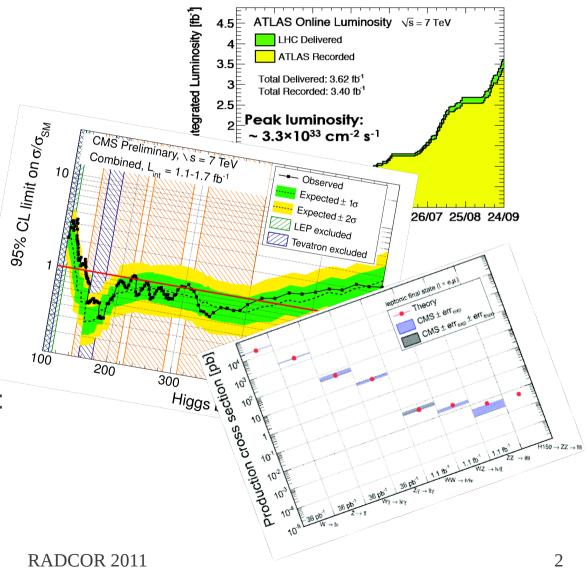


Precise inclusive Higgs predictions using iHixs

Stephan Buehler, ETH Zurich


in collaboration with C. Anastasiou, F. Herzog, A. Lazopoulos

10th international Symposium on radiative corrections, Mamallapuram, India

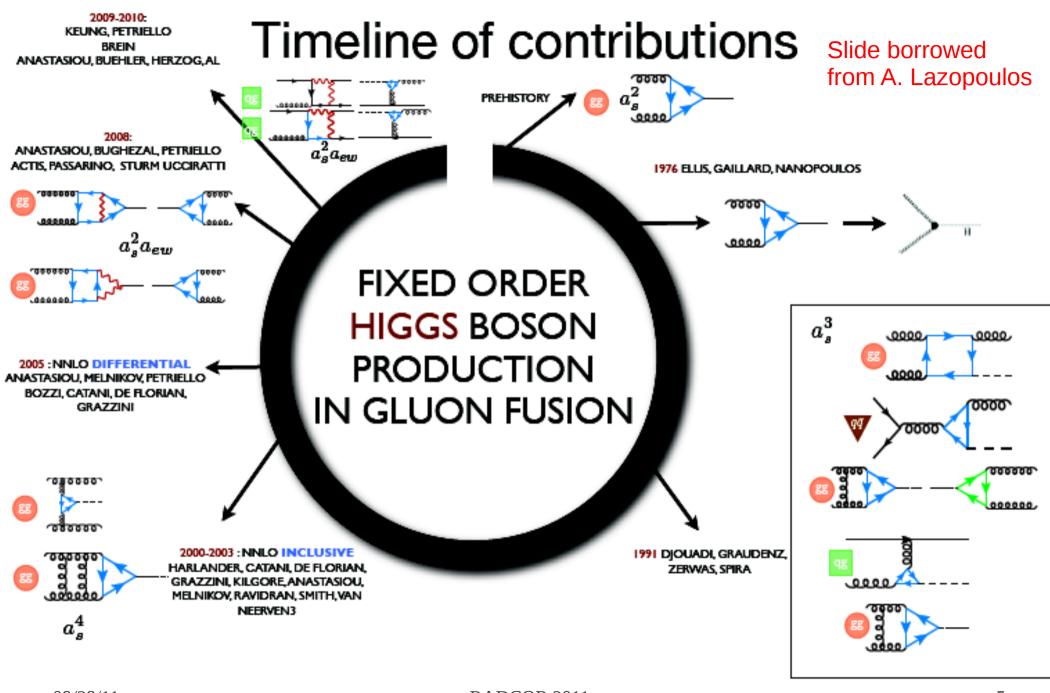
Motivation

- The LHC is operating impressively.
- Statistical uncertainties are improving and become comparable to theoretical uncertainties at the pb-scale.
- We need the best theory predictions we can get!
- → We tried to write to most complete code for inclusive single Higgs boson production:

iHixs

The iHixs code

• iHixs = "inclusive Higgs cross sections"


