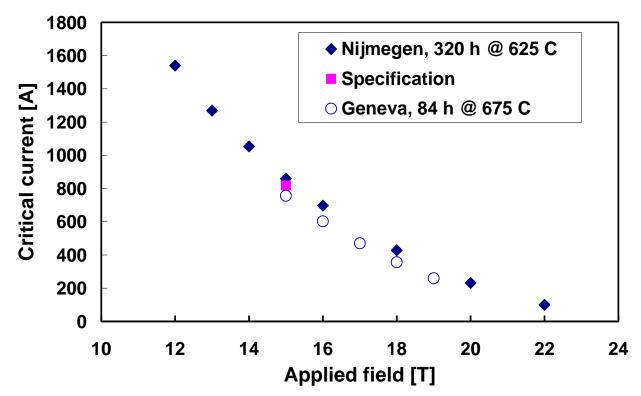
CERN-HFM conductors rationale

L. Bottura With thanks to L. Oberli, Th. Boutboul, B. Bordini and "the crowd" in the Superconductors Laboratory

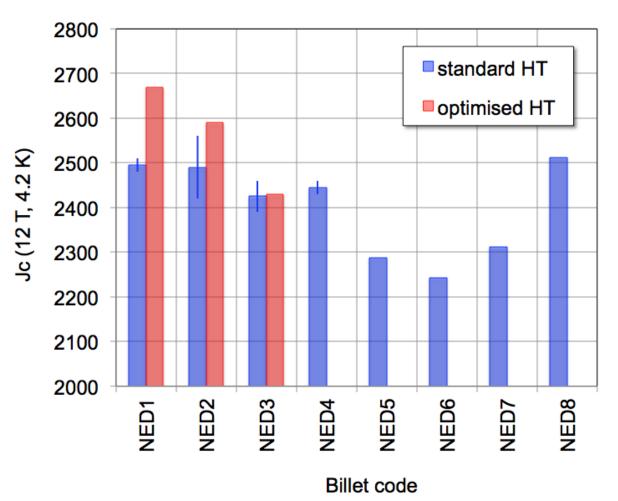
> Meeting on 11T dipole conductor CERN/FNAL October 4th, 2011

Т

NED targets


- The main goal of NED was to launch the R&D necessary to design and build a Nb₃Sn based 15 T magnet
- On basis of preliminary magnetic design and protection considerations, NED specifications for the strand were chosen:

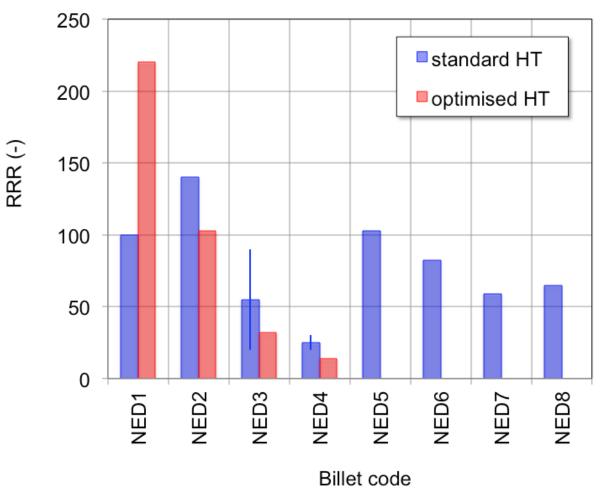
– Diameter	1.250 mm			
 Eff. filament diameter 	< 50 μm			
 – Cu-to-non-Cu ratio 	1.25 ± 0.10			
 Filament twist pitch 	30 mm			
— non-Cu J _c	1500 A/mm ² @4.2 K & 15			
 minimum critical current 	818 A at 15 T			
 RRR (after heat treatmen 	t) > 200			
Very challen	ging specifications!			



