A Discussion of CDF's Recent $B_s \rightarrow \mu^+\mu^-$ Result

D.Glenzinski Fermilab 27-Sep-2011

- "Search for $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$ Decays with CDF II"
 - -arXiv:1107.2304
 - -accepted to PRL
- Public web page

http://www-cdf.fnal.gov/physics/new/bottom/110707.blessed-Bsd2mumu/

Why?

Introduction

• In the SM $B_s \rightarrow \mu^+ \mu^-$ is an FCNC... only possible at the loop level

 $BF(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$

(E.Gamiz et al. (HPQCD Collaboration), A.J. Buras et al.)

Introduction

- All this also true for $\mathsf{B}_{\mathsf{d}} \not\rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$ decays too

$$BF(B_d \rightarrow \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$$

(E.Gamiz et al. (HPQCD Collaboration), A.J. Buras et al.)

- BF relative to ${\rm BF}({\rm B}_{\rm s} \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$) model dependent
 - measurements of both sensitive to flavor structure of underlying physics model
 - In MFV models, $BF(B_d/B_s) \sim |V_{td}|^2 / |V_{ts}|^2 \sim 1/20$

Experimental Status: Spring 2011

• Has not yet been experimentally observed

Experimental Status: Spring 2011

· Has not yet been experimentally observed

Where?

Fermilab Tevatron

- pp collider at
 - $E_{cm} = 2 \text{ TeV}$
- Run-II 2001-2011 (12 fb⁻¹ / exp delivered)
- Performing excellently
- All B-hadron species copiously produced

The CDF Experiment

- Multipurpose collider detector
- Pioneered silicon detectors at a hadron collider
- International collaboration, 600+ members

CDF Detector

Features:

- Precision silicon vertexing
- Large radius drift chamber (r=1.4m)
- 1.4 T solenoid
- projective calorimetry $(|\eta| < 3.5)$
- muon chambers $(|\eta| < 1.0)$
- Particle identification
- Silicon Vertex Trigger

How?

Analysis Description

- This is a simple analysis
 - 1) Find events with 2 muons in them
 - 2) Identify means to suppress background while keeping as much signal as possible
 - 3) Look for a bump in the $m_{\mu\mu}$ distribution

Analysis Strategy

- Our strategy is simple
 - "blind" ourselves to an extended mass signal region
 - Use data in the mass sidebands to estimate the dominant backgnd contribution to the signal region
 - Employ an a priori optimization to choose our final selection criteria
 - Build confidence in background estimate using control regions prior to "opening the box"

Emphasis on being robust and unbiased

Definition of Signal / Sideband Regions

• We "blind" the data in an extended signal region

Search Region:

- 5.169 < $m_{\mu\mu}$ < 5.469 GeV/c²
- corresponds to +/- $4\sigma(m_{\mu\mu})$
- final region +/- 2.5σ(m_{µµ})

Sideband Regions:

- additional 0.5 GeV on either side of search region
- used to understand Bkgd

Some Preliminaries

CDF Run-II $B_s \rightarrow \mu^+\mu^-$ Publications

- 1) 170 pb⁻¹ PRL 93, 032001 (2004). 78 citations – Sensitivity x3 improvement over Run I
- 2) 350 pb⁻¹ PRL 95, 221805 (2005). 50 citations
 - Sensitivity x4 improvement over 1)
- 3) 2 fb⁻¹ PRL 100, 101802 (2008). 197 citations
 - Sensitivity x4 improvement over 2)
- 4) 7fb⁻¹ accepted PRL, arXiv:1107.2304
 - Sensitivity x3 improvement over 3)

Sensitivity Improvements

- Added acceptance
 - Include events that pass near COT "spacer"
 - Include events in CMX "mini-skirts"
- Improved background discrimination
 - Improved dE/dX calibrations
 - Improved performance of multi-variate discriminant used in final selection criteria

Additional Acceptance

- We've always had these events on tape
- Just needed to understand the trigger efficiencies in these regions

Additional Acceptance

Kinematics unaffected

Improved Background Discrimination

• Improved Neural Net (NN) performance

Normalization

- We employ a relative normalization – Using B⁺ \rightarrow J/ ψ K⁺ \rightarrow $\mu^+\mu^-$ K⁺ events
 - Collect B⁺ and signal events with same trigger
 - Many exp. uncertainties significantly reduced

$$BF(B_{s,d} \to \mu^+ \mu^-) = \left(\frac{N_{Bs,d}}{N_{B+}}\right) \left(\frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{Bs,d} \varepsilon_{Bs,d}}\right) \left(\frac{f_u}{f_s}\right) BF(B^+ \to J/\psi K^+)$$

Di-muon Mass Distribution from Trigger

• The trigger paths used for this analysis

– Collect signal sample: $B \rightarrow \mu^+ \mu^-$

– Collect control sample: $J/\psi \rightarrow \mu^+\mu^-$, $B^+ \rightarrow J/\psi K^+$

Our Trigger Paths

- Collect data using two separate trigger paths corresponding to two separate topologies:
- "Central-Central" (CC)
 - both muons $|\eta| < 0.6$
 - $P_T(\mu) > 1.5 \text{ GeV/c}$
 - $-2.7 < m_{\mu\mu} < 6.0 \text{ GeV/c}^2$
 - $-\Delta\phi(\mu\mu) \leq 2.25$ rad
 - $P_T(\mu^+) + P_T(\mu^-) > 5 \text{ GeV/c}$

- "Central-Forward" (CF)
 - $|\eta_{\mu 1}| < 0.6, 0.6 < |\eta_{\mu 2}| < 1$
 - $-P_{T}(C) > 1.5 \text{ GeV/c}$
 - $P_{T}(F) > 2.0 \text{ GeV/c}$
 - $-2.7 < m_{\mu\mu} < 6.0 \text{ GeV/c}^2$
 - $-\Delta\phi(\mu\mu) \leq 2.25$ rad
 - $\mathsf{P}_{\mathsf{T}}(\mu^{\scriptscriptstyle +}) + \mathsf{P}_{\mathsf{T}}(\mu^{\scriptscriptstyle -}) > 5 \text{ GeV/c}$

CC vs CF Channels

• Treat each channel separately, combine at end

Normalization

• We employ a relative normalization

$$BF(B_{s,d} \rightarrow \mu^+ \mu^-) = \left(\frac{N_{Bs,d}}{N_{B+}}\right) \left(\frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{Bs,d} \varepsilon_{Bs,d}}\right) \left(\frac{f_u}{f_s}\right) BF(B^+ \rightarrow J/\psi K^+)$$

From fits to the data.

From the PDG 2010:

$$\frac{f_u}{f_s} = 3.55 \pm 0.47$$

 $BF(B^+ \to J/\psi K^+)BF(J/\psi \to \mu^+\mu^-) = (6.01 \pm 0.21) \times 10^{-5}$

Normalization: B+ Yield

- Use sideband subtracted signal yields
- B⁺ \rightarrow J/ $\psi \pi^+$ contamination <1%

Normalization

We employ a relative normalization

$$BF(B_{s,d} \to \mu^+ \mu^-) = \left(\frac{N_{Bs,d}}{N_{B+}}\right) \left(\frac{\alpha_{B+}\varepsilon_{B+}}{\alpha_{Bs,d}}\varepsilon_{Bs,d}\right) \left(\frac{f_u}{f_s}\right) BF(B^+ \to J/\psi K^+)$$

 $\alpha_B \equiv \text{geometric and kinematic acceptance of trigger}_{(from MC simulation)}$

$$\mathcal{E}_{B} \equiv \mathcal{E}_{\text{reco}} \cdot \mathcal{E}_{\text{NN}} \cdot \mathcal{E}_{\text{mass}} = \left(\mathcal{E}_{\text{track}} \cdot \mathcal{E}_{\mu\text{-ID}} \cdot \mathcal{E}_{\text{vertex}} \right) \cdot \mathcal{E}_{\text{NN}} \cdot \mathcal{E}_{\text{mass}}$$

