Expected Field Quality in the 11-T Dipole

B. Auchmann, TE-MSC on behalf of the CERN-FNAL collaboration

B. Holzer, M. Karppinen, L. Oberli, L. Rossi, D. Smekens (CERN)

N. Andreev, G. Apollinari, E. Barzi, R. Bossert, V. Kashikin, F. Nobrega, I. Novitski, A. Zlobin (FNAL)

HQ test data from

M. Marchevsky (LBL): HQ01e Quench Performance G. Chlachidze (LBL): HQM01 Test Results X. Wang (LBL): Summary of HQ01e Magnetic Measurements, Version 0a

* What are the design goals in terms of:

- o Transfer function
- o Field quality
- o Magnet protection
- * What are the challenges?
 - **o** Based on HQ, MSUT, HFDA experience and ROXIE simulations.
- * How do we inted to cope with them?
 - o Based on simulations.

Transfer Function

- A discrepancy between MB and 11 T is inevitable: •••
 - More turns than MB (56 vs. 40) \rightarrow 11 T dipole is stronger low field. 0
 - More saturation \rightarrow reduction of transfer function at high field. 0

Remedy: •••

- No space for correctors (~ 1 m MCBC/MCBY needed). 0
- 300 A trim power converter. 0 Preferred: monopolar to avoid voltage peaks that perturb QPS.

- * What effects need to be considered?
 - o Geometric from coil transport current.
 - o Yoke saturation, cross-talk.
 - o **3D field quality.**
 - o Persistent current effects.
 - o Cable eddy currents.
 - o Decay and snapback.
 - Coil deformation during assembly, cool-down, and powering.

Coil and Yoke

Coil geometric multipoles < 1 unit @ 17 mm.</p>

* Yoke design

- The cut-outs on top of the aperture reduce the b_3 variation by 4.7 units as compared to a circular shape.
- o The holes in the yoke reduce the b_3 variation by 2.4 units.
- The two holes in the yoke insert reduce the b_2 variation from 16 to 12 units.
- Remedy for b_2 : thinner collars are being studied.

* 3-D integrated harmonics vs. 2-D harmonics $@I_{nom}$

- o Optimized 3-D coil design.
- Cross-talk in the ends \rightarrow increase in b_2 .
- Need to control winding accuracy.

	2-D	3-D	
b ₂	-12.5	-15.8	
b_3	7.4	7.4	
b_5	0.4	0.6	
b_7	-0.1	-0.2	
b_9	0.9	0.8	

Persistent Currents 1/3: Nb₃Sn & Nb-Ti

Strand magnetization: *

- 7µm fil. Nb-Ti 0
- 46µm fil. Nb₃Sn 0
- o $d_{in} = 42 \ \mu m \ / \ d_{out} = 34 \ \mu m. \ fil. \ Nb_3Sn$

2.1

2.6

Persistent Currents 2/3: HQ

*** HQ experience:**

- 0.8 mm RRP 2 coils with 70 μm filaments and
 2 coils with 52 μm filaments.
- ROXIE persistent current simulation based on LBL J_c fit and crude assumptions
 70 μm fil.: d_{in} = 58 μm / d_{out} = 46 μm and
 52 μm fil.: d_{in} = 42 μm / d_{out} = 34 μm.

9

Persistent Currents 3/3: 11 T

- Strand J_c and M characterization for 0.7 mm RRP 108/127 passive strands in preparation with B. Bordini.
- ***** Expected range for 11 T:
 - Full filaments \rightarrow ok for reset current 0-100 A.
 - o $d_{in} = 42 \ \mu m \ / \ d_{out} = 34 \ \mu m \rightarrow passive correction,$ more optimization possible.
- * Result is within reach of spool-piece correctors.
 - o Integrated B_3 difference 11-T/MB ~ 0.03 Tm < 0.052 Tm of MCS.

Cable Eddy Currents 1/3

***** Dominant effects in cable without core:

- Inter-filament coupling negligible
 w.r.t. inter-strand coupling.
- Cross-over resistance R_c defines dominant mode.
- * $R_{\rm c}$ varies by orders of magnitude.
 - o HFDA measurements: 4 500 μ Ω. [8]
- o MSUT estimates: 1.2 μΩ. Called it "Eddy-Current Machine"! [7]
- o HQ calculations: 0.4 6 $\mu\Omega$.
- * Reproducibility is an issue.
- Decay and Snap-back
 - Interplay of boundary-induced coupling currents and strand magnetization.
 - **O BICCS are ISCCs on large loops, with long time constants.**

***** HQ experience measurements.

- o Cannot be reproduced in simulations.
- o Need $R_c \sim 0.4 \ \mu\Omega$ to get similar orders of magnitude.
- o Large snap-back?
- o Should be independently confirmed at CERN soon!

Black curve (measured) and green curve (simulated) correspond to 60 A/s ramp rate.