NED promises

- PIT strand: I_c ~ 1400 A, J_c ~ 2500 A/mm² (12 T) for 675 °C/84 h
- Optimization launched at CERN. Results: 320 h @ 625 °C
 - 12 T and 4.2 K: *I_c* > *1500 A*, *J_c* > *2700 A/mm*², + 10 %!!
 - 15 T and 4.2 K: I_c > 818 A (NED spec.), J_c ~ 1500 A/mm²

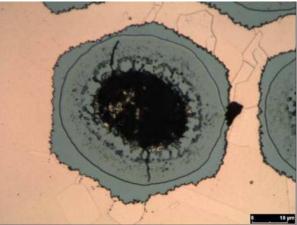
NED program results – 1/3

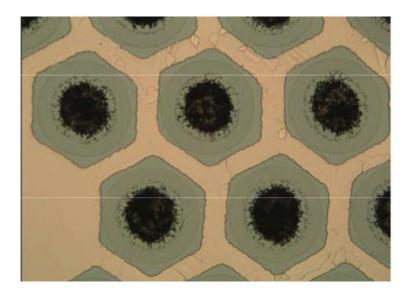

Jc of PIT wire produced within the scope of the NED R&D

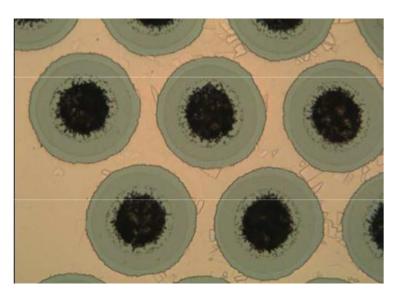
Best performance was achieved optimizing the heat treatment for low plateau temperature (625 °C) and long times (320 hrs)

The production has gone through a technology transfer process clearly visible in the measured performance

Clear improvement with present stable manufacturing conditions

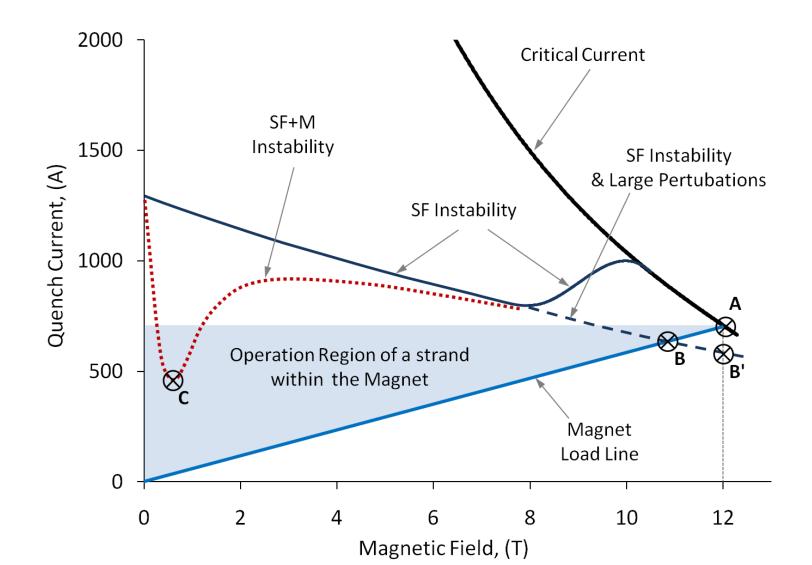

NED program results – 2/3


Excellent RRR values at the beginning of the R&D, much degraded at later times


Optimization of Jc leads to a marked decrease of RRR

This has been traced to the presence of *hot-spots* in the strand

NED program results – 3/3



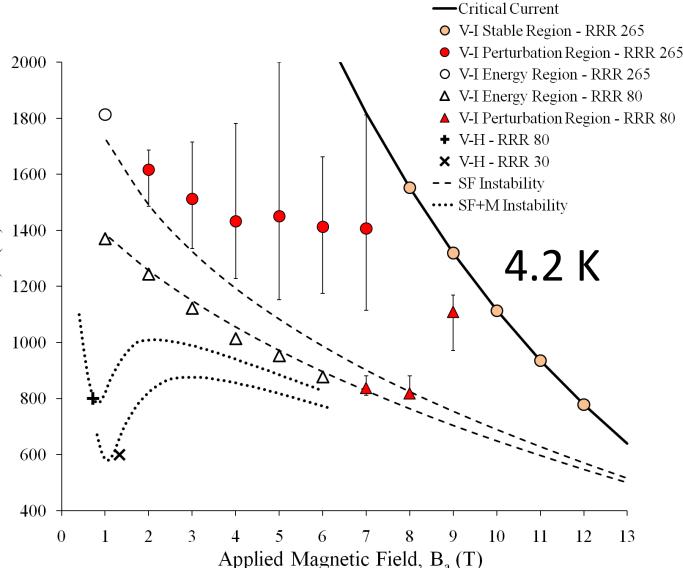
Modified strand architecture to improve the use of the *real estate*, and increase the optimization margin for J_C at acceptable RRR

For any given strand architecture based on react-able barriers there is an intrinsic limit in the maximum RRR achievable

