11 T Dipole Project Overview and Status

M. Karppinen TE-MSC On behalf of CERN-FNAL collaboration

> B. Auchmann, B. Holzer, L. Oberli, L. Rossi, D. Smekens (CERN)

N, Andreev, G. Apollinari, E. Bartzi, R. Bossert, F. Nobrega, I. Novitski, A. Zlobin (FNAL)

October 4, 2011

11 T Dipole Cold Mass

I.3 mm

Cold mass length 5.5 m:

- $_{\rm O}~$ FNAL have coil fabrication and collaring tooling up to 6 m
- o Handling of 11 m coils is risky (250 kCHF of cable)
- o 11-m-long coils require cable unit length of 1200 m
- * Sagitta: 11 m 5.0 mm, 5,5
 - o Ø60 mm aperture and straight cold mass
- * Integration in the
 - o 2-in-1 design, intra-beam distance 194 mm
 - o Bus-bar routing and heat exchanger location as MB
- Schedule and cost
 - o Make use of existing tooling and infrastructure
 - o Parallel production lines at CERN and FNAL

Nb₃Sn Superconductor

- Nb₃Sn critical parameters (J_c, B_{c2} and T_c) very attractive for accelerator magnets
- Requires (long) heat treatment @ 680 °
 => Only inorganic insulation materials
- Brittle, strain sensitive after reaction
- Requires vacuum impregnation with resin
 => less efficient heat extraction by He
- Magneto-thermal instabilities

=> small filaments, small strands, high RRR

- Filaments ~50 μm (NbTi 6 μm)
 - \Rightarrow Persistent current effects
- Cost ~5 x NbTi
- Limited supply and only few suppliers

Nb₃Sn Accelerator Magnet R&D

Year	Laboratory	Magnet type (name)	Results
1967	BNL	quadrupole	85 T/m (3 T)
1979	BNL	dipole	4.8 T
1982	CERN	quadrupole	71 T/m
1983	CEN/Saclay	dipole	5.3 T
1985	LBNL	dipole (D10)	8 T
1986	KEK	dipole	4.5 T
1988	BNL	dipole	7.6 T
1991	CERN/ELIN	dipole	9.5 T
1995	LBNL	dipole (hybrid D19H)	8.5 T
1995	UT	dipole (MSUT)	11.2 T
1996	LBNL	dipole (D20)	13.3 T
2003	LBNL	dipole (RD3c)	10 T
2004-6	Fermilab	dipole (HFDA05-07)	10 T
2008	LBNL	dipole (HD2)	13.4 T

Both the performance and the technological aspects of the Nb_3Sn strands and accelerator magnets have significantly advanced.

M. Karppinen CERN TE-MSC

FNAL Nb₃Sn Dipole Mirror (4 m)

- ***** Fabrication methods
- ***** Tooling
- Cold mass components

11 T Model Program

Date	Description	Length	Remarks	Goals
End-2011	1-in-1 Demonstrator Magnet	2 m	Construction at FNAL	Cable technology Coil Technology Quench performance Magnetization effects
End-2012	2-in-1 Demonstrator Magnet 1	2 m	FNAL collared coils CM-Assembly at CERN	2-in-1 structure Field quality: - iron saturation
Mid-2013	2-in-1 Demonstrator Magnet 2	2 m	CERN collared coils CM-Assembly at CERN	- cross-talk - Magnetization effects Quench performance Reproducibility
End-2014	2-in-1 Prototype Cold Mass	5.5 m	Aperture 1 by FNAL Aperture 2 by CERN CM assembly at CERN	Scale-up Long tooling Fabrication of long coils CM assembly Magnetic performance

11 T Dipole Model Program

Production Phase 2014-17

- Coil production (CERN & FNAL)
- Collaring (CERN & FNAL)
- Cold mass assembly (CERN)
- Cryostat integration (CERN)
- * Testing (CERN)
- Installation in the tunnel
- * Material cost for 28 off 5.5 m CM ~35 MCHF

3..4 years

1-in-1 Demonstrator Goals

- Design and construction of a 2-m-long single aperture magnet, delivering 11 T at the LHC nominal operating current of 11.85 kA with 20% margin
- Cable technology
 - o J_c degradation, I_s-data
- Coil technology
 - o Fabrication procedures
 - o Insulation technology
- * Quench performance
 - o Operation margin
 - o Ramp-rate studies
- * Magnet protection
 - o Heater development
 - o Heater efficiency and delays
- Coil Magnetization & coupling currents

