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Contents 

 What are the design goals in terms of: 

o Transfer function 

o Field quality 

o Magnet protection 

 What are the challenges? 

o Based on HQ, MSUT, HFDA experience and ROXIE simulations. 

 How do we inted to cope with them? 

o Based on simulations. 

2 



Transfer Function 

 A discrepancy between MB and 11 T is inevitable: 

o More turns than MB (56 vs. 40)  11 T dipole is stronger low field. 

o More saturation  reduction of transfer function at high field. 

 

 

 

 

 

 

 

 

 

 

 Remedy: 

o No space for correctors (~ 1 m MCBC/MCBY needed). 

o 300 A trim power converter.  

Preferred: monopolar to avoid voltage peaks that perturb QPS. 

3 

Courtesy of H. Thiessen  
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Field Quality 

 What effects need to be considered? 

o Geometric from coil transport current. 

o Yoke saturation, cross-talk. 

o 3D field quality. 

o Persistent current effects. 

o Cable eddy currents. 

o Decay and snapback. 

o Coil deformation during assembly, cool-down,  

and powering. 
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Coil and Yoke 

 

 

 

 

 

 

 

 

 Coil geometric multipoles < 1 unit @ 17 mm. 

 Yoke design 

o The cut-outs on top of the aperture reduce the b3 variation by 

4.7 units as compared to a circular shape. 

o The holes in the yoke reduce the b3 variation by 2.4 units.  

o The two holes in the yoke insert reduce the b2 variation from 

16 to 12 units.  

o Remedy for b2: thinner collars are being studied. 
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 3-D integrated harmonics vs. 2-D harmonics @ Inom 

o Optimized 3-D coil design. 

o Cross-talk in the ends   increase in b2. 

o Need to control winding accuracy. 

3-D Field Quality 
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2-D 3-D 

b2 -12.5 -15.8 

b3 7.4 7.4 

b5 0.4 0.6 

b7 -0.1 -0.2 

b9 0.9 0.8 



 Strand magnetization: 

o 7μm fil. Nb-Ti 

o 46μm fil. Nb3Sn 

o din = 42 μm / dout= 34 μm. fil. Nb3Sn 

Persistent Currents 1/3: Nb3Sn & Nb-Ti 
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Persistent Currents 2/3: HQ 

 HQ experience: 

o 0.8 mm RRP 2 coils with 70 μm filaments and 

2 coils with 52 μm filaments. 

o ROXIE persistent current simulation based on  

LBL Jc fit and crude assumptions  

70 μm fil.: din = 58 μm / dout= 46 μm and 

52 μm fil.: din = 42 μm / dout= 34 μm.  
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Persistent Currents 3/3: 11 T 

 Strand Jc and M characterization for 0.7 mm RRP 108/127  

in preparation with B. Bordini. 

 Expected range for 11 T: 

o Full filaments  ok for reset current 0-100 A. 

o din = 42 μm / dout= 34 μm  passive correction, 

more optimization possible. 

 Result is within reach of spool-piece correctors. 

o Integrated B3 difference 11-T/MB ~ 0.03 Tm < 0.052 Tm of MCS. 
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passive strands 

b3 due to strand  

magnetization in MB 
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Cable Eddy Currents 1/3 

 Dominant effects in cable without core: 

o Inter-filament coupling negligible 

w.r.t. inter-strand coupling. 

o Cross-over resistance Rc defines 

dominant mode. 

 Rc varies by orders of magnitude. 

o HFDA measurements: 4 – 500 μΩ. 

o MSUT estimates: 1.2 μΩ. Called it “Eddy-Current Machine”! 

o HQ calculations: 0.4 – 6 μΩ. 

 Reproducibility is an issue. 

 Decay and Snap-back 

o Interplay of boundary-induced coupling currents and 

strand magnetization. 

o BICCS are ISCCs on large loops,with long time constants. 
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 HQ experience measurements. 

o Cannot be reproduced in simulations. 

o Need Rc ~ 0.4 μΩ to get similar orders of magnitude. 

o Large snap-back? 

o Should be independently confirmed at CERN soon! 