- Presented in arXiv:1107.0683
- Downloadable at

http://www.phys.ethz.ch/~pheno/ihixs/

Features of the iHixs code

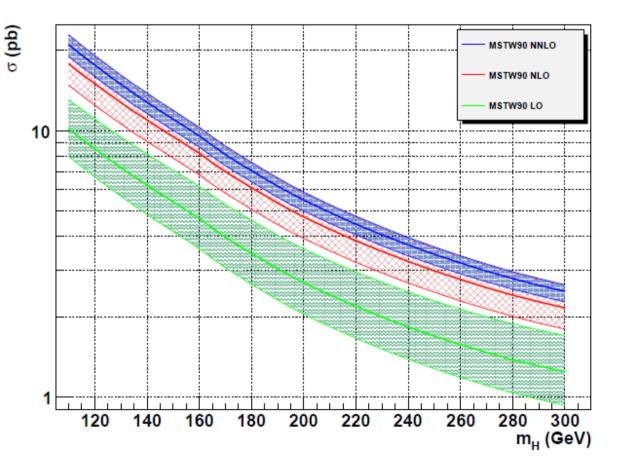
Gluon fusion

- Bottom-quark fusion
- Higgs width effects
- Supports all NNLO PDF sets and calculates PDF uncertainties
- Extensible beyond SM

09/28/11

RADCOR 2011

Gluon fusion in iHixs


- Main Higgs production channel at the LHC, main feature of iHixs
- Components:
 - LO contribution: heavy quark triangle.
 - NLO QCD corrections with exact mass dependence.
 - NNLO QCD corrections using HQET.

Including massive internal quarks

- Two-loop electroweak corrections.
- One-loop electroweak contributions to $q\bar{q} \rightarrow gh$ and $qg \rightarrow qh$.
- Mixed QCD-electroweak corrections with light quarks.
- Almost all re-derived and checked against existing codes / limiting cases.

Gluon fusion in iHixs

- Decay options:
 bb, WW, ZZ, γγ.
- Plot includes all known fixed-order corrections.
- Scale variations: $\mu/2 < m_H/2 < 2 \mu$ with $\mu_R = \mu_F$
- Scales can be chosen separately.

Features of the iHixs code

- Gluon fusion
- Bottom-quark fusion
- Higgs width effects
- Supports all NNLO PDF sets and calculates PDF uncertainties
- Extensible beyond SM

Bottom-quark fusion in iHixs

b

ħ

– H

- Contributes to the same final state (single Higgs) in 5FS.
- Can be strongly enhanced in BSM scenarios (e.g. 2HDM)
 → Included in iHixs
- Components:
 - LO process and NLO QCD corrections. [Dicus, Willenbrock; Dicus, Stelzer, Sullivan, Willenbrock]

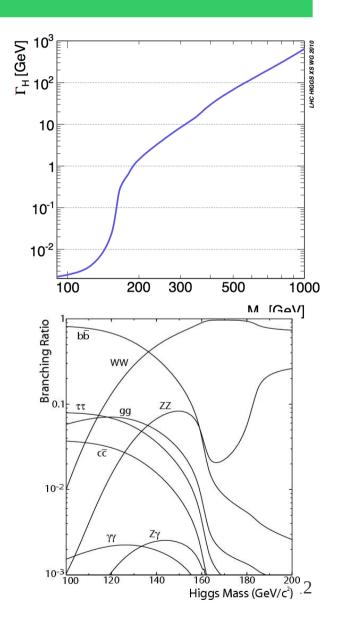
NNLO QCD corrections. [Harlander, Kilgore]

- Matrix elements taken from arXiv:hep-ph/0304035v2.
- Re-derived factorisation- and renormalisation-scale dependence and checked vs. bbh@nnlo (Harlander)

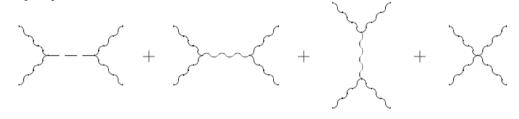
Features of the iHixs code

- Gluon fusion
- Bottom-quark fusion
- Higgs width effects
- Supports all NNLO PDF sets and calculates PDF uncertainties
- Extensible beyond SM