From data using "Tag and Probe"
From MC, checked with B⁺ and J/ ψ data

Normalization

 $BF(B_{s,d} \rightarrow \mu^+ \mu^-) = N_{Bs,d} \cdot ses$

	СС		CF	
$(\alpha_{B^+}/\alpha_{B_s})$	0.307 ± 0.018	(±6%)	0.197 ± 0.014	(±7%)
$(\epsilon_{B^+}^{trig}/\epsilon_{B_s}^{trig})$	0.99935 ± 0.00012	(<1%)	0.97974 \pm 0.00016	(<1%)
$(\epsilon_{B^+}^{\it reco} / \epsilon_{B_s}^{\it reco})$	0.85 ± 0.06	(土8%)	0.84 ± 0.06	(±9%)
$\epsilon_{B_{S}}^{NN}(NN > 0.70)$	0.915 ± 0.042	(±4%)	0.864 \pm 0.040	(±4%)
$\epsilon_{B_{m{s}}}^{m{NN}}$ (NN $>$ 0.995)	0.461 ± 0.021	(±5%)	0.468 ± 0.022	(±5%)
N _B +	22388 ± 196	(±1%)	9943 \pm 138	(±1%)
f_u/f_s	3.55 +/- 0.47	(±13%)	3.55 +/- 0.47	(±13%)
$BR(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+)$	$(6.01 \pm 0.21) \times 10^{-5}$	(土4%)	$(6.01 \pm 0.21) \times 10^{-5}$	(土4%)
SES (All bins)	$(2.9 \pm 0.5) \times 10^{-9}$	(±18%)	$(4.0 \pm 0.7) imes 10^{-9}$	(±18%)

$ses(CC+CF) = 1.7 \times 10^{-9}$

• Uncertainty includes: variations in the $p_T(B)$ spectrum, kinematic differences between J/ ψ and $B_s \rightarrow \mu\mu$, variations in simulation parameters, differences between B⁺ data and MC

Some Definitions

3D and 2D versions of variables 2D denoted with subscript "T" • P(B) = momentum of B

$$P_{B} = P_{\mu\mu} = \vec{P}_{\mu+} + \vec{P}_{\mu-}$$

- $\vec{P}_{T}(\mu\mu)$ L: decay length μ - $L = \vec{L} \cdot \vec{P}_{\mu\mu} / |\vec{P}_{\mu\mu}|$
 - λ : proper decay time

 $\lambda = cLm_{\mu\mu} / P_{\mu\mu}$

• $\Delta\Omega$ = pointing angle

$$\Delta \Omega = \angle (\vec{L}, \vec{P}_{\mu\mu})$$

The Details...

Analysis Description

• This is a simple analysis

\checkmark Find events with 2 muons in them

- 2) Identify means to suppress background while keeping as much signal as possible
- 3) Look for a bump in the $m_{\mu\mu}$ distribution

Suppress Background, Keep Signal

- We start with some simple "baseline" requirements to ensure two good muons that originate from a common vertex
- Then we exploit features of our signal events to discriminate signal from background

Baseline Requirements

We require:

- "good" COT tracks and μ track-stubs
- >=3 silicon r- ϕ hits
- 4.669 < $m_{\mu\mu}$ < 5.969 GeV/c²
- "good" vertex
 - σ(L)<150 μm
 - χ² < 15
 - L⊤ < 1 cm

- P_T(C)>2.0, P_T(F)>2.2 GeV/c
 - $P_T(\mu\mu) > 4 \text{ GeV/c}$
 - λ < 0.3 cm
 - $\lambda / \sigma_{\lambda} > 2$
 - $\Delta\Omega$ < 0.70 rad
 - Isolation > 0.50

maintain most the signal while significantly reducing bgd

Baseline sample

Completely background dominated

D.Glenzinski, Fermilab

Discriminate Signal from Background

Signal characteristics

- final state is fully reconstructed
- Bs has long lifetime (cτ = 440 μm)
- B fragmentation is hard

For real B_s $\rightarrow \mu + \mu^-$ expect:

- m_{µµ} = m(B_s)
- λ = cLT m_{µµ}/PT(µµ)
 to be large
- LT and PT($\mu\mu$) to be co-linear (ie. small $\Delta\Omega$)
- few additional tracks

Discriminate Signal from Background

In general:

- m_{µµ} ≠ m(Bs)
- λ = cLT m_{µµ}/PT(µµ)
 will be smaller

Contributing Backgrounds

- sequencial semi-leptonic decay, b→μ−cX→μ+μ−X
 - double semi-leptonic
 decay, g→bb→μ+μ−X
 - continuum μ+μ⁻, μ + fake
 fake+fake
- LT and PT($\mu\mu$) will not be co-linear (large $\Delta\Omega$)
- more additional tracks

Discriminating Variables

 Some variables that take advantage of these distinguishing characteristics

Discriminating Variables

more variables that take advantage of these distinguishing characteristics

Discriminate Signal from Background

- Employ a Neural Net to optimally combine the information from these variables
 - We **exclude** mass information from the NN
 - M.Feindt and U.Kerzel, NIM A 559, 190 (2006)
- Training
 - Signal: $B_s \rightarrow \mu^+ \mu^- MC$
 - Background: mass sideband regions
 - Some fraction of each sample set aside to test for bias and overtraining

MC modeling

Verify modeling of signal MC using B⁺ events

MC modeling

Verify modeling of signal MC using B⁺ events

MC modeling

Verify modeling of signal MC using B⁺ events

NN correlation with $m_{\mu\mu}$

- Important to verify ν_{NN} is independent of $m_{\mu\mu}$

NN correlation with $m_{\mu\mu}$

background dominated control samples

- Important to verify v_{NN} is independent of $m_{\mu\mu}$

NN correlation with $m_{\mu\mu}$

- Important to verify ν_{NN} is independent of $m_{\mu\mu}$

NN Separation

achieves powerful background discrimination

NN Variables

variable	description
$\Delta \Omega$	angle btwn L and p(B) (3D)
Isolation	B candidate isolation
d ₀ (μ ₁)	muon i.p. where $ d_0(\mu_1) > d_0(\mu_2) $
d ₀ (B)	B candidate i.p.
L_T/σ_{LT}	decay length significance in xy plane
χ ²⁽ vtx)	vertex chi-squared vertex
L	decay length (3D)
$\min(p_T(\mu_1), p_T(\mu_2))$	minimum muon p _T
$ d_0(\mu_2) /\sigma_{d_0}$	muon i.p. significance
λ/σ_{λ}	proper time significance
λ	proper time
d ₀ (μ ₂)	muon i.p.
$\Delta \Omega_{T}$	angle btwn L_T and $p_T(B)$ (2D)
$ d_0(\mu_1) /\sigma_{d^0}$	muon i.p. significance

 A ranked list of the 14 variables used in the NN with the most significant variables at the top

Optimization of NN Requirements

• Figure-of-merit: expected limit

$$\left\langle BF(B_s \to \mu^+ \mu^-) \right\rangle = \left(\frac{\left\langle N_{Bs}^{90\% CL} \right\rangle}{N_{B+}} \right) \left(\frac{f_u}{f_s} \right) \left(\frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{Bs} \varepsilon_{Bs}} \right) BF(B^+ \to J/\psi K^+)$$

$$\left\langle N_{Bs}^{90\% CL} \right\rangle = \sum_{n_{obs=0}}^{\infty} P(n_{obs} \mid n_{bg}) \cdot N_{Bs}^{90\% CL}(n_{bg}, \Delta_{bg}, \Delta_{\alpha \cdot \varepsilon})$$

- Exploit S/B differences in ν_{NN} and $m_{\mu\mu}$ Bin in ($\nu_{NN},\,m_{\mu\mu}$) and optimize in 2D
- Broad minimum observed
 - Move away from regions with very few SB events
 - Choose something ~middle of minimum

Final NN Requirements

ν_{NN} bins 0.700 - 0.760B_s mass bins B_d mass bins 0.760 - 0.8505219 - 52435310 - 5334 0.850 - 0.9005334 - 5358 5243 - 5267 Х 0.900 - 0.9405358 - 5382 5267 - 5291 0.940 - 0.9705382 - 5406 5291 - 53150.970 - 0.9875406 - 54305315 - 53390.987 - 0.9950.995 <

- Require 0.70 < v_{NN} ($\varepsilon_{S} \sim 90\%$, $\varepsilon_{B} \sim x\%$)
- Use 40 (v_{NN} , $m_{\mu\mu}$) bins – Each for CC and CF channels

Analysis Description

• This is a simple analysis

\checkmark Find events with 2 muons in them

- Identify means to suppress background while keeping as much signal as possible
- 3) Look for a bump in the $m_{\mu\mu}$ distribution

Analysis Description

• This is a simple analysis

\checkmark Find events with 2 muons in them

- Identify means to suppress background while keeping as much signal as possible
- 3) Look for a bump in the $m_{\mu\mu}$ distribution
 - Understand signal distributions
 - Understand background yields