Magneto-thermal stability

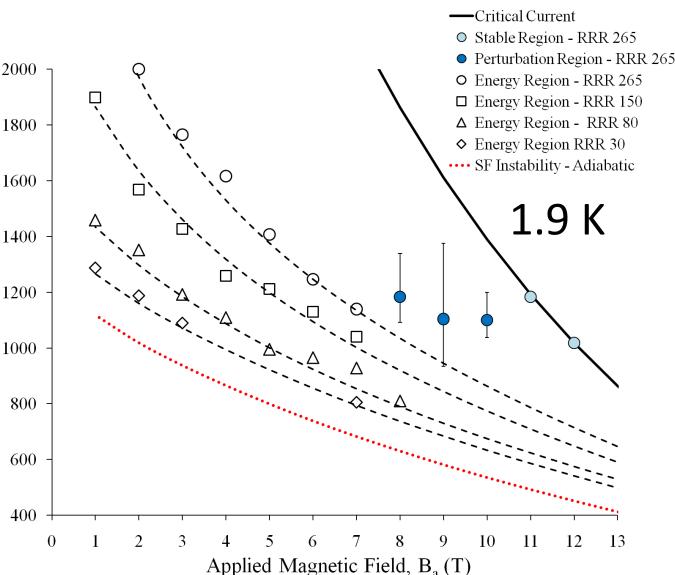
Magneto-thermal stability cook-book

- Reduce the critical current of the strand to the minimum required for magnet performance (range of 2500 A/mm², not much above)
- Reduce the strand diameter (1 mm and smaller) and the diameter of the multi-filamentary region
- Achieve a local RRR of the order of 100

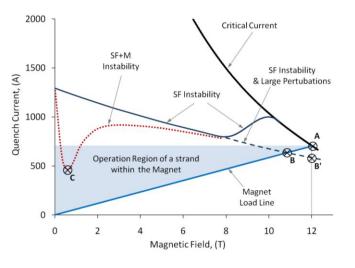

By courtesy of B. Bordini

Effect of RRR on stability – 1/4

000000	Sample ID	Time at 695 °C [hrs]	RRR	<u>I(</u> 4.3K-12T) [A]	J_{c} (4.3K-12T) [A/mm ²]	<i>B_{c2}</i> *(4.3 K) [T]	
	1	20	289±7	800	3068	24.55±0.38	
000 000	2	30	264±8	778	2982	24.55±0.22	
000000	3	50	149±8	773	2963	24.96±0.67	
0.8 mm 54/61	4	70	$81{\pm}7$	732	2806	26.59±1.58	
RRP [®] Nb ₃ Sn strand	5	100	30±3	759	2909	25.64±0.43	
26.5 26 25.5 25 25 25 25 25 25 25 2	2 [*] (4.3 K) (4.3 K) ror bars estir ith	nated	51000 49000 47000 (multication 45000 (multication) 43000 (multication)	same stra copper ra filament Heat trea obtain di	were prepa and (coppe atio ~ 0.92 size of ~ 8 atment cho fferent valu significantly	er to non ;effective 0 µm) sen in orde ues of the	er to RRR
0 20 40 60 Hours at 695 °		100 120					

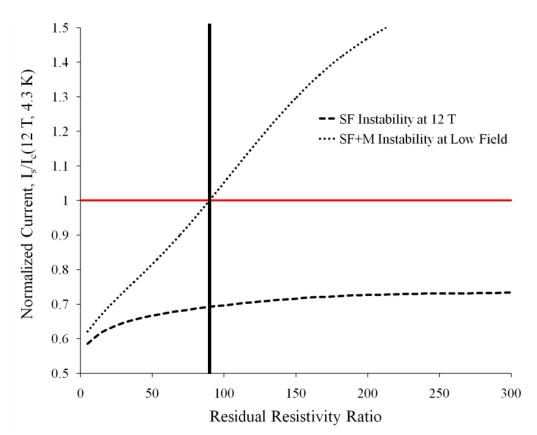

Effect of RRR on stability – 2/4

- 'Perturbation region': the quench current depends on the energy of the tiny perturbation acting on the strand (big variation of quench currents can occur)
- **`Energy Region'**: the quench current mainly depends on the potential energy stored in the current distribution
- V-H measurements at low fields shows that the minimum quench current significantly decrease by reducing the RRR below 100

