Upgrade of the Proximity Focusing RICH at JLab

E. Cisbani

Istituto Superiore di Sanità and INFN Roma, Sanità group

RICH2007 15-20 October 2007, Trieste - Italy

JLab RICH People

Istituto Superiore di Sanità and INFN Roma, Sanità group E. Cisbani, S. Colilli, F. Cusanno, S. Frullani, R. Frantoni, F. Garibaldi, F. Giuliani, M. Gricia, M. Lucentini, F. Santavenere

University of Bari and INFN Bari

A. Argentieri, R. De Leo, L. Lagamba, S. Marrone, E. Nappi

Thomas Jefferson National Accelerator	Facility	
A. Camsonne, R. Michaels, B. Reitz	, J. Segal, C. Zorn	
ENEA Faenza	INFN Roma3	
E. Monno	M. lodice	
INFN Roma	University of Maryland	
G.M. Urciuoli	H. Breuer	
Funded by INFN (LEDA experiment) 결하d 카라 토가 (로) 문 아이(E. Cisbani (ISS - INFN Rome) RICH Upgrade @ JLab RICH07 - 16/10/07 2/2		

Introduction

- ► JLab RICH
- JLab facility

Past: Original RICH version

- Performed experiment(s)
- Measured performance

In progress: Upgraded RICH version

- Motivation: Transversity experiment
- Upgrade options and adopted solution
- Expected performance
- Summary and conclusion

◆ロト ◆聞ト ◆注ト ◆注ト

- Introduction
 - JLab RICH
 - JLab facility
- Past: Original RICH version
 - Performed experiment(s)
 - Measured performance
- In progress: Upgraded RICH version
 - Motivation: Transversity experiment
 - Upgrade options and adopted solution
 - Expected performance
- Summary and conclusion

- Introduction
 - JLab RICH
 - JLab facility
- Past: Original RICH version
 - Performed experiment(s)
 - Measured performance
- In progress: Upgraded RICH version
 - Motivation: Transversity experiment
 - Upgrade options and adopted solution
 - Expected performance
- Summary and conclusion

naa

<ロト < 同ト < 三ト < 三ト

- Introduction
 - JLab RICH
 - JLab facility
- Past: Original RICH version
 - Performed experiment(s)
 - Measured performance
- In progress: Upgraded RICH version
 - Motivation: Transversity experiment
 - Upgrade options and adopted solution
 - Expected performance
- Summary and conclusion

naa

<ロト < 同ト < 三ト < 三ト

Conceptually identical to the Alice HMPID RICH

Conceptually identical to the Alice HMPID RICH

4 □ ▶

Radiator 15 mm thick Liquid Freon (C_6F_{14} , n=1.28)

Conceptually identical to the Alice HMPID RICH

4 □ ▶

Radiator Proximity gap 15 mm thick Liquid Freon (C_6F_{14} , n=1.28) 100 mm, filled with Methane at STP

Conceptually identical to the Alice HMPID RICH

Radiator Proximity gap Photon converter Position detector

Pad Plane

15 mm thick Liquid Freon (C_6F_{14} , n=1.28) 100 mm, filled with Methane at STP 300 nm Csl film evaporated on each pad plane $3 \times pad$ plane = 1940 \times 403 mm² Multi Wire/Pad Proportional Chamber, HV= 1050 \div 1100 V 403.2 \times 640 mm² (single pad: 8.4 \times 8 mm²)

Conceptually identical to the Alice HMPID RICH

Radiator
Proximity gap
Photon converter
Position detector

Pad Plane FE Electronics 15 mm thick Liquid Freon (C_6F_{14} , n=1.28) 100 mm, filled with Methane at STP 300 nm Csl film evaporated on each pad plane $3 \times pad plane = 1940 \times 403 \text{ mm}^2$ Multi Wire/Pad Proportional Chamber, HV= 1050 ÷ 1100 V 403.2 × 640 mm² (single pad: 8.4 × 8 mm²) 11520 analog chs, multiplexed S&H (Gassiplex)

E. Cisbani (ISS - INFN Rome)

Conceptually identical to the Alice HMPID RICH

Radiator
Proximity gap
Photon converter
Position detector

Pad Plane FE Electronics Evaporation Fac.