Estimating Signal Yield

- Signal yield estimated for each ($v_{\text{NN}},\,m_{\mu\mu})$ bin using relative normalization

$$N_{Bs,d} = \left(\frac{N_{B+}}{BF(B^+ \to J/\psi K^+)}\right) \left(\frac{f_s}{f_u}\right) \left(\frac{\alpha_{Bs,d}\varepsilon_{Bs,d}}{\alpha_{B+}\varepsilon_{B+}}\right) BF(B_{s,d} \to \mu^+ \mu^-)$$

$$\varepsilon_B \equiv \varepsilon_{\text{reco}} \cdot \varepsilon_{\text{NN}} \cdot \varepsilon_{\text{mass}} = \left(\varepsilon_{\text{track}} \cdot \varepsilon_{\mu-\text{ID}} \cdot \varepsilon_{\text{vertex}}\right) \cdot \varepsilon_{\text{NN}} \cdot \varepsilon_{\text{mass}}$$

Varies bin-by-bin

Estimates of SM $B_s \rightarrow \mu^+ \mu^-$ Yields

CC channel:

	-				
NN Bin/Mass Bin	5.310-5.334	5.334-5.358	5.358-5.382	5.382-5.406	5.406-5.430
0.700-0.760	0.002 ± 0.000	0.007 ± 0.001	0.011 ± 0.002	0.006 ± 0.001	0.001 ± 0.000
0.760-0.850	0.004 ± 0.001	0.015 ± 0.003	0.020 ± 0.004	0.011 ± 0.002	0.003 ± 0.001
0.850-0.900	0.004 ± 0.001	0.010 ± 0.002	0.014 ± 0.003	0.008 ± 0.001	0.002 ± 0.000
0.900-0.940	0.005 ± 0.001	0.016 ± 0.003	0.023 ± 0.004	0.012 ± 0.002	0.002 ± 0.000
0.940-0.970	0.008 ± 0.001	0.022 ± 0.004	0.032 ± 0.006	0.016 ± 0.003	0.003 ± 0.001
0.970-0.987	0.010 ± 0.002	0.029 ± 0.005	0.041 ± 0.007	0.022 ± 0.004	0.005 ± 0.001
0.987-0.995	0.013 ± 0.002	0.046 ± 0.008	0.062 ± 0.011	0.031 ± 0.006	0.007 ± 0.001
0.995-1.000	0.052 ± 0.009	0.167 ± 0.030	0.227 ± 0.040	0.119 ± 0.021	0.029 ± 0.005

 Σ =1.1evt

CF channel:

• • • • • • • • • • • • • • • • • • • •					
NN Bin/Mass Bin	5.310-5.334	5.334-5.358	5.358-5.382	5.382-5.406	5.406-5.430
0.700-0.760	0.002 ± 0.000	0.006 ± 0.001	0.007 ± 0.001	0.005 ± 0.001	0.001 ± 0.000
0.760-0.850	0.003 ± 0.001	0.012 ± 0.002	0.015 ± 0.003	0.009 ± 0.002	0.002 ± 0.000
0.850-0.900	0.003 ± 0.001	0.009 ± 0.002	0.012 ± 0.002	0.006 ± 0.001	0.001 ± 0.000
0.900-0.940	0.004 ± 0.001	0.012 ± 0.002	0.017 ± 0.003	0.009 ± 0.002	0.002 ± 0.000
0.940-0.970	0.005 ± 0.001	0.015 ± 0.003	0.021 ± 0.004	0.013 ± 0.002	0.003 ± 0.001
0.970-0.987	0.008 ± 0.002	0.026 ± 0.005	0.036 ± 0.007	0.019 ± 0.003	0.005 ± 0.001
0.987-0.995	0.007 ± 0.001	0.021 ± 0.004	0.029 ± 0.005	0.017 ± 0.003	0.004 ± 0.001
0.995-1.000	0.039 ± 0.007	0.116 ± 0.021	0.159 ± 0.029	0.090 ± 0.016	0.023 ± 0.004

Number of B_s signal events per bin, BF=SM

Estimating Background Yield

- Only 2 components to the background
 1) Combinatoric
 - Estimated using mass sidebands
 - 2) Peaking
 - Only source from $B \rightarrow h^+h^{-}$ (h = π , or K)
 - Kinematics taken from dedicated MC samples
 - Probability that π ,K survive muon ID criteria is taken from D* tagged D $\rightarrow \pi$ K sample
- Verify accuracy of estimates using background control samples

Estimating Combinatoric Background

• Slope: from fit to $m_{\mu\mu}$ >5 GeV/c² for 0.70 < v_{NN} – CC and CF channels separately

Estimating Combinatoric Background

• Normalization determined for each ν_{NN} bin separately (for CC and CF separately)

Estimating Combinatoric Background

- Normalization determined for each ν_{NN} bin separately (for CC and CF separately)

Combinatoric Background Estimate: B_s

Combinatoric background: B_s region

Mass Bin (GeV/c ²) NN Bin	5.310-5.334	5.334 - 5.358	5.358-5.382	5.382-5.406	5.406-5.430
СС					
0.700 < NN < 0.760	8.02±0.62	7.94 ± 0.61	7.87 ± 0.61	7.79 ± 0.60	7.71±0.59
0.760 < NN < 0.850	8.42 ± 0.64	8.34 ± 0.63	8.26 ± 0.62	8.18 ± 0.62	8.10 ± 0.61
0.850 < NN < 0.900	3.55 ± 0.39	3.51 ± 0.39	3.48 ± 0.39	3.44 ± 0.38	3.41 ± 0.38
0.900 < NN < 0.940	3.51 ± 0.39	3.47 ± 0.39	3.44 ± 0.38	3.41 ± 0.38	3.37 ± 0.38
0.940 < NN < 0.970	2.86 ± 0.35	2.83 ± 0.35	2.81 ± 0.34	2.78 ± 0.34	2.75 ± 0.34
0.970 < NN < 0.987	1.61 ± 0.39	1.6 ± 0.39	1.58 ± 0.38	1.57 ± 0.38	1.55 ± 0.37
0.987 < NN < 0.995	0.81 ± 0.23	0.80 ± 0.23	0.79 ± 0.22	0.78 ± 0.22	0.78 ± 0.22
0.995 < NN < 1.000	$0.16 {\pm} 0.11$	0.16 ± 0.10	0.16 ± 0.10	0.16 ± 0.10	$0.16 {\pm} 0.10$
CF					
0.700 < NN < 0.760	8.49 ± 0.65	8.39 ± 0.64	8.28 ± 0.63	8.17 ± 0.62	8.07 ± 0.61
0.760 < NN < 0.850	9.45 ± 0.69	9.33 ± 0.68	9.21 ± 0.67	9.1 ± 0.66	$8.98 {\pm} 0.65$
0.850 < NN < 0.900	4.91 ± 0.48	4.85 ± 0.47	4.79 ± 0.46	4.73 ± 0.46	4.67 ± 0.45
0.900 < NN < 0.940	3.87±0.42	3.82 ± 0.41	3.77 ± 0.41	3.73 ± 0.40	3.68 ± 0.40
0.940 < NN < 0.970	3.29 ± 0.38	3.25 ± 0.38	3.21 ± 0.37	3.17 ± 0.37	3.12 ± 0.36
0.970 < NN < 0.987	2.37 ± 0.53	2.34 ± 0.53	2.31 ± 0.52	2.28 ± 0.52	2.25 ± 0.51
0.987 < NN < 0.995	0.67 ± 0.20	0.66 ± 0.20	0.65 ± 0.20	0.64 ± 0.19	$0.63 {\pm} 0.19$
0.995 <nn<1.000< td=""><td>0.54 ± 0.27</td><td>0.53 ± 0.27</td><td>0.53 ± 0.27</td><td>0.52 ± 0.26</td><td>0.51 ± 0.26</td></nn<1.000<>	0.54 ± 0.27	0.53 ± 0.27	0.53 ± 0.27	0.52 ± 0.26	0.51 ± 0.26

 uncertainty includes: slope & normalization uncertainties as well as variations in fit function and range