Coil Design

 $B_0(11.85 \text{ kA}) = 11.21 \text{ T}$

 $B_0(11.85 \text{ kA}) = 10.86 \text{ T}$

Coil optimization

- o >11 T at 11.85 kA with 20% margin at 1.9 K
- o Field errors below the 10⁻⁴ level

6-block design, 56 turns

- o 14.85 mm wide 40-strand Rutherford cable
- o Several X-sections were analyzed with and without core
- Coil ends optimized for low field harmonics and minimum strain in the cable

October 4, 2011

Cable Development & Strand Stock

- 40-strand Rutherford cable based on RRP-108/127
 0.7 mm strand and with ~85% compaction for the 11 T Nb₃Sn demonstrator dipole has been developed
 - **o** Issues large aspect ratio, low compaction
 - o FNAL roll the cable in two stages with an intermediate anneal (rectangular → trapezoidal cross-section).
 - CERN use single pass process.

- * Cable samples with and without a SS core
 - $\rm o~I_c$ degradation well within the initial goal of 10 %
- * Cable unit length 205 m (2 m coil) or 600 m (5.5 m)
- FNAL have 430 m cable
- CERN have strand for three 2 m coils
- FNAL ordered 2 x 45 km (Jan-12 & Jul-12)
- **CERN** in process of ordering 2 x 45 km (delivery TBC)
- Need ASAP low-performance strand for first practice coils at CERN

October 4, 2011

SC-strand & Cable needs

Model program:		
1-in-1 Demo	3 coils	26 km
2-in-1 Demo FNAL	4 coils	34 km
2-in-1 Demo CERN	2^{(*}+4 coils	17 ^{(*} +34 km
5.5 m proto	10 coils	240 km
Total strand		 17+334 km

Cable for series magnets:28 x 5.5 m112 + 6 spare coils71 km
(+20% margin >3400 km of strand)

*) Practice coils

1-in-1 Demonstrator Parameters

Parameter	Value
Aperture [m]	60
Nominal current I _{nom} [A]	11850
Nominal bore field (with 400 mm yoke) [T]	10.86
Short-sample bore field at 1.9 K [T]	13.6
Margin B _{max} /B _{nom} at 1.9 K [%]	25.4
Ultimate design field [T]	12.0
Inductance at I _{nom} [mH/m]	5.6
Stored energy at I _{nom} [kJ/m]	473
F_x per quadrant at I_{nom} [kN/m]	2889
F _y per quadrant at I _{nom} [kN/m]	1570
Coil length [m]	1.9
Magnetic length [m]	1.79

Coil Technology

- Coil technology developed at Fermilab
- Integrated Ti poles, st. steel end parts and wedges
- * 2 m long practice coils:
 - o PC#1: Cu cable
 - o PC#2: Nb₃Sn cable (RRP-114/127)
 - Practice windings to check the optimized cable and end parts

First real coil winding is being completed

October 4, 2011

1-in-1 Demonstrator Mechanical Structure

- Slightly elliptical stainless steel collar, 25-mm wide near mid-plane.
- The vertically split iron yoke clamped with Al clamps.
- The 12-mm stainless steel skin.
- ***** Two 50-mm thick end plates.
- Maximum stress during assembly ~130 MPa to keep coil under compression up to 12 T bore field.
- The mechanical structure is optimized to maintain the coil stress below 165 MPa - safe level for brittle Nb3Sn coils

M. Karppinen CERN TE-MSC

1-in-1 Demonstrator Status

- * The engineering design and tooling are complete
- * 40-strand cable developed and tested
- * 2 unit lengths are available for coil winding
- Coil fabrication procedures established
- Coil fabrication tooling commissioned
- Assembly tooling being procured
- Winding of the first coil being completed
- * Mechanical structure is being procured
- ***** Next steps:
 - o Short mechanical model assembly End-Nov
 - o Collaring Jan-12
 - OYoke assemblyFeb-12
 - oMagnet test at FNALMar-12