• Most experimental and theoretical studies use the Narrow-Width-Approximation (NWA):

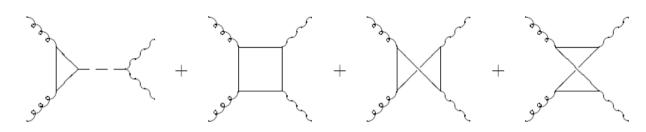

$$\hat{\sigma}_{ij \to \{H_{final}\}} \left(\hat{s}, \mu_f \right) = \hat{\sigma}_{ij \to H} \left(\hat{s}, m_H, \mu_f \right) \times BR_{H \to \{H_{final}\}} (Q = m_H)$$

• In iHixs, we implemented the actual integration over the Breit-Wigner distribution of the Higgs virtuality:


$$\hat{\sigma}_{ij \to \{H_{final}\}}\left(\hat{s}, \mu_{f}\right) = \int_{Q_{a}^{2}}^{Q_{b}^{2}} dQ^{2} \frac{Q\Gamma_{H}(Q)}{\pi} \frac{\hat{\sigma}_{ij \to H}(\hat{s}, Q^{2}, \mu_{f}) \operatorname{Br}_{H \to \{H_{final}\}}(Q)}{(Q^{2} - m_{H}^{2})^{2} + m_{H}^{2}\Gamma_{H}^{2}(m_{H})}$$

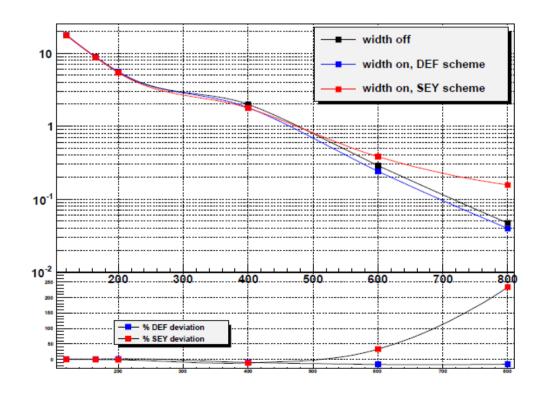
- Note that this involves the Higgs width and Branching ratios at any given Q in the integration range.
 - \rightarrow iHixs comes with a grid file containing this information for the SM.

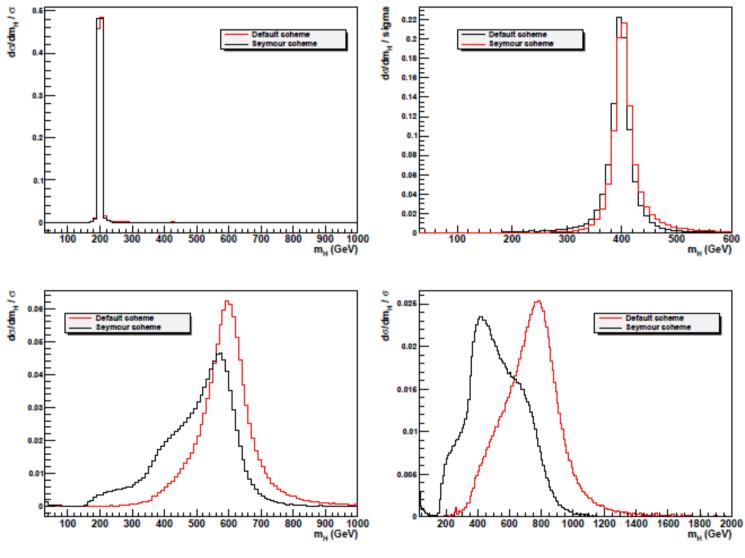
- The difference between the NWA and the BW-integration are of $O(\Gamma/m_{\rm H})$ for the inclusive cross section, which reaches the percent level at $m_{\rm H} \approx 150$ GeV.
- $m_{\rm H}$ >450 GeV: Higgs width exceeds 10% of its mass. \rightarrow BW loses validity, Signal-Background interference becomes important.