Combinatoric Background Estimate: B_d

Mass Bin (GeV/c ²) NN Bin	5.219-5.243	5.243-5.267	5.267-5.291	5.291-5.315	5.315-5.339
CC					
0.700 < NN < 0.760	8.31±0.64	8.24 ± 0.63	8.16 ± 0.63	8.08 ± 0.62	8.00±0.62
0.760 <nn<0.850< td=""><td>8.73 ± 0.66</td><td>8.65 ± 0.65</td><td>8.57 ± 0.65</td><td>8.49 ± 0.64</td><td>8.41±0.63</td></nn<0.850<>	8.73 ± 0.66	8.65 ± 0.65	8.57 ± 0.65	8.49 ± 0.64	8.41±0.63
0.850 <nn<0.900< td=""><td>3.68 ± 0.41</td><td>3.64 ± 0.40</td><td>3.61 ± 0.40</td><td>3.57 ± 0.40</td><td>3.54±0.39</td></nn<0.900<>	3.68 ± 0.41	3.64 ± 0.40	3.61 ± 0.40	3.57 ± 0.40	3.54±0.39
0.900 < NN < 0.940	3.63 ± 0.40	3.60 ± 0.40	3.57 ± 0.40	3.53 ± 0.39	3.50±0.39
0.940 < NN < 0.970	2.97 ± 0.36	2.94 ± 0.36	2.91 ± 0.36	2.88 ± 0.35	2.86±0.35
0.970 <nn<0.987< td=""><td>1.67 ± 0.40</td><td>1.66 ± 0.40</td><td>1.64 ± 0.40</td><td>1.62 ± 0.39</td><td>1.61±0.39</td></nn<0.987<>	1.67 ± 0.40	1.66 ± 0.40	1.64 ± 0.40	1.62 ± 0.39	1.61±0.39
0.987 < NN < 0.995	0.84 ± 0.24	0.83 ± 0.23	0.82 ± 0.23	0.81 ± 0.23	0.80±0.23
0.995 < NN < 1.000	0.17 ± 0.11	0.17 ± 0.11	0.16 ± 0.11	0.16 ± 0.11	0.16 ± 0.11
CF					
0.700 < NN < 0.760	8.89 ± 0.68	8.78 ± 0.67	8.68 ± 0.66	8.57 ± 0.65	8.47±0.65
0.760 < NN < 0.850	9.89 ± 0.72	9.78 ± 0.71	9.66 ± 0.70	9.54 ± 0.69	9.42±0.69
0.850 < NN < 0.900	5.14 ± 0.50	5.08 ± 0.49	5.02 ± 0.49	4.96 ± 0.48	4.90±0.47
0.900 < NN < 0.940	4.05 ± 0.44	4.00 ± 0.43	3.96 ± 0.43	3.91 ± 0.42	3.86±0.42
0.940 < NN < 0.970	3.44 ± 0.40	3.40 ± 0.40	3.36 ± 0.39	3.32 ± 0.39	3.28±0.38
0.970 < NN < 0.987	2.48 ± 0.56	2.45 ± 0.55	2.43 ± 0.55	2.40 ± 0.54	2.37±0.53
0.987 < NN < 0.995	0.70 ± 0.21	0.69 ± 0.21	0.68 ± 0.21	0.67 ± 0.20	0.66±0.20
0.995 <nn<1.000< td=""><td>0.57 ± 0.29</td><td>0.56 ± 0.28</td><td>0.55 ± 0.28</td><td>0.55 ± 0.28</td><td>0.54±0.27</td></nn<1.000<>	0.57 ± 0.29	0.56 ± 0.28	0.55 ± 0.28	0.55 ± 0.28	0.54±0.27

Combinatoric background: B_d region

 uncertainty includes: slope & normalization uncertainties as well as variations in fit function and range

- Backgrounds which peak near the mass signal region will not be included in the combinatoric background estimates
- Only relevant sources of such events:
 - $-B_d \rightarrow K+\pi$ -, $\pi+\pi$ -, K+K-
 - $-B_s \rightarrow K+K-, \pi+K, \pi+\pi-$
- These are suppressed because:
 - BF are small (10⁻⁵ to <10⁻⁷)
 - $-m_{\mu\mu}$ calculated assuming muon mass
 - Probability($\pi/K \rightarrow$ fake μ) is small (<1x10⁻²)

• To estimate yield, solve for $N_{B^{s,d}}$:

$$\frac{BF(B_{s,d} \rightarrow h^+ h^{\prime -})}{BF(B^+ \rightarrow J/\psi K^+)} = \left(\frac{N_{Bhh}}{N_{B+}}\right) \left(\frac{f_u}{f_{s,d}}\right) \left(\frac{\alpha_{B+}\varepsilon_{B+}}{\alpha_{Bs,d}\varepsilon_{Bs,d}}\right)$$

• Obtain $\alpha^* \epsilon$:

 $\alpha_{B} = \text{geometric and kinematic acceptance of trigger}$ $\varepsilon_{B} = \varepsilon_{\text{reco}} \cdot \varepsilon_{\text{NN}} \cdot \varepsilon_{\text{mass}} = \left(\varepsilon_{\text{track}} \cdot \varepsilon_{\mu\text{-ID}} \cdot \varepsilon_{\text{vertex}}\right) \cdot \varepsilon_{\text{NN}} \cdot \varepsilon_{\text{mass}}$ $same \text{ as } B \rightarrow \mu^{+}\mu^{-}$ requires special treatment

D.Glenzinski, Fermilab

• $\varepsilon_{\mu-fake}$ is taken from D* tagged D+ $\rightarrow \pi^+K^-$ data

ε_{μ-fake} parameterized (p_T, *L*_{inst})
 – Separately for π^{+/-}, K⁺, and K⁻

D.Glenzinski, Fermilab

$B \rightarrow hh$ Background Estimate: B_s

$B \rightarrow hh$ background: B_s region

Mass Bin (GeV/c ²) NN Bin	5.310-5.334	5.334 - 5.358	5.358-5.382	5.382-5.406	5.406-5.430
СС					
0.700 <nn<0.760< td=""><td>0.002 ± 0.001</td><td>$0.001 \pm < 0.001$</td><td>-</td><td>-</td><td>-</td></nn<0.760<>	0.002 ± 0.001	$0.001 \pm < 0.001$	-	-	-
0.760 <nn<0.850< td=""><td>0.004 ± 0.001</td><td>$0.002 \pm < 0.001$</td><td>$0.001\pm<0.001$</td><td>-</td><td>-</td></nn<0.850<>	0.004 ± 0.001	$0.002 \pm < 0.001$	$0.001\pm<0.001$	-	-
0.850 <nn<0.900< td=""><td>0.004 ± 0.001</td><td>$0.001\pm<0.001$</td><td>-</td><td>-</td><td>-</td></nn<0.900<>	0.004 ± 0.001	$0.001\pm<0.001$	-	-	-
0.900 <nn<0.940< td=""><td>0.005 ± 0.001</td><td>$0.002 \pm < 0.001$</td><td>$0.001\pm<0.001$</td><td>-</td><td>-</td></nn<0.940<>	0.005 ± 0.001	$0.002 \pm < 0.001$	$0.001\pm<0.001$	-	-
0.940 <nn<0.970< td=""><td>0.008 ± 0.002</td><td>0.002 ± 0.001</td><td>$0.001\pm$ <0.001</td><td>_</td><td>-</td></nn<0.970<>	0.008 ± 0.002	0.002 ± 0.001	$0.001\pm$ <0.001	_	-
0.970 <nn<0.987< td=""><td>0.010 ± 0.002</td><td>0.003 ± 0.001</td><td>$0.001\pm<0.001$</td><td>_</td><td>_</td></nn<0.987<>	0.010 ± 0.002	0.003 ± 0.001	$0.001\pm<0.001$	_	_
0.987 <nn<0.995< td=""><td>0.013 ± 0.003</td><td>0.005 ± 0.001</td><td>0.002 ± 0.001</td><td>$0.001\pm<0.001$</td><td>_</td></nn<0.995<>	0.013 ± 0.003	0.005 ± 0.001	0.002 ± 0.001	$0.001\pm<0.001$	_
0.995 <nn<1.000< td=""><td>0.052 ± 0.012</td><td>0.019 ± 0.005</td><td>0.006 ± 0.003</td><td>0.002 ± 0.001</td><td>$0.001 \pm < 0.001$</td></nn<1.000<>	0.052 ± 0.012	0.019 ± 0.005	0.006 ± 0.003	0.002 ± 0.001	$0.001 \pm < 0.001$
CF					
0.700 <nn<0.760< td=""><td>$0.001 \pm < 0.001$</td><td>-</td><td>_</td><td>-</td><td>-</td></nn<0.760<>	$0.001 \pm < 0.001$	-	_	-	-
0.760 <nn<0.850< td=""><td>$0.001 \pm < 0.001$</td><td>$0.001 \pm < 0.001$</td><td>_</td><td>-</td><td>-</td></nn<0.850<>	$0.001 \pm < 0.001$	$0.001 \pm < 0.001$	_	-	-
0.850 <nn<0.900< td=""><td>$0.001 \pm < 0.001$</td><td>_</td><td>_</td><td>_</td><td>-</td></nn<0.900<>	$0.001 \pm < 0.001$	_	_	_	-
0.900 <nn<0.940< td=""><td>$0.002 \pm < 0.001$</td><td>$0.001\pm<0.001$</td><td>_</td><td>_</td><td>_</td></nn<0.940<>	$0.002 \pm < 0.001$	$0.001\pm<0.001$	_	_	_
0.940 <nn<0.970< td=""><td>0.002 ± 0.001</td><td>$0.001 \pm < 0.001$</td><td>-</td><td>_</td><td>-</td></nn<0.970<>	0.002 ± 0.001	$0.001 \pm < 0.001$	-	_	-
0.970 <nn<0.987< td=""><td>0.003 ± 0.001</td><td>$0.001 \pm < 0.001$</td><td>$0.001 \pm < 0.001$</td><td>_</td><td>-</td></nn<0.987<>	0.003 ± 0.001	$0.001 \pm < 0.001$	$0.001 \pm < 0.001$	_	-
0.987 <nn<0.995< td=""><td>0.003 ± 0.001</td><td>$0.001 \pm < 0.001$</td><td>_</td><td>_</td><td>_</td></nn<0.995<>	0.003 ± 0.001	$0.001 \pm < 0.001$	_	_	_
0.995 <nn<1.000< td=""><td>0.015 ± 0.004</td><td>0.006 ± 0.002</td><td>0.002 ± 0.001</td><td>$0.001 \pm < 0.001$</td><td>-</td></nn<1.000<>	0.015 ± 0.004	0.006 ± 0.002	0.002 ± 0.001	$0.001 \pm < 0.001$	-