15 mm thick Liquid Freon (C_6F_{14} , n=1.28) 100 mm, filled with Methane at STP 300 nm Csl film evaporated on each pad plane $3 \times pad plane = 1940 \times 403 \text{ mm}^2$ Multi Wire/Pad Proportional Chamber, HV= 1050 ÷ 1100 V 403.2 × 640 mm² (single pad: 8.4 × 8 mm²) 11520 analog chs, multiplexed S&H (Gassiplex) Cyl. vacuum chamber + Online QE measurement 2×290 RICH Upgrade 0 Jubb RICH Upgrade 0 Jubb

The Continuous Electron Beam Accelerator Facility

JLab, Newport News (VA)

The *high resolution and high luminosity* (polarized) CEBAF electron beam:

- $\bullet\,$ Current: up to 200 $\mu {\rm A}$
- Energy: up to 6 GeV (12 GeV in 2012)
- Energy resolution (σ_E/E): 2.5 imes 10⁻⁵
- Duty factor: 100% (continuous beam)
- 3 Experimental halls: A, B and C

Hall A Detection Equipment

Flexible detectors configuration depending on experiment

 $\label{eq:QDQ} \Leftarrow 2 \mbox{ High Resolution Spectrometers} \\ (QQDQ) + 2 \mbox{ Septum Magnets (for angles down to 6 degrees)} \\ \mbox{BigBite: High Acceptance Spectrometer} \\ \end{tabular}$

The Hadron Arm

- Trigger: 2 scintillators
- Tracking: 2 Drift Chambers
- e-h PID: Gas Cherenkov Counter + Preshawer
- standard h-PID: 2 Aerogel Čerenkov (1.055 and 1.015 for $p/K^+/\pi^+$ on-line separation up to \sim 2.2 GeV/c)

• Enhanced h-PID:

Proximity focusing RICH

naa

Hall A Detection Equipment

Flexible detectors configuration depending on experiment

 $\label{eq:QDQ} \Leftarrow 2 \mbox{ High Resolution Spectrometers} \\ (QQDQ) + 2 \mbox{ Septum Magnets (for angles down to 6 degrees)} \\ \mbox{BigBite: High Acceptance Spectrometer} \\ \end{tabular}$

The Hadron Arm

- Trigger: 2 scintillators
- Tracking: 2 Drift Chambers
- e-h PID: Gas Cherenkov Counter + Preshawer
- standard h-PID: 2 Aerogel Čerenkov (1.055 and 1.015 for $p/K^+/\pi^+$ on-line separation up to \sim 2.2 GeV/c)

• Enhanced h-PID:

Proximity focusing RICH

Introduction

• Past: Original RICH version

- Performed experiment(s)
- Measured performance

In progress: Upgraded RICH version

- Motivation: Transversity experiment
- Upgrade options and adopted solution
- Expected performance
- Summary and conclusion

< □ > < □ > < □ > < □ > < □ > < □ >

Systematic study of hypernuclei by electromagnetic probe

- Λ is a unique **probe** in the nucleus
- Λ can be in the s-shell (no Pauli blocking)
- A weakly coupled to nuclear core \rightarrow shell model works well
- Λ -N potential:

$$V_{\Lambda N} = V + \Delta + s_{\Lambda} + s_{N} + T$$

 ${\ {\bullet} \ }^9 \text{Li}_\Lambda, {}^{12}\text{B}_\Lambda$ and ${}^{16}\text{N}_\Lambda$ investigated

Measure hypernucleus excitation energy to extract information on $\Lambda - N$ potential

k-PID Requirement (Momentum $\sim 2 \text{ GeV/c}$)

Signal ((e, e'K) bound state) $\sim 10^{-3} \div 10^{-4}$ Hz Background (π and p mainly) $\sim 100 \div 1000$ larger than K Standard Hall A (A1 & A2) π :K rejection factor $\sim 1:100$

1:10 at least still needed \Rightarrow RICH !