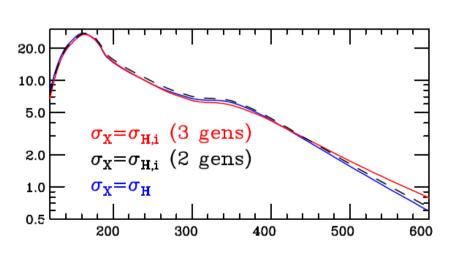
 "Fudge" way for SB-interference in VV final states: Employ the improved s-channel approximation (ISA) presented by M. Seymour in hep-ph/9505211.

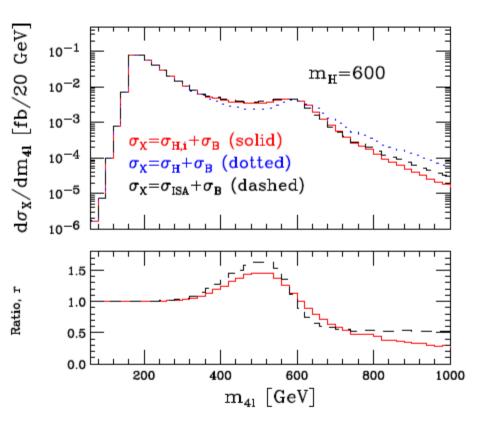
ISA resums the VV → VV 4-point function. The result interpolates between the BW-behaviour around the m_H resonance and unitarises the VV scattering in high-energy limit. It can be fully absorbed into a modified Higgs propagator:


$$\frac{i}{\hat{s} - m_H^2} \to \frac{i\frac{m_H^2}{\hat{s}}}{\hat{s} - m_H^2 + i\Gamma_H(m_H^2)\frac{\hat{s}}{m_H}}$$



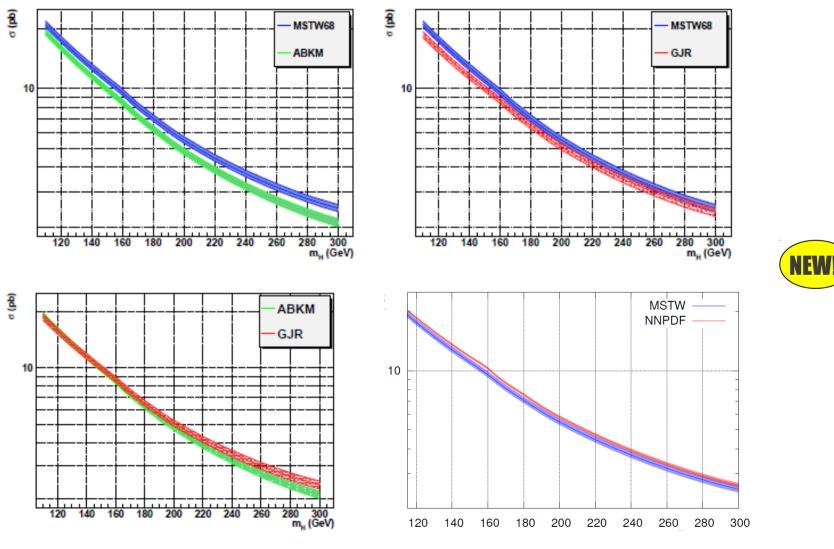
• $gg \rightarrow VV$ has the same structure as the $VV \rightarrow VV$ scattering.


 \rightarrow The same approximation is applicable for the gluon fusion process.


- Width options in iHixs:
 - NWA
 - BW-integration
 - BW-integration with ISA

 arXiv:1107.5569 (Campbell, Ellis, Williams) compare their full calculation of the SBinterference with the ISA and find some agreement, esp. for high Higgs masses.