 Uncertainty includes: BF and fake-μ rate uncertainties (statistics of D* subsamples, D⁰ fits, residual luminosity dependence)

$B \rightarrow hh$ Background Estimate: B_d

$B \rightarrow hh$ background: B_d region

Mass Bin (GeV/c ²) NN Bin	5.219-5.243	5.243-5.267	5.267 - 5.291	5.291-5.315	5.315-5.339
СС					
0.700 < NN < 0.760	0.011 ± 0.003	0.010 ± 0.002	0.008 ± 0.002	0.004 ± 0.001	$0.002 \pm < 0.001$
0.760 < NN < 0.850	0.019 ± 0.006	0.019 ± 0.004	0.014 ± 0.003	0.008 ± 0.002	0.003 ± 0.001
0.850 < NN < 0.900	0.016 ± 0.005	0.013 ± 0.003	0.010 ± 0.002	0.006 ± 0.001	$0.002 \pm < 0.001$
0.900 < NN < 0.940	0.022 ± 0.006	0.021 ± 0.005	0.016 ± 0.004	0.009 ± 0.002	0.003 ± 0.001
0.940 < NN < 0.970	0.034 ± 0.010	0.028 ± 0.006	0.022 ± 0.005	0.012 ± 0.003	0.004 ± 0.001
0.970 < NN < 0.987	0.042 ± 0.013	0.037 ± 0.009	0.029 ± 0.007	0.016 ± 0.004	0.006 ± 0.001
0.987 < NN < 0.995	0.060 ± 0.018	0.059 ± 0.014	0.043 ± 0.010	0.024 ± 0.006	0.008 ± 0.002
$0.995 \! < \! NN \! < \! 1.000$	0.231 ± 0.068	0.211 ± 0.049	0.157 ± 0.036	0.090 ± 0.022	0.035 ± 0.008
CF					
0.700 < NN < 0.760	0.003 ± 0.001	0.003 ± 0.001	0.002 ± 0.001	$0.001 \pm < 0.001$	-
0.760 < NN < 0.850	0.005 ± 0.002	0.006 ± 0.002	0.004 ± 0.001	0.003 ± 0.001	$0.001 \pm < 0.001$
0.850 < NN < 0.900	0.004 ± 0.001	0.004 ± 0.001	0.004 ± 0.001	0.002 ± 0.001	$0.001 \pm < 0.001$
0.900 < NN < 0.940	0.006 ± 0.002	$0.006 {\pm} 0.002$	0.005 ± 0.001	$0.003 {\pm} 0.001$	$0.001\pm$ <0.001
0.940 < NN < 0.970	0.008 ± 0.003	$0.008 {\pm} 0.002$	0.006 ± 0.002	0.004 ± 0.001	$0.001 \pm < 0.001$
0.970 <nn<0.987< td=""><td>0.012 ± 0.004</td><td>$0.013 {\pm} 0.003$</td><td>0.011 ± 0.003</td><td>0.006 ± 0.002</td><td>0.002 ± 0.001</td></nn<0.987<>	0.012 ± 0.004	$0.013 {\pm} 0.003$	0.011 ± 0.003	0.006 ± 0.002	0.002 ± 0.001
0.987 < NN < 0.995	0.010 ± 0.003	0.011 ± 0.003	0.009 ± 0.002	0.005 ± 0.001	$0.002 \pm < 0.001$
0.995 < NN < 1.000	0.057 ± 0.018	0.061 ± 0.015	0.048 ± 0.012	0.028 ± 0.007	0.011 ± 0.003

 Uncertainty includes: BF and fake-μ rate uncertainties (statistics of D* subsamples, D⁰ fits, residual luminosity dependence)

Background Summary: B_s Search

Combinatoric:

NN Bin	CC	CF
0.700 < NN < 0.970	$129.2{\pm}6.5$	146.3±7.0
0.970 < NN < 0.987	$7.9{\pm}1.9$	$11.6{\pm}1.8$
0.987 < NN < 0.995	4.0±1.1	3.3±1.0
0.995 < NN < 1.000	$0.79{\pm}0.52$	$2.6{\pm}1.5$

$B \rightarrow hh$:

NN Bin	CC	CF
0.700 < NN < 0.970	$0.03{\pm}0.01$	$0.01 \pm < 0.01$
0.970 < NN < 0.987	$0.01 {\pm} {<} 0.01$	$0.01\pm<\!0.01$
0.987 < NN < 0.995	$0.02 \pm < 0.01$	$0.01\pm<\!0.01$
0.995 < NN < 1.000	$0.08{\pm}0.02$	$0.03{\pm}0.01$

• Focus on 3 most sensitive ν_{NN} bins – integrating over $m_{\mu\mu}$ bins, first 5 ν_{NN} bins

Background Summary: B_d Search

Combinatoric:

NN Bin	CC	CF
0.700 < NN < 0.970	134.0±6.6	153.4±7.3
0.970 < NN < 0.987	8.2±2.0	12.1±1.9
0.987 < NN < 0.995	4.1±1.2	3.4±1.1
0.995 < NN < 1.000	$0.8{\pm}0.5$	$2.8{\pm}1.6$

$B \rightarrow hh$:

NN Bin	СС	CF
0.700 < NN < 0.970	$0.31{\pm}0.08$	$0.09{\pm}0.02$
0.970 < NN < 0.987	$0.13{\pm}0.03$	$0.05{\pm}0.01$
0.987 < NN < 0.995	$0.19{\pm}0.05$	$0.04{\pm}0.01$
0.995 < NN < 1.000	$0.72{\pm}0.20$	$0.20{\pm}0.05$

• Focus on 3 most sensitive v_{NN} bins – integrating over $m_{\mu\mu}$ bins, first 5 v_{NN} bins

- We employ these data samples:
 - Opposite sign μμ
 - L > 0 (OS+) this is our signal sample
 - L < 0 (OS-) bgd control sample</p>
 - Dominated by combinatoric background
 - Kinematics very similar to signal sample
 - Same sign $\mu\mu$ (SS) bgd control sample
 - Dominated by combinatoric background
 - Different kinematics from signal sample
 - Fake- μ enhanced sample (FM) bgd control sample
 - (require >=1 muon to fail μ -ID requirements)
 - Large $B \rightarrow$ hh contribution
 - Different kinematics from signal sample