< □ > < 同 > < 三 >

nga

Systematic study of hypernuclei by electromagnetic probe

- Λ is a unique **probe** in the nucleus
- Λ can be in the s-shell (no Pauli blocking)
- A weakly coupled to nuclear core \rightarrow shell model works well
- Λ -N potential:

$$V_{\Lambda N} = V + \Delta + s_{\Lambda} + s_{N} + T$$

 ${\ {\bullet} \ }^9 \text{Li}_\Lambda, {}^{12}\text{B}_\Lambda$ and ${}^{16}\text{N}_\Lambda$ investigated

Measure hypernucleus excitation energy to extract information on $\Lambda - N$ potential

k-PID Requirement (Momentum $\sim 2 \text{ GeV/c}$)

Signal ((e, e'K) bound state) $\sim 10^{-3} \div 10^{-4}$ Hz Background (π and p mainly) $\sim 100 \div 1000$ larger than K Standard Hall A (A1 & A2) π :K rejection factor $\sim 1:100$

1:10 at least still needed \Rightarrow RICH !

< □ > < 同 > <

nga

Online Event display

Charge particles mutiplicity (20% of events with 2 particles) \Rightarrow rather clean event pattern

500

E. Cisbani (ISS - INFN Rome)

RICH07 - 16/10/07 9 / 26

Original RICH performance at 2.0 \pm 5% GeV/c

 $\Rightarrow \pi/K$ rejection better than 1:1000

500

< □ ▶ < / ₽ ▶

Original RICH performance at 2.0 \pm 5% GeV/c

 $\Rightarrow \pi/K$ rejection better than 1:1000

< □ > < 同 > < 三 >

naa

Kaon PID

- $\bullet\,$ Time of Flight (FWHM \sim 850 ps)
- Aerogels: (!A_{1.015})&A_{1.055}
- RICH

E. Cisbani (ISS - INFN Rome)

4 □ ▶

Kaon PID

- Time of Flight (FWHM \sim 850 ps)
- Aerogels: (!A_{1.015})&A_{1.055}
- RICH

Effect on Excitation Energy SNR

A

< □ >

E. Cisbani (ISS - INFN Rome)

RICH07 - 16/10/07 11 / 26

Pion rejection

 $\begin{array}{l} \mbox{RICH Pion Rejection Factor} > \frac{N_{K/\pi}^{RICH}}{N_{\pi}^{AERO}} \sim 1:1000 \\ \mbox{at} \sim 90 \ \% \ \mbox{efficiency} \end{array}$

Note: Measured Signal/Background rate meets optimistic expectation $(\sim 10 \text{ times better than worst prediction})$

naa

< □ > < 同 > < 三 >

Introduction

- JLab RICH
- JLab facility
- Past: Original RICH version
 - Performed experiment(s)
 - Measured performance

In progress: Upgraded RICH version

- Motivation: Transversity experiment
- Upgrade options and adopted solution
- Expected performance
- Summary and conclusion

naa

SIDIS Transversity Experiment

Investigate the spin structure of the nucleon by: $N^{\uparrow}(e,e'h)X$ in DIS

・ロト ・ 一下・ ・ 日 ・ ・

Factorization Theorem

 $\sigma(eN
ightarrow ehX) \sim \sum_{q} e_{q}^{2} \cdot DF_{q}(x) \otimes \sigma_{lq} \otimes FF_{q
ightarrow h}(z)$

DF_q: quark Distribution Functions

 $FF_{q \rightarrow h}$: quark Fragmentation Functions

naa

k_{\perp} Dependent (TMD) Quark DF at Twist-2

 $\int dk_{\perp} f(x, k_{\perp}) \text{ unpolarized DF, very well measured}$ $\int dk_{\perp} g_{1L}(x, k_{\perp}) \text{ longitudianl DF, well measured}$ $\int dk_{\perp} (h_{1T} + k_{\perp}^2 / (2M) h_{1T}^{\perp}) \text{ Transversity DF, first evidence (leading order DF)}$ $f_{1T}^{\perp}(x, k_{\perp}) \text{ Sievers DF (info on quark angular momentum)}$