Cable Eddy Currents 2/2: 11 T

***** ISCCs in 11 T magnet

- 0 Based on $R_c = 0.4 \mu\Omega$ we give presumably worst-case field quality for the 11-T dipole.
- "Field advance" of ~ 4% due to ISCCs clearly visible in transfer function.

Probably need a cored cable to increase R_c.
 Need to measure snap-back at injection with and without cored cable.

Seam-dynamics boundary conditions see talk by B. Holzer:

- o **B**₁ matches MB.
- $o |b_3|$ below 20 units, correctable by spool-piece correctors.
- 0 |**b**₂| below 16 units.
- o $|b_5|$ below 5 units.
- 0 ...
- $o\,$ to be confirmed by B. Holzer for updated error tables.

We can deliver with

- o trim power converter,
- o part-compensation in coil geometry,
- o passive persistent-current compensation,
- o adapted precycle (trim power converter),
- o and cored cable.

Surviving a Fast Power-Abort 1/2: HQ

✤ HQ tests by M. Marchevsky, LBL and ROXIE simulations (★).

- $\rm o~$ Positive ramps reproduced with R_c = 6 $\mu\Omega.$
- o No cooling in the model \rightarrow in reality $R_c < 6 \mu \Omega$.

Surviving a Fast Power-Abort 2/2: 11 T

- Higher losses and smaller heat capacity.
- * 11-T quenches in simulations already at 11 kA!
- Cored cable in HQM01 proved effective.

	НQ	11 T
No. of strands	35	40
Twist pitch (mm)	102	90-111
<i>R</i> _c (μΩ)	6	7.5
Op. Temp. (K)	4.5	1.9
Losses in midplane turn (mW)	75	130

Loss distribution in 11 T and HQ cross-section

Cored Cable pro & con

- * SIS300 experience with core: R_c from μΩ to mΩ!
- Successful cabling tests for cored 11 T cable with 9.5 mm x 25 μm core.

Pros:

- Fast-power abort stability.
- o Snap back reduction.
- o Supression of ramp-rate dependence of field quality.
- o Increased reproducibility.

* Cons:

o Less quench back for protection.

Magnet Protection

Design goals:

- o Max. 400 K (to be discussed).
- o Redundant heater systems.
- o Robust (enough) detection thresholds.
- Collaboration with LARP
 - HQ results are being studied.
- Simulation results for 25 ms from quench to full heater efficiency, RRR = 200

- o T_{peak} = 480 K for outer-layer (OL) low-field heaters.
- o $T_{peak} = 360$ K for OL high-field heaters.
- o T_{peak} = 450 K for OL low-field heaters with quench-back.
- o $T_{peak} = 300$ K for intra-layer low-field heaters.
- * Single-aperture demonstrator will help to validate the model.
 - Heaters between inner and outer layer should be studied, tested in short-model coil (11-T SMC).
 - Temperature measurements and refined thermal model to improve peak temperature estimates.

Conclusion

***** Transfer function: trim power converter

Field Quality

- **o** Yoke: thinner collars, part-compensation in coil layout.
- o 3D: by design ok, check field quality based on real winding.
- PCs: solutions exist for a range of assumptions.
- o ISCCs: most likely we need a cored cable.
- Snap back: too early to quantify cored cable should help.
- Coil deformation: will be studied shortly.

* Magnet protection

- o Develop fast and efficient heaters, possibly between layers.
- Use SMC as test bed.
- With test results: determine thresholds for QPS and nQPS.

Thanks to LARP for sharing data!

Literature

* Literature

- 1. X. Wang, Summary of HQ01e Magnetic Measurements, Version 0a, LBL Internal Note, 09/08/2011.
- 2. M. Marchevsky, HQ01e Quench Performance, HQ Meeting 2011/08/10.
- 3. G. Chlachidze, HQM01 Test Results, HQ Meeting 2011/08/10.
- E. Barzi et al., Passive correction of the persistent current effect in Nb3Sn accelerator magnets, IEEE Transactions on Applied Superconductivity, Vol. 13, No. 2, June 2003.
- 5. C. Völlinger et al., Compensation of Magnetization Effects in Superconducting Accelerator Magnets, IEEE Transactions on Applied Superconductivity, Vol. 12, No. 1, March 2002.
- M. Wilson et al., Cored Rutherford Cables for the GSI Fast Ramping Synchrotron, IEEE Transactions on Applied Superconductivity, Col. 13, No. 2, June 2003.
- A. den Ouden et al., Application of Nb3Sn Superconductors in High-Field Accelerator Magnets, IEEE Transactions pn Applied Superconductibity, Vol. 7, No. 2, June 1997.
- 8. A. Zlobin et al., R&D of Nb3Sn Accelerator Magnets at Fermilab, IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, June 2005.
- 9. A. Verweij. Electrodynamics of Superconducting Cables in Accelerator Magnets. PhD thesis, University of Twente Enschede, 1995.
- 10. ROXIE, http://cern.ch/roxie.