			CC	
sample	NN cut	pred	obsv	prob(%)
	0.700 <nn<0.760< td=""><td>217.4±(12.5)</td><td>203</td><td>77.7</td></nn<0.760<>	217.4±(12.5)	203	77.7
OS-	0.760 <nn<0.850< td=""><td>$262.0 \pm (14.1)$</td><td>213</td><td>99.1</td></nn<0.850<>	$262.0 \pm (14.1)$	213	99.1
	0.850 <nn<0.900< td=""><td>$117.9 \pm (8.6)$</td><td>120</td><td>44.7</td></nn<0.900<>	$117.9 \pm (8.6)$	120	44.7
	0.900 <nn<0.940< td=""><td>$112.1 \pm (8.4)$</td><td>116</td><td>39.4</td></nn<0.940<>	$112.1 \pm (8.4)$	116	39.4
	0.940 <nn<0.970< td=""><td>$112.7 \pm (8.4)$</td><td>108</td><td>64.2</td></nn<0.970<>	$112.7 \pm (8.4)$	108	64.2
	0.970 <nn<0.987< td=""><td>$80.2 \pm (6.9)$</td><td>75</td><td>68.3</td></nn<0.987<>	$80.2 \pm (6.9)$	75	68.3
	0.987 <nn<0.995< td=""><td>$67.6 \pm (6.3)$</td><td>41</td><td>99.8</td></nn<0.995<>	$67.6 \pm (6.3)$	41	99.8
	0.995 < NN < 1.000	$32.5 \pm (4.2)$	35	37.5
	0.700 <nn<0.760< td=""><td>3.0±(0.9)</td><td>3</td><td>55.0</td></nn<0.760<>	3.0±(0.9)	3	55.0
SS+	0.760 <nn<0.850< td=""><td>$3.3 \pm (1.0)$</td><td>5</td><td>25.4</td></nn<0.850<>	$3.3 \pm (1.0)$	5	25.4
	0.850 <nn<0.900< td=""><td>$1.5 \pm (0.7)$</td><td>2</td><td>43.2</td></nn<0.900<>	$1.5 \pm (0.7)$	2	43.2
	0.900 <nn<0.940< td=""><td>$0.9 \pm (0.5)$</td><td>1</td><td>56.8</td></nn<0.940<>	$0.9 \pm (0.5)$	1	56.8
	0.940 <nn<0.970< td=""><td>$1.2\pm(0.6)$</td><td>1</td><td>65.9</td></nn<0.970<>	$1.2\pm(0.6)$	1	65.9
	0.970 <nn<0.987< td=""><td>$1.5\pm(0.7)$</td><td>2</td><td>43.2</td></nn<0.987<>	$1.5\pm(0.7)$	2	43.2
	0.987 <nn<0.995< td=""><td>0.3±(0.3)</td><td>0</td><td>74.1</td></nn<0.995<>	0.3±(0.3)	0	74.1
	0.995 <nn<1.000< td=""><td>$0.3 \pm (0.3)$</td><td>0</td><td>74.1</td></nn<1.000<>	$0.3 \pm (0.3)$	0	74.1
	0.700 <nn<0.760< td=""><td>$5.7 \pm (1.3)$</td><td>8</td><td>23.7</td></nn<0.760<>	$5.7 \pm (1.3)$	8	23.7
SS-	0.760 <nn<0.850< td=""><td>$8.4 \pm (1.6)$</td><td>7</td><td>69.8</td></nn<0.850<>	$8.4 \pm (1.6)$	7	69.8
	0.850 <nn<0.900< td=""><td>$3.3 \pm (1.0)$</td><td>6</td><td>14.3</td></nn<0.900<>	$3.3 \pm (1.0)$	6	14.3
	0.900 <nn<0.940< td=""><td>$2.4 \pm (0.8)$</td><td>4</td><td>24.0</td></nn<0.940<>	$2.4 \pm (0.8)$	4	24.0
	0.940 <nn<0.970< td=""><td>$2.4 \pm (0.8)$</td><td>4</td><td>24.0</td></nn<0.970<>	$2.4 \pm (0.8)$	4	24.0
	0.970 <nn<0.987< td=""><td>$2.1\pm(0.8)$</td><td>0</td><td>12.2</td></nn<0.987<>	$2.1\pm(0.8)$	0	12.2
	0.987 <nn<0.995< td=""><td>$1.5\pm(0.7)$</td><td>0</td><td>22.3</td></nn<0.995<>	$1.5\pm(0.7)$	0	22.3
L	0.995 <nn<1.000< td=""><td>$0.3 \pm (0.3)$</td><td>1</td><td>30.0</td></nn<1.000<>	$0.3 \pm (0.3)$	1	30.0
	0.700 <nn<0.760< td=""><td>$118.3 \pm (8.6)$</td><td>136</td><td>11.1</td></nn<0.760<>	$118.3 \pm (8.6)$	136	11.1
FM+	0.760 <nn<0.850< td=""><td>$110.5 \pm (8.3)$</td><td>121</td><td>22.3</td></nn<0.850<>	$110.5 \pm (8.3)$	121	22.3
	0.850 <nn<0.900< td=""><td>$52.0 \pm (5.4)$</td><td>37</td><td>96.3</td></nn<0.900<>	$52.0 \pm (5.4)$	37	96.3
	0.900 <nn<0.940< td=""><td>$37.3 \pm (4.5)$</td><td>37</td><td>53.0</td></nn<0.940<>	$37.3 \pm (4.5)$	37	53.0
	0.940 <nn<0.970< td=""><td>$20.1 \pm (3.3)$</td><td>20</td><td>52.3</td></nn<0.970<>	$20.1 \pm (3.3)$	20	52.3
	0.970 <nn<0.987< td=""><td>8.3±(2.0)</td><td>6</td><td>77.1</td></nn<0.987<>	8.3±(2.0)	6	77.1
	0.987 <nn<0.995< td=""><td>8.7±(2.0)</td><td>3</td><td>97.5</td></nn<0.995<>	8.7±(2.0)	3	97.5
	0.995 <nn<1.000< td=""><td>$20.8 \pm (3.5)$</td><td>24</td><td>30.7</td></nn<1.000<>	$20.8 \pm (3.5)$	24	30.7

 Compare #observed to #predicted in all 80 (v_{NN}, m_{µµ})bins across all background dominated control samples