E. Cisbani (ISS - INFN Rome)

RICH Upgrade @ JLab

k_{\perp} Dependent (TMD) Quark DF at Twist-2

Trasversity and Sievers investigated via Single Spin Asymmetry measurement by DIS on trasversely polarized target:

$$A_{UT}(\phi_h^l,\phi_S^l) = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{2d\sigma} \sim A_{UT}^{\text{Collins}} \sin(\phi_h^l + \phi_S^l) + A_{UT}^{\text{Sivers}} \sin(\phi_h^l - \phi_S^l)$$

Present Data

HERMES(DIS06) on proton / COMPASS(ETC07) on deuteron

COMPASS π

- K asymmetries look relevant
- No direct data on neutron

Present Data

HERMES(DIS06) on proton / COMPASS(ETC07) on deuteron

K asymmetries look relevant

No direct data on neutron

Present Data

HERMES(DIS06) on proton / COMPASS(ETC07) on deuteron

- K asymmetries look relevant
- No direct data on neutron

E. Cisbani (ISS - INFN Rome)

10-1

XBi

COMPASS π

COMPASS k

HERMES on p / COMPASS on d / JLab on neutron (proj. errors)

1 month data taking: statistical errors comparable to HERMES(3 years)/COMPASS(2 years)

Transversity: Hall A Experimental Setup

30 beam days, Summer 2008

Beam

6 GeV, 15 μ A e^- (target limit)

Target

High pressure polarized $^{3}\text{He},$ 50 mg/cm², \sim 42% polariz./20 min, Lumi \sim 10 $^{36}/s/cm^{2}$

Electron Detection: BigBite $E'=0.8\div 1.9~{\rm GeV},~\theta=30^{\circ},~\Delta\Omega\sim 64~{\rm msr}$

Hadron Detection: HRS Left $P_h = 2.4 \text{ GeV/c}, \ \theta = -16^\circ, \ \pi/K \text{ ID}$

RICH Upgrade

Traaversity Requirement: π : K rejection \sim 1:1000 at 2.4 GeV/c

Old RICH at 2.4 GeV/c: $\Delta \theta \sim 4.1 \sigma \Rightarrow \pi : K \sim 1 : 140$

Upgrade Options

- O New Radiator: from G₆F₁₄ (n = 1.28) to C₅F₁₂ (n = 1.24): lover index of refraction means smaller angles (improved photon acceptance), larger angular distance between kaon ad pion photons.
 - X Liquid freon re-circulation system to be modified
 - % C₅F₁₂ boils at 29°C \rightarrow more complex liquid radiator system
 - C₆F₁₂ one of the worse greenhouse gases → pure C₆F₁₂ is very expensive (isomeric mixture much cheaper ... but transparency?
 - ③ Larger photon detector (and longer gap): high photon acceptance, smaller geometric and digitization errors
 - $\sim 1/2$ of the detector structure must be rebuilt
 - Additional electronics needed (we already havel)
 - Upgrade is 'straightforward'

Costs and tight time schedule \Rightarrow second option

500

Image: Image:

RICH Upgrade

Traaversity Requirement: π : K rejection \sim 1:1000 at 2.4 GeV/c

Old RICH at 2.4 GeV/c: $\Delta \theta \sim 4.1 \sigma \Rightarrow \pi : K \sim 1 : 140$

Upgrade Options

- ⁽¹⁾ New Radiator: from C_6F_{14} (n = 1.28) to C_5F_{12} (n = 1.24): lover index of refraction means smaller angles (improved photon acceptance), larger angular distance between kaon ad pion photons.
 - **X** Liquid freon re-circulation system to be modified
 - $\bigstar\ C_5F_{12}$ boils at $29^\circ C \rightarrow$ more complex liquid radiator system
 - $\label{eq:c5} \textbf{K}_{5}\textbf{F}_{12} \text{ one of the worse greenhouse gases} \rightarrow \text{pure } C_5\textbf{F}_{12} \text{ is very expensive} \\ \text{(isomeric mixture much cheaper ... but transparency?}$
- 2 Larger photon detector (and longer gap): high photon acceptance, smaller geometric and digitization errors
 - 🗱 $\sim 1/2$ of the detector structure must be rebuilt
 - Additional electronics needed (we already have!)
 - Upgrade is 'straightforward'