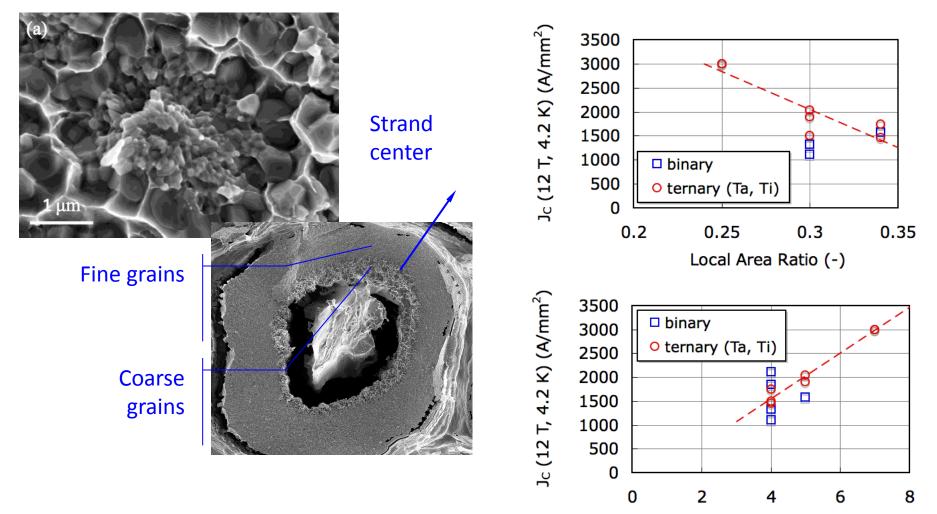


Effect of RRR on stability – 3/4

- At 1.9 K and with the same type of 2000 perturbation, the larger J_c and the smaller C_p of the wire 1800 (with respect to the values at 4.3 K) 1600 extend the 'energy region' and move the 1400 P 'perturbation region' towards higher Current,] 1200 magnetic fields.
- The semi-analytical model is in good agreement with the experimental data in the 'energy region'



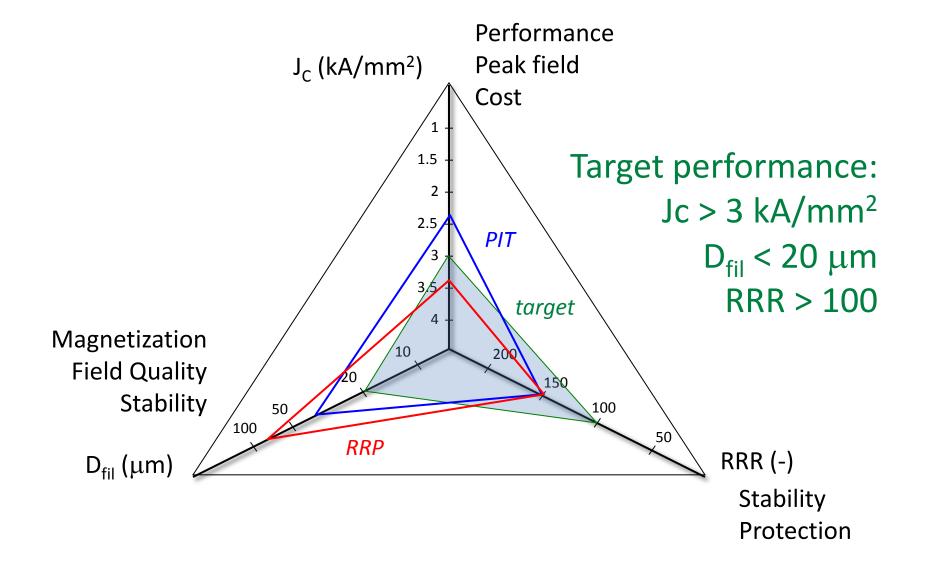
Effect of RRR on stability – 4/4


- For RRR larger than 100, the instability at low field (in the case of the considered conductor) is not a problem for a magnet designed to work at 12 T (or larger fields).
- The high field instability does not improve much increasing the RRR above 100.

The quench current at 4.3 K was computed for the minimum in the low field region (point C) and for 12 T in the case of self-field instability and large perturbations (point B').