		CF		
sample	NN cut	pred	obsv	prob(%)
	0.700 <nn<0.760< td=""><td>$209.3 \pm (12.0)$</td><td>187</td><td>88.8</td></nn<0.760<>	$209.3 \pm (12.0)$	187	88.8
OS-	0.760 <nn<0.850< td=""><td>$332.3 \pm (16.3)$</td><td>325</td><td>62.0</td></nn<0.850<>	$332.3 \pm (16.3)$	325	62.0
	0.850 <nn<0.900< td=""><td>$146.7 \pm (9.7)$</td><td>144</td><td>57.7</td></nn<0.900<>	$146.7 \pm (9.7)$	144	57.7
	0.900 <nn<0.940< td=""><td>$144.2 \pm (9.6)$</td><td>139</td><td>63.9</td></nn<0.940<>	$144.2 \pm (9.6)$	139	63.9
	0.940 <nn<0.970< td=""><td>$128.6 \pm (8.9)$</td><td>112</td><td>88.4</td></nn<0.970<>	$128.6 \pm (8.9)$	112	88.4
	0.970 <nn<0.987< td=""><td>$92.8 \pm (7.4)$</td><td>89</td><td>63.0</td></nn<0.987<>	$92.8 \pm (7.4)$	89	63.0
	0.987 <nn<0.995< td=""><td>$45.4 \pm (5.0)$</td><td>55</td><td>14.0</td></nn<0.995<>	$45.4 \pm (5.0)$	55	14.0
	0.995 <nn<1.000< td=""><td>$38.3 \pm (4.5)$</td><td>37</td><td>58.2</td></nn<1.000<>	$38.3 \pm (4.5)$	37	58.2
	0.700 <nn<0.760< td=""><td>0.3±(0.3)</td><td>1</td><td>30.0</td></nn<0.760<>	0.3±(0.3)	1	30.0
SS+	0.760 <nn<0.850< td=""><td>$4.2 \pm (1.1)$</td><td>4</td><td>57.8</td></nn<0.850<>	$4.2 \pm (1.1)$	4	57.8
	0.850 <nn<0.900< td=""><td>0.3±(0.3)</td><td>3</td><td>1.3</td></nn<0.900<>	0.3±(0.3)	3	1.3
	0.900 <nn<0.940< td=""><td>$0.6 \pm (0.4)$</td><td>1</td><td>45.4</td></nn<0.940<>	$0.6 \pm (0.4)$	1	45.4
	0.940 <nn<0.970< td=""><td>$0.9 \pm (0.5)$</td><td>1</td><td>56.8</td></nn<0.970<>	$0.9 \pm (0.5)$	1	56.8
	0.970 <nn<0.987< td=""><td>$0.6 \pm (0.4)$</td><td>0</td><td>54.9</td></nn<0.987<>	$0.6 \pm (0.4)$	0	54.9
	0.987 <nn<0.995< td=""><td>$0.5 \pm (0.4)$</td><td>0</td><td>60.1</td></nn<0.995<>	$0.5 \pm (0.4)$	0	60.1
	0.995 <nn<1.000< td=""><td>$0.3 \pm (0.3)$</td><td>1</td><td>30.0</td></nn<1.000<>	$0.3 \pm (0.3)$	1	30.0
	0.700 <nn<0.760< td=""><td>$4.2 \pm (1.1)$</td><td>4</td><td>57.8</td></nn<0.760<>	$4.2 \pm (1.1)$	4	57.8
SS-	0.760 <nn<0.850< td=""><td>$5.1 \pm (1.2)$</td><td>7</td><td>27.1</td></nn<0.850<>	$5.1 \pm (1.2)$	7	27.1
	0.850 <nn<0.900< td=""><td>$2.7\pm(0.9)$</td><td>2</td><td>71.0</td></nn<0.900<>	$2.7\pm(0.9)$	2	71.0
	0.900 <nn<0.940< td=""><td>$0.9 \pm (0.5)$</td><td>4</td><td>2.8</td></nn<0.940<>	$0.9 \pm (0.5)$	4	2.8
	0.940 <nn<0.970< td=""><td>$3.0\pm(0.9)$</td><td>1</td><td>92.3</td></nn<0.970<>	$3.0\pm(0.9)$	1	92.3
	0.970 <nn<0.987< td=""><td>$2.4 \pm (0.8)$</td><td>5</td><td>12.2</td></nn<0.987<>	$2.4 \pm (0.8)$	5	12.2
	0.987 <nn<0.995< td=""><td>$0.6 \pm (0.4)$</td><td>0</td><td>54.9</td></nn<0.995<>	$0.6 \pm (0.4)$	0	54.9
	0.995 <nn<1.000< td=""><td>$1.8 \pm (0.7)$</td><td>0</td><td>16.5</td></nn<1.000<>	$1.8 \pm (0.7)$	0	16.5
	0.700 <nn<0.760< td=""><td>$54.8 \pm (5.6)$</td><td>66</td><td>12.7</td></nn<0.760<>	$54.8 \pm (5.6)$	66	12.7
FM+	0.760 <nn<0.850< td=""><td>$66.3 \pm (6.2)$</td><td>57</td><td>83.1</td></nn<0.850<>	$66.3 \pm (6.2)$	57	83.1
	0.850 <nn<0.900< td=""><td>33.7±(4.3)</td><td>25</td><td>90.3</td></nn<0.900<>	33.7±(4.3)	25	90.3
	0.900 <nn<0.940< td=""><td>$17.4 \pm (3.1)$</td><td>26</td><td>6.6</td></nn<0.940<>	$17.4 \pm (3.1)$	26	6.6
	0.940 <nn<0.970< td=""><td>$9.5\pm(2.2)$</td><td>15</td><td>10.2</td></nn<0.970<>	$9.5\pm(2.2)$	15	10.2
	0.970 <nn<0.987< td=""><td>$5.3 \pm (1.7)$</td><td>9</td><td>13.4</td></nn<0.987<>	$5.3 \pm (1.7)$	9	13.4
	0.987 <nn<0.995< td=""><td>$2.7\pm(1.2)$</td><td>3</td><td>49.3</td></nn<0.995<>	$2.7\pm(1.2)$	3	49.3
	0.995 <nn<1.000< td=""><td>$2.1\pm(1.0)$</td><td>8</td><td>0.7</td></nn<1.000<>	$2.1\pm(1.0)$	8	0.7

 Compare #observed to #predicted in all 80 (v_{NN}, m_{µµ})bins across all background dominated control samples

Control Sample	Prediction	Nobs	Prob(N>=Nobs)
OS-	2140.0 ± 53.9	1999	98%
SS+	19.7±3.4	25	19%
SS-	46.8±5.3	53	25%
FM+	567.8 ± 25.4	593	24%
Sum	2774.3±59.9	2670	91%

Table: A comparison of the predicted and observed number of events in an extended signal mass region for all NN cuts for all the control samples. This is used as a cross check of the background estimates.

• Integrating over all bins in each sample

Cross-check Background Methodology

 Observe B→hh in predicted place at predicted rate

What?

Sensitivity

• CDF expected sensitivity $BF(B \rightarrow \mu \mu)$:

B_d : 4.6 E-9 @ 95% CL 3.6 E-9 @ 90% CL

B_s : 1.5 E-8 @ 95% CL 1.1 E-8 @ 90% CL

Among world's best in both channels

- CMS: $B_d = 4.8E-9$ $B_s = 1.8E-8$ @ 95% CL - LHCb: $B_d = 3.1E-9$ $B_s = 1.0E-8$

(all of these derived assuming background-only)

Result

- Comparison of data to background prediction in the (v_{NN} , $m_{\mu\mu}$) bins from the optimization
- Only showing systematic uncertainties

Likelihood ratio

- We fit the data twice
 - 1) Assuming signal = 0
 - 2) Leave signal BF floating
 - Then take ratio: Q = L(s+b) / L(b)
- The likelihood:

$$L = \left[\prod_{i=1}^{\text{Nbins}} P(n_{obs}^i | s_i + b_i)\right] \prod_{j=1}^{\text{Nsyst}} G(x_j | \sigma_j)$$

$$s_i = F(BF(B_s \rightarrow \mu^+ \mu^-), x_j), \quad b_i = F(x_j)$$

• p-value using background-only pseudo-exp.

Result: B_d

• Expected:

 $BF(B_d \rightarrow \mu^+ \mu^-) < 3.6 \times 10^{-9} (95\% \text{ CL})$ $< 3.6 \times 10^{-9} (90\% \text{ CL})$

• Observed:

 $BF(B_d \rightarrow \mu^+ \mu^-) \stackrel{< 6.0 \times 10^{-9} (95\% \text{ CL})}{< 5.0 \times 10^{-9} (90\% \text{ CL})}$

- p-value using background-only pseudo-exp.
 - If we include SM signal, p-value \rightarrow 1.9% (2.1 σ)

But...

Uncertainty: syst \oplus Poisn.

27-Sep-2011

D.Glenzinski, Fermilab

Possibilities

- Only two possible problems to consider (this is a simple analysis):
 - 1) Problem with background estimate e.g. your π/K fake rates are wrong
 - 2) Problem with NN
 e.g. NN is over trained or mis-modeled

- Background estimate in B_d region
 - Uses exact same sideband events
 - Uses exact same sideband fits for slope and normalization
 - Uses exact same $\pi/K \rightarrow "\mu"$ fake rates

- Background estimate in B_d region
 - Uses exact same sideband events
 - Uses exact same sideband fits for slope and normalization
 - Uses exact same $\pi/K \rightarrow "\mu"$ fake rates

- Accurately predicts data in signal region

D.Glenzinski, Fermilab

- The yield of B→hh events in B_d region is about a factor of 10 larger than in the B_s region
 - If there were a problem with the π/K fake rates, it would show-up much more significantly in B_d
- In order to account for the observed excess, fake rates would have to be off by x10
 - They have a systematic uncertainty of 20%
 - Would generate much larger excesses in other bins

Possibilities

- Only two possible problems to consider (this is a simple analysis):
 - Problem with background estimate – e.g. your π/K fake rates are wrong
 - 2) Problem with NN– e.g. NN is over trained or mis-modeled

Possibilities

- Only two possible problems to consider (this is a simple analysis):
 - Problem with background estimate – e.g. your π/K fake rates are wrong

2) Problem with NN

- NN over trained and biases comb. bgd. low
- NN has mass bias suppressing B_d events
- Shape of v_{NN} distribution poorly modeled

Problems with NN: Overtraining?

No evidence of overtraining or bias

- No evidence that v_{NN} is correlated with $m_{\mu\mu}$ (cf. pages 36-38)

- No evidence of a significant MC mis-modeling of ν_{NN} distribution for real B-decays

In addition

• Even in the steeply falling region above 0.99

D.Glenzinski, Fermilab

Possibilities

- Only two possible problems to consider (this is a simple analysis):
 - Problem with background estimate – e.g. your π/K fake rates are wrong
 - ✓ Problem with NN
 ✓ NN over trained and biases comb. bgd. Low
 ✓ NN has mass bias suppressing B_d events
 ✓ Shape of v_{NN} distribution poorly modeled

So?

Our conclusion

From the PRL:

"The source of the data excess in the 0.970 < v_{NN} < 0.987 bin of the B_s signal region is investigated. ... Because the data in the B_d search region shows no excess, problems with the background estimates are ruled out. ... Problems with the NN are ruled out ... [since] studies find no evidence of a v_{NN} - m_{uu} correlation, no evidence of overtraining, and no evidence of a significant mis-modeling of the v_{NN} shape.... In short, there is no evidence that the excess in this bin is caused by a mistake or systematic error in our background estimates or our modeling of the v_{NN} performance and distribution. The most plausible remaining explanation is that this is a statistical fluctuation."