Costs and tight time schedule \Rightarrow second option

< □ ▶ < 同 ▶

Isomeric C₅F₁₂ Freon Transparency

- Iso-C₅F12 shows $\sim 1/2$ the transmittance of clean C₆F₁₄
- Air (H₂O) contamination in Iso-C₅F₁₂ sample looks significant (but does not explain full absorbtion)
- Transparency could improve with proper cleaning but not guaranteed
- Structure in transmittance may be related to other contaminats (?)
- Extrapolation may suggest $\sim 1/3$ transmittance loss (respect to C_6F_{14} after cleaning

Image: A marked by A marked

(Thanks to A. Bream for C_5F_{12} and A. Di Mauro for C_6F_{14} data)

 Iso-C₅F₁₂ transparency requires further investigation (not compatible with experiment schedule)

Isomeric C₅F₁₂ Freon Transparency

- Iso-C₅F12 shows $\sim 1/2$ the transmittance of clean C₆F₁₄
- Air (H₂O) contamination in Iso-C₅F₁₂ sample looks significant (but does not explain full absorbtion)
- Transparency could improve with proper cleaning but not guaranteed
- Structure in transmittance may be related to other contaminats (?)
- Extrapolation may suggest $\sim 1/3$ transmittance loss (respect to $C_6 {\rm F}_{14}$ after cleaning

< □ > < 同 > < 三

(Thanks to A. Bream for C_5F_{12} and A. Di Mauro for C_6F_{14} data)

 Iso-C₅F₁₂ transparency requires further investigation (not compatible with experiment schedule)

RICH Upgrade

Traaversity Requirement: π : K rejection \sim 1:1000 at 2.4 GeV/c

Old RICH at 2.4 GeV/c: $\Delta \theta \sim 4.1 \sigma \Rightarrow \pi : K \sim 1 : 140$

Upgrade Options

- **()** New Radiator: from C_6F_{14} (n = 1.28) to C_5F_{12} (n = 1.24): lover index of refraction means smaller angles (improved photon acceptance), larger angular distance between kaon ad pion photons.
 - **×** Liquid freon re-circulation system to be modified
 - $K C_5F_{12}$ boils at 29°C \rightarrow more complex liquid radiator system
 - ***** C_5F_{12} one of the worse greenhouse gases \rightarrow pure C_5F_{12} is very expensive (isomeric mixture much cheaper ... but transparency?
- 2 Larger photon detector (and longer gap): high photon acceptance, smaller geometric and digitization errors
 - $\pmb{\textbf{x}}~\sim 1/2$ of the detector structure must be rebuilt
 - * Additional electronics needed (we already have!)
 - Upgrade is 'straightforward'

Costs and tight time schedule \Rightarrow second option

< □ ▶ < 同 ▶

RICH Upgrade

Traaversity Requirement: π : K rejection \sim 1:1000 at 2.4 GeV/c

Old RICH at 2.4 GeV/c: $\Delta \theta \sim 4.1 \sigma \Rightarrow \pi : K \sim 1 : 140$

Upgrade Options

- **()** New Radiator: from C_6F_{14} (n = 1.28) to C_5F_{12} (n = 1.24): lover index of refraction means smaller angles (improved photon acceptance), larger angular distance between kaon ad pion photons.
 - **×** Liquid freon re-circulation system to be modified
 - $\hbox{\sc K} \ C_5F_{12} \ \text{boils at } 29^\circ C \rightarrow \text{more complex liquid radiator system}$
 - $\label{eq:c5F12} C_5F_{12} \text{ one of the worse greenhouse gases} \to \text{pure } C_5F_{12} \text{ is very expensive} \\ \text{(isomeric mixture much cheaper ... but transparency?}$
- 2 Larger photon detector (and longer gap): high photon acceptance, smaller geometric and digitization errors
 - $\pmb{\textbf{x}}~\sim 1/2$ of the detector structure must be rebuilt
 - * Additional electronics needed (we already have!)
 - Upgrade is 'straightforward'