2-in-1 Demonstrator Goals

- Design and construction of a 2-m-long 2-in-1 magnet, delivering 11 T at the LHC nominal operating current of 11.85 kA with 20% margin
- * Quench performance
 - o Operation margin
 - o Ramp-rate studies
- Transfer function matching with MB
- Field quality
 - o Iron saturation
 - **o** Persistent current effects & passive correction
 - o Coupling current effects
 - o Magnetic cross-talk between the apertures

* Magnet protection

- o Heater development
- o Heater efficiency and delays

2-in-1 Demonstrator Design

***** Two alternative design concepts

2-in-1 Demonstrator FEA

* Mechanical design challenges

- o First twin-aperture Nb₃Sn dipole
- Coil pre-stress and Lorentz force management inside the LHC iron yoke.
- $o\;$ Lorenz forces are almost 2X higher than in MB
- ***** Both design concepts meet the mechanical design goals
 - o Coil stress below 150 MPa during the assembly process
 - o~ Coil remain under compression up to 12 T $\,$

2-in-1 Demonstrator Paramteres

Parameter	Unit	Removable Pole Design	Integrated Pole Design
Nominal current I _{nom}	kA	11.85	11.85
Nominal bore field	Т	11.23	11.25
Maximum coil field	Т	11.59	11.6
Magnetic length	mm	1.537	1.54
Working point on the load-line at I_{nom}		81%	81%
Ultimate design field	Т	12	12
Inductance at I _{nom}	mH/m	11.97	11.98
Stored energy at I _{nom}	kJ/m	966.3	968.6
F_x per quadrant at I_{nom}	MN/m	3.15	3.16
F_y per quadrant at I_{nom}	MN/m	-1.58	-1.59
F_z per aperture	kN	430	430
Overall length	mm	1960	1960
Coil overall length	mm	1760	1760
Yoke outer diameter	mm	550	550
Outer shell thickness	mm	10	10
Mass	kg	~2600	~2600

2-in-1 Demonstrator status & Plans (1/2)

***** Engineering design of the magnet is in progress

- o Collared coil from 1-in-1 demonstrator
- o "Conventional" collaring with coil pre-loading at the poles

* 2-in-1 magnet with FNAL coils

0	Coils for 1 st aperture	MarJul-12
0	Cold test of 1 st aperture	Sep-12
0	Coils for 2 nd aperture	AprJul-12
0	Cold test of 2 nd aperture	Oct-12
0	Mechanical model	OctDec-12
0	2-in-1 CM assembly at CERN	Jan-13
0	2-in-1 cold test at CERN	Feb-13

2-in-1 Demonstrator status & Plans (2/2)

CERN tooling (based on FNAL design)

- o Winding tooling in procurement
- o Reaction, impregnation, and assembly tooling being designed

* 2-in-1 magnet with CERN coils

0	First practice coil (Cu)	Dec-12
0	First practice coil (Nb ₃ Sn)	Feb-12
0	Mechanical model (1-in-1)	MarApr-12
0	Coils for 1 st aperture	MayAug-12
0	Cold test of 1 st aperture	Oct-12
0	Coils for 2 nd aperture	Jul-12Nov-12
0	Mechanical model (2-in-1)	OctDec-12
0	Cold test of 2 nd aperture	Jan-13
0	2-in-1 CM assembly	Mar-13

5.5 m Prototype Plans

FNAL

o Practice coils	Aug-12Jan-13
o Mirror assembly	Mar-13
o Mirror test	Apr-13
o Coils for FNAL aperture	MayNov-13
o Collared coil	Dec-13
* CERN	
o Practice coils	JanJul-13
o Mirror assembly	Aug-13
o Mirror test	Oct-13
• Coils for CERN aperture	Oct-13May-14
o Collared coil	Jun-14
o CM assembly	Aug-14
o Cryostat assembly	Sep-14
o Cold test	OctNov-13

Summary

* 11 T Nb₃Sn dipole magnets for the LHC upgrades are being developed by Fermilab/CERN collaboration

- o additional cold collimators
- o other applications
- * The construction of the 1-in-1 demonstrator magnet has started and the engineering design of the 2-in-1 demonstrator is well underway.
- * Tooling design for 5.5 m coils has started at FNAL
- SC strand supply is on the critical path of the model program
- * The integration into the LHC is common effort with the (cryo-) collimator R&D.
- * The time scale of the planned upgrade is challenging and requires parallel production lines at CERN and at FNAL.