By courtesy of I. Pong and L. Oberli

Microstructure and real estate



Number of filament layers (-)

A summary of what (we think) we understood

- The initial NED specifications were possibly too demanding for stable performance in a magnet environment
- There is an intrinsic interplay of critical current density, filament diameter, and RRR, equivalent to a critical surface for the overall performance of a given strand

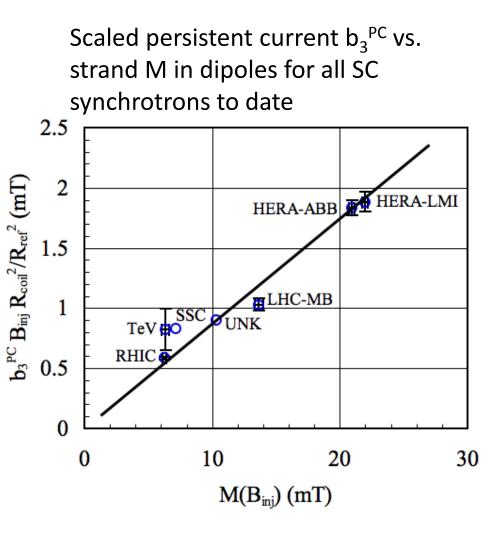
Performance targets for Nb₃Sn

Present strand specifications

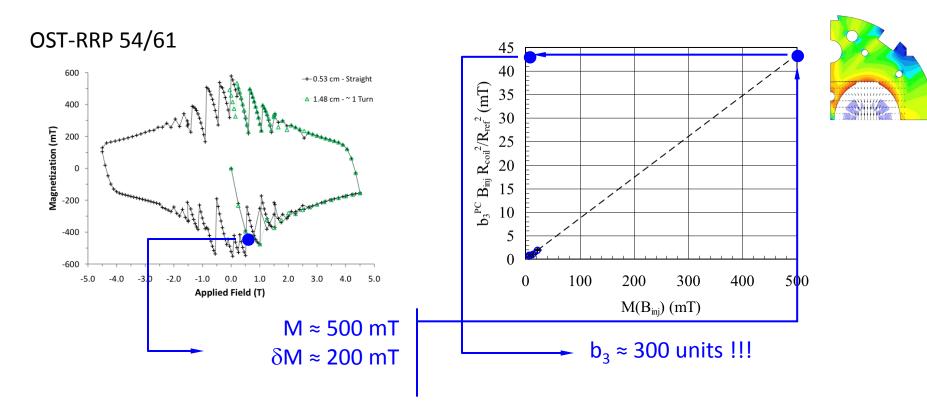
		NED	FReSCa-II	DS-MB
		(achieved)		
Strand diameter	(mm)	1.25	1	0.7
Sub-element diameter	(µm)	50	50	30 *
Copper:non-Copper	(-)	1.25	1.25	1.15
J _C (12 T, 4.2 K)	(A/mm ²)	2740	2500	2650
J _C (15 T, 4.2 K)	(A/mm ²)	1530	1250	
n-index	(-)	> 30	30	30
RRR	(-)	220	150	100
Piece length	(m)	> 1000	800	800

(*) one of the main topics of the discussion today

Magnetization related matters


Generic multipole

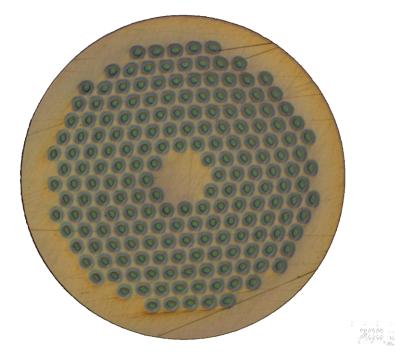
 (approximate
 integration in a coil of
 radius R_{coil}):


$$C_n \propto \mu_0 M(B) \left(\frac{R_{ref}}{R_{coil}} \right)^{n-1}$$

• Case of sextupole in a dipole magnet:

$$b_3^{PC} B_{inj} \left(\frac{R_{coil}}{R_{ref}} \right)^2 \propto M \left(B_{inj} \right)$$

Expected field quality



- What is the actual field error ?
- What can be tolerated and corrected ?

On-going strand work

0.7 mm, 108/127 stack RRP from OST

1 mm, 192 tubes PIT from Bruker EAS

Work is on-going on a new strand architecture (169 stack) to reduce the filament diameter to 52 μ m at 1 mm strand diameter, and 35 μ m at 0.7 mm strand diameter

R&D started for an alternative architecture with filaments of 30 μm at 0.7 mm strand diameter

Questions

- Do we agree on specifications (strand, cable) for magnet R&D and magnet production ?
- Material lead time is long (> 12 months), and we are already late. How do we manage/share the present stock ?
- What is the procurement strategy beyond the magnet R&D ?