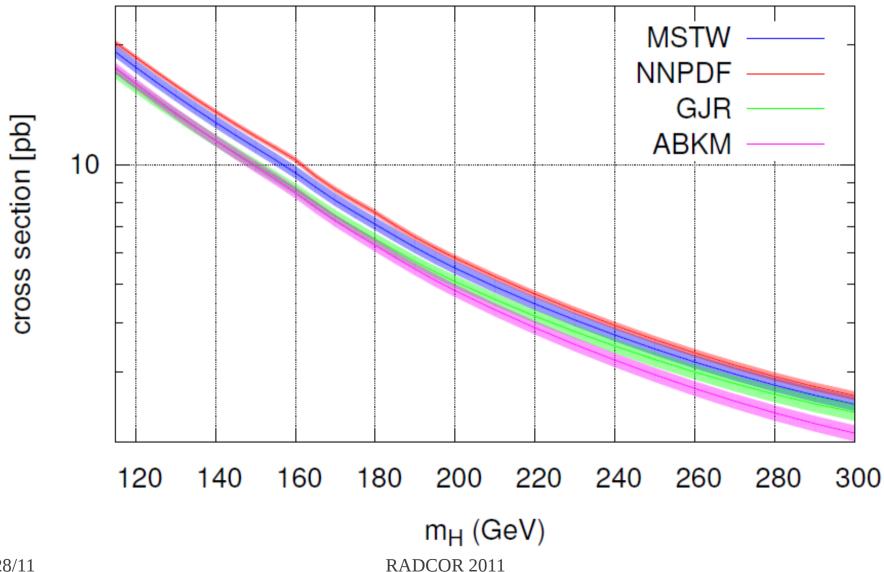
See also Talk by Nikolas Kauer!

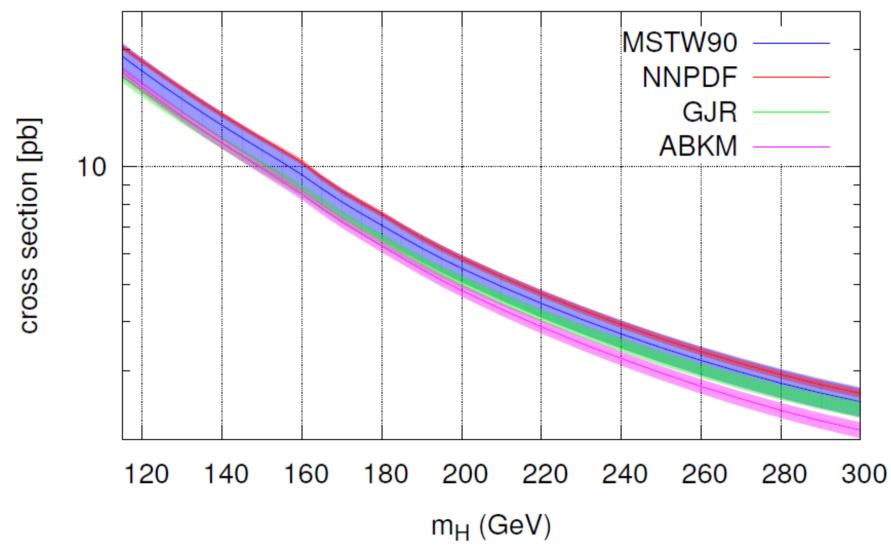

Features of the iHixs code

- Gluon fusion
- Bottom-quark fusion
- Higgs width effects
- Supports all NNLO PDF sets and calculates PDF uncertainties
- Extensible beyond SM

PDF comparison

- iHixs supports all parton distribution providers that have sets using NNLO DGLAP evolution: MSTW2008, ABKM09, JR09, NNPDF21
- Interfaced through the LHAPDF library [Whalley]. The value of α_s used in the run is fixed by the providers choice.
- PDF+ α_s uncertainties are automatically calculated according to the providers prescription if the option is chosen.


