

Cryocatcher Prototype at GSI

Patrick Puppel

GSI Helmholtzzentrum für Schwerionenforschung

Meeting on Interface 11 T – Cold Collimation CERN, 5th October 2011

GSI

GSI

Cryocatcher Requirements

- Controlled catching of charge exchanged ions on low desorption surfaces
- Surrounding cold chamber acts as a cryopump
 - Low static pressure
 - High pumping speed
- Thermal load onto LHe-cooling has to be kept low
- Cryocatcher has to be kept at a higher temperature to prevent gases from freezing out on the surface of the catcher
- Measurement of lost ions desirable

65

Position of the Cryocatcher

p.puppel@gsi.de - Cold Collimation - 10/05/2011 Cryocatcher Prototype at GSI

Cryocatcher Prototype Inner Chamber

Cryocatcher Prototype Dissipation of thermal Load

Cryocatcher Prototype Chamber and CWT

Cryocatcher Prototype Thermal Shield

Cryocatcher Prototype Chamber with Thermal Shield

GSİ

Cryocatcher Prototype Measurement of desorbed Gases

GSI

Cryocatcher Prototype Measurement of desorbed Gases

Cryocatcher Prototype Cryostat

Cryocatcher Prototype The Experiment

Cooling Down the Catcher Chamber

p.puppel@gsi.de - Cold Collimation - 10/05/2011 Cryocatcher Prototype at GSI

Measured Pressure Rise

p.puppel@gsi.de - Cold Collimation - 10/05/2011 Cryocatcher Prototype at GSI

Measured Pressure Rise Dependence on the Catcher Temperature

- The Cryocatcher has been tested at GSI using Au-, Ta-, and Bi-beams from SIS18 with energies ranging from 50 to 800 MeV/u.
- The cooling-concept showed the desired results in temperature and pressure.
- The measured pressure rise (i.e. desorption yields) showed an unexpected scaling with the ion energy.
- ► A dependence of the pressure rise (i.e. desorption yields) on the catcher temperature could not be observed ($32 \text{ K} \lesssim T \lesssim 94 \text{ K}$).
- The work on the specification for the final SIS100 cryocatcher is in progress.

F - -)

Measured Pressure Rise for Bi

16/15

p.puppel@gsi.de - Cold Collimation - 10/05/2011 Cryocatcher Prototype at GSI

Temperature Rise during Ion Bombardment

Bombardment with Bi at 650 MeV, 2×10^9 per pulse

17/15

GSI

Simulated Currents on Cryocatchers for Slow Extraction

GSI

Predicted average beam energy deposition on the ion catchers within each sector of SIS100 for a cycle with fast (FX) and slow extraction (SX). The differing numbers for sector 5 during slow extraction are given in brackets.

Ion Catcher	Load (FX) [W]	Load (SX) [W]
1	0.5	1.5 (3.1)
2	1.4	3.8 (16.7)
3	1.1	1.9 (3.7)
4	0.6	1.2 (1.4)
5 - 10	0.6	1.2

651

Explosive Plating