Costs and tight time schedule \Rightarrow second option

E. Cisbani (ISS - INFN Rome)

RICH07 - 16/10/07 21 / 26

< □ > < 同 >

- The JLab RICH is a sandwich of several layers
- Preserve the radiator, entrance Al frames and grid plane
- Rebuild the last 3 Al frames + wires planes
- Use the same pad planes 90° rotated
- Obtain a photon detection area 1.6× larger than original
- ... and 175 mm far from the radiator

naa

- The JLab RICH is a sandwich of several layers
- Preserve the radiator, entrance AI frames and grid plane
- Rebuild the last 3 Al frames + wires planes
- Use the same pad planes 90° rotated
- Obtain a photon detection area 1.6× larger than original
- ... and 175 mm far from the radiator

- The JLab RICH is a sandwich of several layers
- Preserve the radiator, entrance Al frames and grid plane
- Rebuild the last 3 Al frames
 + wires planes
- Use the same pad planes 90° rotated
- Obtain a photon detection area 1.6× larger than original
- ... and 175 mm far from the radiator

- The JLab RICH is a sandwich of several layers
- Preserve the radiator, entrance Al frames and grid plane
- Rebuild the last 3 Al frames + wires planes
- Use the same pad planes 90° rotated
- Obtain a photon detection area 1.6× larger than original
- ... and 175 mm far from the radiator

- The JLab RICH is a sandwich of several layers
- Preserve the radiator, entrance Al frames and grid plane
- Rebuild the last 3 Al frames + wires planes
- Use the same pad planes 90° rotated
- Obtain a photon detection area $1.6 \times$ larger than original
- ... and 175 mm far from the radiator

Upgraded Proximity Focusing RICH @ JLab

Radiator	15 mm thick Liquid Freon (C_6F_{14} , n=1.28)
Proximity Gap	100 mm, filled with Methane at STP
Photon converter	300 nm Csl film coated on Pad Planes
Position Detector	$3 imes$ pad planes $=1940 imes403$ mm 2
	Multi Wire/Pad Proportional Chamber, HV = 1050 \div 1100 V
Pad Plane	$403.2 \times 640 \text{ mm}^2$ (single pad: $8.4 \times 8 \text{ mm}^2$)
FE Electronics	11520 analog chs, multiplexed S&H

< □ ▶ < 同 ▶

E

Upgraded Proximity Focusing RICH @ JLab

Radiator15 mm thick Liquid Freon (C_6F_{14} , n=1.28)Proximity Gap100 \rightarrow 175 mm, filled with Methane at STPPhoton converter300 nm Csl film coated on Pad PlanesPosition Detector $3\rightarrow$ 5 × pad planes = 1940 × 403 \rightarrow 2015 × 646 mm²
Multi Wire/Pad Proportional Chamber, HV= 1050 ÷ 1100 VPad Plane403.2 × 640 mm² (single pad: $8.4 \times 8 \text{ mm²}$)FE Electronics11520 \rightarrow 19200 analog chs, multiplexed S&H

E. Cisbani (ISS - INFN Rome)

RICH Upgrade: FEM Analysis

${\sf Max\ distorsions\ <\ 0.02\ mm}$

E. Cisbani (ISS - INFN Rome)

RICH Upgrade @ JLab

Image: Image:

RICH07 - 16/10/07 24 / 26

RICH Upgrade: Simulated performance

Montecarlo tuned with real data on original RICH

- □

naa

- Original RICH operated succesfully in Hypernuclear (and Pentaquark) experiment in Hall A at JLab, providing π :K rejection better than 1:1000 at 2.0 GeV/c
- New high rank experiment on transverse spin structure of the nucleon demands for similar rejection at 2.4 GeV/c
- Two upgrade options (providing similar performance) have been considered:
 - Inew liquid freon (C₅F₁₂, lower refractive index)
 - ② extend the photon detector area
- The latter option has been selected due mainly to
 - ▶ higher cost of the C₅F₁₂ freon (and uncertainty in transmittance)
 - ▶ time schedule of the experiment does not allow significant R&D
- 1π in more than 1000 identified K predicted by Montecarlo tuned on real data (at \sim 90% efficiency)