PDF comparison: 68%-CL uncertainty bands

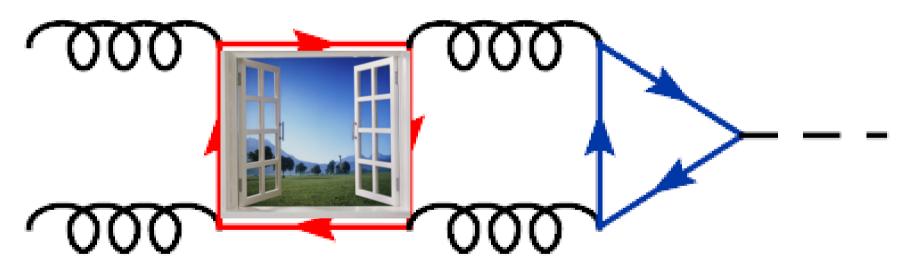

09/28/11

RADCOR 2011

PDF comparison: 68%-CL uncertainty bands

PDF comparison: 90%-CL uncertainty band

RADCOR 2011


PDF comparison: 68%-CL uncertainty bands

- Uncertainty bands generally do not overlap → Prescriptions seem to underestimate the actual PDF uncertainty.
- The differences may stem from the choice of central α_{s} , since gluon fusion is very sensitive to that value and the inclusion of Tevatron jet-data in the fit. See 1105.5349 and 1106.5789.
- Using MSTW2008-90cl instead brings most bands to overlap with the MSTW one.
- Note that the NNPDF band is so narrow because it includes only the central α_s set, as the other sets are not available in the LHAPDF interface yet.

Features of the iHixs code

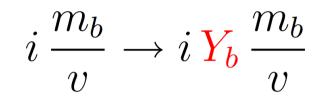
- Gluon fusion
- Bottom-quark fusion
- Higgs width effects
- Supports all NNLO PDF sets and calculates PDF uncertainties
- Extensible beyond SM

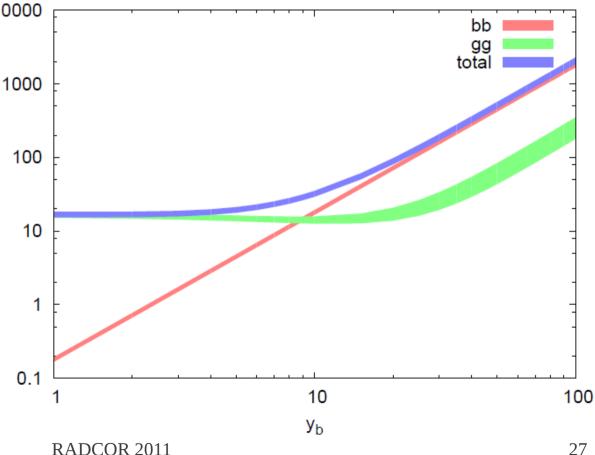
• Gluon fusion cross section sensitive to heavy particles in loops.

A window to new physics!

- Consistent treatment of arbitrary number of heavy quarks through NNLO.
 [Anastasiou, Boughezal, Furlan]
- Arbitrary Yukawa coupling strength for all heavy quarks. [Furlan]
- Arbitrary coupling strength for Higgs interactions with electroweak gauge bosons.
- Possibility to provide own grid file containing Higgs width and branching ratio information.
- Possibility to add completely arbitrary Wilson coefficient for the $H tr (G_{\mu\nu}G^{\mu\nu})$ operator. (with little effort)

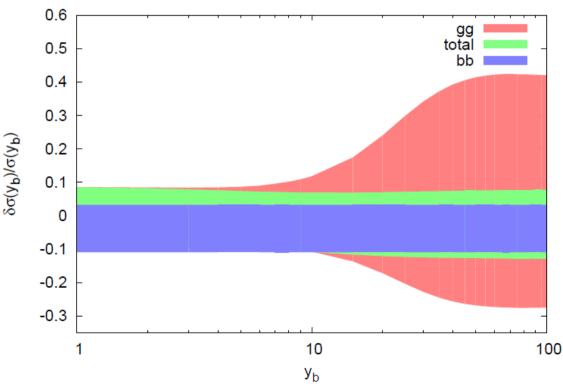
• Example 1: arXiv:1103.3645 (using a preliminary version of iHixs)


Higgs production cross-section in a Standard Model with four generations at the LHC


Charalampos Anastasiou¹, Stephan Buehler¹, Elisabetta Furlan², Franz Herzog¹, Achilleas Lazopoulos¹

- Considered two different SM4 scenarios.
- Provided the most precise Higgs production cross section estimate including PDF- and scale-uncertainties:

