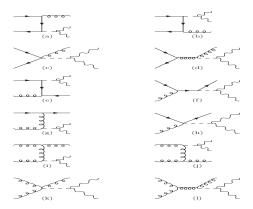
SM virtual





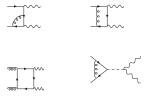
SM real

<ロ> (四) (四) (注) (注) (注) (三)


BSM virtual

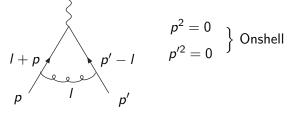
・ロン ・四と ・ヨン ・ヨン

э


BSM real

э

Parts of NLO computation


- Loop diagrams
- Real emission diagrams

- No Ultra-Violet divergences
- Integral over loop momentum gives infrared divergences
- ► Divergences appear as poles in ϵ in dimensional regularization ($n = 4 + \epsilon$)

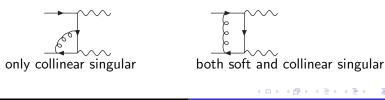
- IR singularities in Feynman diagrams
- Example: Form factor

$$\mathcal{I} = \int d^4 l \; \frac{1}{l^2} \frac{1}{(p+l)^2} \frac{1}{(p'-l)^2} \tag{4}$$

- ▶ When all the 3 propagators are onshell I diverges logarithmically
- This happens when $I \rightarrow 0$
- This is called soft singularity

< 🗇 🕨

→ Ξ →



- Propagators can go onshell in collinear configurations as well
- This gives collinear singularities

In the fig. offshell propagator has been contracted to a point

• In the present case (W^+W^-) we have (sample diagrams)

the virtual level cross-section is of the following form

$$\overline{|M^{V}|^{2}}_{q\overline{q},sm} = a_{s}(\mu_{R}^{2})f(\epsilon,\mu_{R}^{2},s)C_{F} \left[\Upsilon(\epsilon) \overline{|M^{(0)}|^{2}}_{q\overline{q},sm} + \overline{|M^{V}|^{2}}_{q\overline{q},sm}^{fin} \right],$$
$$\overline{|M^{V}|^{2}}_{q\overline{q},gr} = a_{s}(\mu_{R}^{2})f(\epsilon,\mu_{R}^{2},s)C_{F} \left[\Upsilon(\epsilon) \overline{|M^{(0)}|^{2}}_{q\overline{q},gr} + k\overline{|M^{(0)}|^{2}}_{q\overline{q},gr} \right],$$

where

$$\Upsilon(\epsilon) = -\frac{16}{\epsilon^2} + \frac{12}{\epsilon}, \qquad f(\epsilon, \mu_R^2, s) = \frac{\Gamma\left(1 + \frac{\epsilon}{2}\right)}{\Gamma(1 + \epsilon)} \left(\frac{s}{4\pi\mu_R^2}\right)^{\frac{\epsilon}{2}}$$

- overlap of soft and collinear singularities appear as double poles ¹/_{c²}
- Note that although the diagrams are very different in SM and BSM the singularity structure is same

 Real emission also gives soft and collinear singularities upon phase space integration.

- The double poles cancel between real and virtual contributions
- The uncanceled collinear singularities are removed by mass factorization
- This introduces the factorization scale, μ_F

御 と く ヨ と く ヨ と …

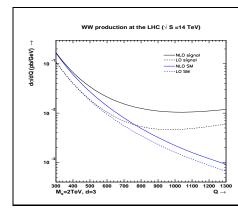
Checks:

- Gauge invariance
- Check on the correct implementatin of phase space slicing method.

 SM Matrix elements and total cross-section compared with existing literature.

J.Ohnemus, Order- α_s calculation of hadronic W^+W^- production, PRD 44, 1403 (1991)

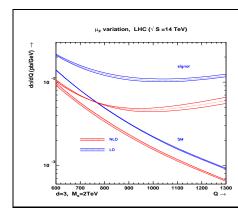
Campbell and Ellis, PRD 60, 113006 (1999)


イロン イ部 とくほど イヨン 二日

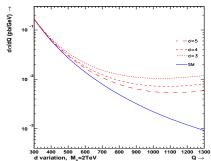
- The finite pieces, after cancellation/ mass factorization of poles, are calculated using MC integration
- We use CTEQ6L and CTEQ6M pdf's
- A cut on rapidity of 2.5 Z bosons is placed.
- We obtain invariant mass and rapidity distributions.

イロト イポト イヨト イヨト

Results: K factor

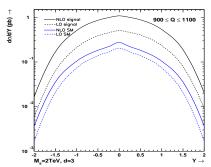

- ► Invariant mass distribution: d = 3, $M_s = 2 \ TeV$. we observe that the K factors (defined as $K = d\sigma^{NLO}/d\sigma^{LO}$) are large.
- For the signal the K factor varies beween 1.55 to 1.98 for Q between 300 and 1300 Gev.

イロン イ部 とくほど イヨン 二日


Results: μ_F variation

- µ_f dependence
 significantly reduced.
- At Q = 1300 GeV: $Q/2 < \mu_F < 2Q \rightarrow$ 18.8% at LO for the signal, NLO \rightarrow 7.6%.

イロン イ部 とくほど イヨン 二日


Results: variation of no. of extra dimensions

WW production at the LHC (\sqrt{S} =14 TeV)

イロト イポト イヨト イヨト

Rapidity distributinon

LHC (√ S =14 TeV)

◆□ > ◆□ > ◆臣 > ◆臣 > ○

THANK YOU !

Anurag Tripathi W^+W^- production at LHC at NLO in extra dimension mode

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Additional slides

Anurag Tripathi W^+W^- production at LHC at NLO in extra dimension mode

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- D: 4 + d dimensions
 - ► compactified, scale *R*
- ► *M_s* : *D*-dimensional Planck scale
- ► *M_{Pl}* : Effective Planck scale in 4-dimensions

$$M_{Pl}^2 = M_s^{d+2} R^d \tag{5}$$

$$M_{Pl} \sim 10^{18}~GeV$$
 $M_S \sim 1\,TeV$ (6)

$$d = 1 \to R \sim 10^{12} cm \tag{7}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)