 

Cable Eddy Currents 2/3: HQ 
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Transfer Function Sextupole Relative Sextupole 

Black curve (measured) and  

green curve (simulated)  

correspond to 60 A/s ramp rate. 



 ISCCs in 11 T magnet 

o Based on Rc = 0.4 μΩ we give presumably worst-case field 

quality for the 11-T dipole. 

o “Field advance” of ~ 4% due to ISCCs clearly visible  

in transfer function. 

 

 

 

 

 

 

 

 

 Probably need a cored cable to increase Rc. 

 Need to measure snap-back at injection with  

and without cored cable. 

 

Cable Eddy Currents 2/2: 11 T 
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Transfer Function Sextupole Decapole 

DC 

10 A/s 



 Beam-dynamics boundary conditions  

see talk by B. Holzer: 

o B1 matches MB. 

o |b3| below 20 units, correctable by spool-piece correctors. 

o |b2| below 16 units. 

o |b5| below 5 units. 

o … 

o to be confirmed by B. Holzer for updated error tables. 

 We can deliver with  

o trim power converter, 

o part-compensation in coil geometry,  

o passive persistent-current compensation,  

o adapted precycle (trim power converter),  

o and cored cable. 

 

Field Quality Requirements 
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Surviving a Fast Power-Abort 1/2: HQ 

 HQ tests by M. Marchevsky, LBL and ROXIE simulations (    ). 

o Positive ramps reproduced with Rc = 6 μΩ. 

o No cooling in the model  in reality Rc < 6 μΩ. 
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Surviving a Fast Power-Abort 2/2: 11 T 

 Higher losses and  

smaller heat capacity. 

 11-T quenches in simulations 

already at 11 kA! 

 Cored cable in HQM01 proved 

effective. 
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HQ 11 T 

No. of strands 35 40 

Twist pitch (mm) 102 90-111 

Rc (μΩ) 6 7.5 

Op. Temp. (K) 4.5 1.9 

Losses in midplane turn (mW) 75 130 

Loss distribution in 11 T and HQ cross-section 

[9] 
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Cored Cable pro & con  

 SIS300 experience with core: Rc from μΩ to mΩ!  

 

 Successful cabling tests for cored 11 T cable  

with 9.5 mm x 25 μm core. 

 

 Pros: 

o Fast-power abort stability. 

o Snap back reduction. 

o Supression of ramp-rate dependence of field quality. 

o Increased reproducibility. 

 

 Cons: 

o Less quench back for protection. 
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Magnet Protection 

 Design goals:  

o Max. 400 K (to be discussed). 

o Redundant heater systems. 

o Robust (enough) detection thresholds. 

 Collaboration with LARP 

o HQ results are being studied. 

 Simulation results for 25 ms from  

quench to full heater efficiency, RRR = 200 

o Tpeak = 480 K for outer-layer (OL) low-field heaters. 

o Tpeak = 360 K for OL high-field heaters. 

o Tpeak = 450 K for OL low-field heaters with quench-back. 

o Tpeak = 300 K for intra-layer low-field heaters. 

 Single-aperture demonstrator will help to validate the model. 

o Heaters between inner and outer layer should be studied,  

tested in short-model coil (11-T SMC). 

o Temperature measurements and refined thermal model to improve 

peak temperature estimates. 
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 Transfer function: trim power converter 

 Field Quality 

o Yoke: thinner collars, part-compensation in coil layout. 

o 3D: by design ok, check field quality based on real winding. 

o PCs: solutions exist for a range of assumptions. 

o ISCCs: most likely we need a cored cable.  

o Snap back: too early to quantify – cored cable should help. 

o Coil deformation: will be studied shortly. 

 Magnet protection 

o Develop fast and efficient heaters, possibly between layers. 

o Use SMC as test bed. 

o With test results: determine thresholds for QPS and nQPS. 

 

 

 

 Thanks to LARP for sharing data! 

 

 

 

 

 

 

Conclusion 
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