$\sigma[pb]$	ABKM09	GJR	$MSTW08 _{68\%CL}$	$MSTW08 _{90\%CL}$					
$m_h = 110{\rm GeV}$	$167.59 \pm 3.0\%_{\rm pdf}$	$162.78 \pm 3.6\%_{\rm pdf}$	$183.41 \begin{array}{c} +4.0 \\ -3.1 \end{array} \%_{\rm pdf}$	$^{+7.9}_{-7.6}$ $\%_{\rm pdf}$					
$m_h = 165{\rm GeV}$	$66.130 \pm 3.3\%_{\rm pdf}$	$67.713 \pm 3.3\%_{\rm pdf}$	74.221 $^{+4.0}_{-3.3}$ % _{pdf}	$^{+7.9}_{-7.7}$ $\%_{ m pdf}$					
$m_h=200{\rm GeV}$	$40.634 \pm 3.6\%_{\rm pdf}$	$42.867 \pm 3.5\%_{\rm pdf}$	$\begin{array}{c} 46.306 \\ -3.4 \end{array}^{+4.1} \%_{\rm pdf}$	$^{+8.1}_{-7.9}$ % _{pdf}					
$m_h = 300 \mathrm{GeV}$	$14.768 \pm 4.7\%_{\rm pdf}$	$16.786 \pm 5.0\%_{\rm pdf}$	$17.541 \begin{array}{c} +4.3 \\ -3.9 \end{array} \%_{\rm pdf}$	$^{+8.8}_{-8.6}$ $\%_{ m pdf}$					


- **Example 2:** Total single Higgs cross section in a generic model with enhanced Bottom Yukawa coupling: 10000
- Mimics large-tan(β) MSSM, general 2HDM, or other σ(y_b)[pb] BSM models.
 - bb channel surpasses gluon fusion for $Y_{\rm b} > 10$.

- Example 2: Total single Higgs cross section in a generic model with enhanced Bottom Yukawa coupling:
- Gluon fusion: Scale uncertainty grows dramatically for large Values of Y_b.
- Reason: We "fall back" to NLO accuracy, since the b-quark is absent from the NNLO Wilson coefficient.

$$i \, \frac{m_b}{v} \to i \, Y_b \, \frac{m_b}{v}$$

RADCOR 2011

Summary

- iHixs provides the most precise numbers for inclusive Higgs production cross sections in the SM through gluon fusion that are available.
- Estimating all theoretical uncertainties is made easy by the automation of the pdf+ α_s error for all NNLO pdf providers.
- Higgs width effects are built in with the choice of two different schemes.
- It is flexible enough to be used for BSM predictions.
- Please download and try it out, feedback is always appreciated! http://www.phys.ethz.ch/~pheno/ihixs/

Thank you for your attention, enjoy the excursion to Kanchipuram!

Backup

 $\left. \right\} - \left\{ + \right\} + \left\{ + \right\} + \left\{ + \right\} + \left\{ - + \right\} + \left\{ + \right\} + \left\{ - + \right\} + \left\{$

- Some more details on the derivation of the ISA:
 - Goldstone equivalence theorem is used:

• The $VV \rightarrow VV$ amplitude looks like

$$i\mathcal{A} = \frac{-ig^2}{4m_W^2} \left\{ \frac{s^2}{s - m_H^2} - s \right\}$$

 The resummed 4-point function is obtained by summing up all n-fold insertions of this amplitude:

$$i\bar{\mathcal{A}} = \sum_{n=0}^{\infty} \left(\frac{3}{2}\frac{1}{16\pi}\int_{-s}^{0}\frac{dt}{s}i\mathcal{A}\right)^{n}i\mathcal{A}$$

- Some more details on the derivation of the ISA:
 - $i\overline{A}$ is found to be $\frac{-ig^2m_H^2}{4m_W^2}\frac{s}{s-m_H^2+i\Gamma_Hs/m_H}$
 - So when one replaces the Higgs propagator according to $\frac{i}{\hat{s} - m_H^2} \rightarrow \frac{i\frac{m_H^2}{\hat{s}}}{\hat{s} - m_H^2 + i\Gamma_H(m_H^2)\frac{\hat{s}}{m_H}}$

one can just keep the diagram with the Higgs in the s-channel to get the full amplitude.