< □ ▶ < 同 ▶ <

- Original RICH operated succesfully in Hypernuclear (and Pentaquark) experiment in Hall A at JLab, providing π:K rejection better than 1:1000 at 2.0 GeV/c
- $\bullet\,$ New high rank experiment on transverse spin structure of the nucleon demands for similar rejection at 2.4 GeV/c
- Two upgrade options (providing similar performance) have been considered:
 - 1) new liquid freon $(C_5F_{12}, \text{ lower refractive index})$
 - ② extend the photon detector area
- The latter option has been selected due mainly to
 - higher cost of the C_5F_{12} freon (and uncertainty in transmittance)
 - ▶ time schedule of the experiment does not allow significant R&D
- 1π in more than 1000 identified K predicted by Montecarlo tuned on real data (at ~ 90% efficiency)

3 Upgrade is in progress: new detector expected for the end of 2007.

< □ > < 同 > < 三 >

- Original RICH operated succesfully in Hypernuclear (and Pentaquark) experiment in Hall A at JLab, providing π:K rejection better than 1:1000 at 2.0 GeV/c
- New high rank experiment on transverse spin structure of the nucleon demands for similar rejection at 2.4 GeV/c
- Two upgrade options (providing similar performance) have been considered:
 - 1 new liquid freon (C_5F_{12} , lower refractive index)
 - 2 extend the photon detector area
- The latter option has been selected due mainly to
 - higher cost of the C_5F_{12} freon (and uncertainty in transmittance)
 - ▶ time schedule of the experiment does not allow significant R&D
- 1π in more than 1000 identified K predicted by Montecarlo tuned on real data (at \sim 90% efficiency)

Upgrade is in progress, new detector expected for the end of 2007
 New RICH will operate in transversity progressing of 2008

(日)

- Original RICH operated succesfully in Hypernuclear (and Pentaguark) experiment in Hall A at JLab, providing π :K rejection better than 1:1000 at 2.0 GeV/c
- New high rank experiment on transverse spin structure of the nucleon demands for similar rejection at 2.4 GeV/c
- Two upgrade options (providing similar performance) have been considered:
 - 1 new liquid freon (C_5F_{12} , lower refractive index)
 - 2 extend the photon detector area
- The latter option has been selected due mainly to
 - higher cost of the C_5F_{12} freon (and uncertainty in transmittance)
 - time schedule of the experiment does not allow significant R&D

< □ > < 同 > < 三 > 26 / 26 RICH07 - 16/10/07

- Original RICH operated succesfully in Hypernuclear (and Pentaquark) experiment in Hall A at JLab, providing π :K rejection better than 1:1000 at 2.0 GeV/c
- $\,$ $\,$ New high rank experiment on transverse spin structure of the nucleon demands for similar rejection at 2.4 GeV/c
- Two upgrade options (providing similar performance) have been considered:
 - 1) new liquid freon (C_5F_{12} , lower refractive index)
 - 2 extend the photon detector area
- The latter option has been selected due mainly to
 - higher cost of the C_5F_{12} freon (and uncertainty in transmittance)
 - ► time schedule of the experiment does not allow significant R&D
- 1π in more than 1000 identified K predicted by Montecarlo tuned on real data (at \sim 90% efficiency)

- Original RICH operated succesfully in Hypernuclear (and Pentaquark) experiment in Hall A at JLab, providing π:K rejection better than 1:1000 at 2.0 GeV/c
- $\bullet\,$ New high rank experiment on transverse spin structure of the nucleon demands for similar rejection at 2.4 GeV/c
- Two upgrade options (providing similar performance) have been considered:
 - 1 new liquid freon (C₅F₁₂, lower refractive index)
 - 2 extend the photon detector area
- The latter option has been selected due mainly to
 - higher cost of the C_5F_{12} freon (and uncertainty in transmittance)
 - ► time schedule of the experiment does not allow significant R&D
- 1π in more than 1000 identified K predicted by Montecarlo tuned on real data (at \sim 90% efficiency)
- Upgrade is in progress: new detector expected for the end of 2007New RICH will operate in transversity experiment in summer 2008

500

(日)