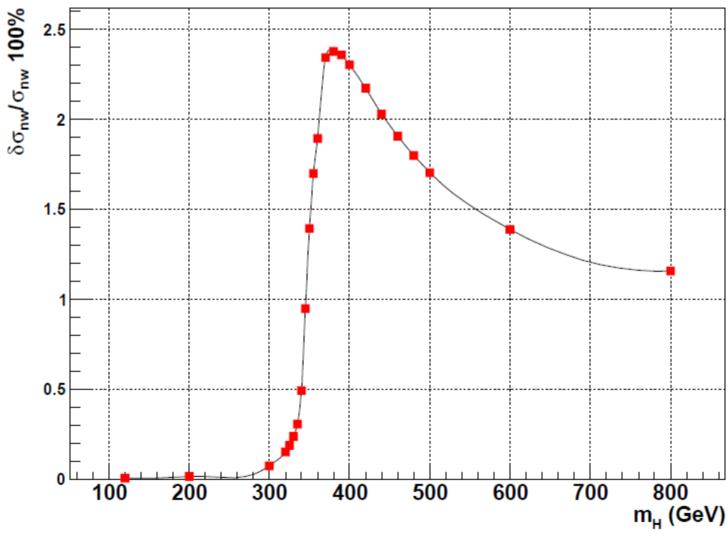
• The gluon fusion amplitude is then found to be very similar:

$$\begin{bmatrix} a_{0} \\ b_{0} \\ b_{0} \end{bmatrix} - - \begin{pmatrix} a_{0} \\ b_{0} \\ b_{0} \\ b_{0} \end{bmatrix} + \begin{bmatrix} a_{0} \\ b_{0} \\ b_{0} \\ b_{0} \end{bmatrix} + \begin{bmatrix} a_{0} \\ b_{0} \\ b_{0} \\ b_{0} \\ b_{0} \end{bmatrix} = \frac{-ig^{2}g_{s}^{2}}{m_{W}^{2}} \left\{ \frac{s^{2}}{s - m_{H}^{2}} - s \right\} I(s)$$

with $I(s) = \frac{1}{2} \frac{m_q^2}{s} \left[\left(\log \frac{s}{m_q^2} - i\pi \right)^2 - 4 \right] \rightarrow \text{The same prescription is applied}_{RADCOR 2011}$

- Furthermore, iHixs users can choose an invariant mass window which the produced Higgs boson must lie in. Final states of higher or lower virtuality will not be contributing
- Motivation behind this: For a relatively broad Higgs, experimentalists might miss out on a non-negligible fraction of the signal by applying too stringent cuts on the invariant mass of the final state particles, thus overestimating the NNLO K-factor.
- While in the SM, this only is relevant in the highmass region, the effect can show up earlier in BSM models where the Higgs width becomes broad earlier.

m_H	Γ_H	δQ	K_{NNLO}^{DEF}	$K_{NNLO}^{DEF;w}$	K_{NNLO}^{SEY}	$K_{NNLO}^{SEY;w}$	K_{NNLO}^{ZWA}
120	0.0038	5	2.05	2.05	2.05	2.05	2.05
165	0.2432	5	2.02	2.03	2.016	2.04	2.033
200	1.43	8	2.00	2.03	2.023	2.03	2.027
400	29.5	34	1.90	1.94	1.94	1.95	1.95
600	122	110	1.66	1.66	1.87	1.72	1.64
800	301	300	1.63	1.59	2.07	1.77	1.54


Top width effects

• iHixs also allows for the quarks in the gluon fusion loops to have nonzero width. If the user chooses this option, the squared quark mass will be replaced by:

$$m_q^2 \to m_q \left(m_q - i \Gamma_q \right)$$

- This is absolutely straightforward, thanks to the CHAPLIN library [SB, Duhr], that allows for the evaluation of harmonic polylogarithms up to weight 4 for any complex argument.
- Adding a nonzero width for the top quark has negligible effects for Higgs masses below the tt-threshold, but can arise to an enhancement of 2.4% on threshold and above.

Top width effects

09/28/11

RADCOR 2011