Our conclusion

"For our central result we use the full set of bins that had been established a priori since this represents an unbiased choice."

$$p - \text{value}(b - \text{only}) = 0.27\%$$
$$p - \text{value}(b + \text{SM}) = 1.9\%$$

$$BF(B_{s} \rightarrow \mu^{+}\mu^{-}) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$$
$$4.6 \times 10^{-9} < BF(B_{s} \rightarrow \mu^{+}\mu^{-}) < 3.9 \times 10^{-8} @90\% CL$$

FYI

"...if we remove the 0.970 < v_{NN} < 0.987 bin the results are not significantly affected."

All bins (0.70<v_{NN})

$$p - \text{value}(b - \text{only}) = 0.27\%$$

$$p - \text{value}(b + \text{SM}) = 1.9\%$$

$$BF(B_s \rightarrow \mu^+ \mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$$

$$(4.6 - 39) \times 10^{-9} @90\% CL$$

2 Highest Bins (0.987<v_{NN})

$$p - \text{value}(b - \text{only}) = 0.66\%$$

$$p - \text{value}(b + \text{SM}) = 4.1\%$$

$$BF(B_s \rightarrow \mu^+ \mu^-) = (1.4^{+1.0}_{-0.8}) \times 10^{-8}$$

$$(3.3 - 33) \times 10^{-9} @90\% CL$$

Closing Remarks

- CDF has an excess of B_s→μ⁺μ⁻ events at the level of >2.7σ relative to bgd-only
- The fitted BF is compatible with the results from other experiments and the SM
- CDF will increase the data set by another 40% and publish a PRD

Closing Remarks

Backup Slides

Trigger efficiency

"Tag-and-Probe" method using J/ψ → μ⁺μ⁻
 events collected with a single-leg μ trigger

Trigger Efficiency

• $\varepsilon_{\text{trig}} = \mathcal{F}(p_T, \phi, \eta, \text{run#}, |z|_{\min}^{COT})$

Expected Limit

We used the set of requirements which yielded the minimum *a priori* expected BR Limit:

$$\left\langle BR(B_s \rightarrow \mu^+ \mu^-) \right\rangle = \frac{\left\langle N_{signal}^{90\% CL} \right\rangle}{\alpha \cdot \varepsilon_{total} \cdot \sigma_{B_s} \int L dt}$$

where we've summed over all possible nobs:

$$\left\langle N_{signal}^{90\% CL} \right\rangle = \sum_{n_{obs=0}}^{\infty} \mathbf{P}(n_{obs} \mid n_{bg}) \cdot N_{signal}^{90\% CL}(n_{bg}, \Delta_{bg}, \Delta_{\alpha \cdot \varepsilon})$$

Poisson prob of observing nobs when expecting nbg

Hadron to muon Fake Rates: FM+ Sample

 These rates are about x5 larger than signal event sample

Hadron to muon Fake Rates: FM+ Sample

Cross-check Background Methodology

Excess in this bin looks more consistent with combinatoric than B→hh

Search sample: v_{NN} vs $m_{\mu\mu}$ distribution

• Extended signal region blinded

D.Glenzinski, Fermilab

Results in B_d Region

B_d results for CC and CF separately

Results in B_d Region

	Mass Bin (GeV/c ²)	5.219-5.243	5.243-5.267	5.267-5.291	5.291-5.315	5.315-5.339	Total
CC NN bin	Exp Bkg	8.32±0.64	8.25 ± 0.63	8.17 ± 0.63	8.09 ± 0.62	8.01 ± 0.62	40.83
0.7-0.76	Obs	11	10	6	5	7	39
CC NN bin	Exp Bkg	8.75 ± 0.66	8.67 ± 0.65	8.58 ± 0.65	8.5 ± 0.64	8.41 ± 0.63	42.91
0.76-0.85	Obs	8	10	5	6	9	38
CC NN bin	Exp Bkg	3.69 ± 0.41	3.66 ± 0.4	3.62 ± 0.4	3.58 ± 0.4	3.54 ± 0.39	18.09
0.85-0.9	Obs	7	2	6	5	4	24
CC NN bin	Exp Bkg	3.66 ± 0.4	3.62 ± 0.4	3.58 ± 0.4	3.54 ± 0.39	3.5 ± 0.39	17.9
0.9-0.94	Obs	5	8	5	5	5	28
CC NN bin	Exp Bkg	3.0 ± 0.36	2.97 ± 0.36	2.93 ± 0.36	2.9 ± 0.35	2.86 ± 0.35	14.65
0.94-0.97	Obs	2	3	4	3	4	16
CC NN bin	Exp Bkg	1.71 ± 0.50	$1.69 {\pm} 0.50$	1.67 ± 0.50	1.64 ± 0.49	1.62 ± 0.49	8.33
0.97-0.987	Obs	1	2	3	1	3	10
CC NN bin	Exp Bkg	0.90 ± 0.28	0.89 ± 0.28	0.86 ± 0.27	0.84 ± 0.27	0.81 ± 0.27	4.29
0.987-0.995	Obs	3	2	1	0	1	7
CC NN bin	Exp Bkg	0.40 ± 0.21	0.38 ± 0.20	0.32 ± 0.17	0.25 ± 0.15	0.20 ± 0.14	1.54
0.995-1	Obs	1	1	1	0	1	4
CF NN bin	Exp Bkg	8.89 ± 0.68	8.79 ± 0.67	8.68 ± 0.66	8.58 ± 0.65	8.47 ± 0.65	43.41
0.7-0.76	Obs	7	10	10	12	9	48
CF NN bin	Exp Bkg	9.9 ± 0.72	9.78 ± 0.71	9.66 ± 0.7	9.54 ± 0.69	9.42 ± 0.69	48.31
0.76-0.85	Obs	7	10	11	13	10	51
CF NN bin	Exp Bkg	5.15 ± 0.5	5.09 ± 0.49	5.02 ± 0.49	4.96 ± 0.48	4.9 ± 0.47	25.12
0.85-0.9	Obs	3	4	1	2	1	11
CF NN bin	Exp Bkg	4.06 ± 0.44	4.01 ± 0.43	3.96 ± 0.43	3.91 ± 0.42	3.86 ± 0.42	19.8
0.9-0.94	Obs	3	5	5	6	4	23
CF NN bin	Exp Bkg	3.45 ± 0.4	3.41 ± 0.4	3.37 ± 0.39	3.32 ± 0.39	3.28 ± 0.38	16.83
0.94-0.97	Obs	5	6	2	1	1	15
CF NN bin	Exp Bkg	2.50 ± 0.59	2.47 ± 0.58	2.44 ± 0.58	2.40 ± 0.57	2.37 ± 0.56	12.17
0.97-0.987	Obs	1	1	3	1	3	9
CF NN bin	Exp Bkg	0.71 ± 0.25	0.70 ± 0.25	0.69 ± 0.25	0.68 ± 0.24	0.67 ± 0.24	3.44
0.987-0.995	Obs	4	0	1	0	1	6
CF NN bin	Exp Bkg	0.62 ± 0.42	0.62 ± 0.42	0.60 ± 0.41	0.57 ± 0.40	0.55 ± 0.39	2.97
0.995-1	Obs	1	0	0	0	1	2

Table:

 B_d signal window for CC(top) and CF(bottom): Expected backgrounds, including $B \rightarrow hh$, and number of observed events.

Results in B_s Region

	Mass Bin (GeV/c ²)	5.31-5.334	5.334-5.358	5.358-5.382	5.382-5.406	5.406-5.43	Total
CC NN bin	Exp Bkg	8.02±0.62	7.94 ± 0.61	7.87 ± 0.61	7.79 ± 0.6	7.71 ± 0.59	39.34
0.7-0.76	Obs	9	6	6	2	5	28
CC NN bin	Exp Bkg	8.43 ± 0.64	8.34 ± 0.63	8.26 ± 0.62	$8.18 {\pm} 0.62$	8.1 ± 0.61	41.32
0.76-0.85	Obs	8	6	11	11	7	43
CC NN bin	Exp Bkg	3.55 ± 0.39	3.51 ± 0.39	3.48 ± 0.39	3.44 ± 0.38	3.41 ± 0.38	17.4
0.85-0.9	Obs	5	6	2	5	4	22
CC NN bin	Exp Bkg	3.51 ± 0.39	3.47 ± 0.39	3.44 ± 0.38	3.41 ± 0.38	3.37 ± 0.38	17.2
0.9-0.94	Obs	4	5	4	5	7	25
CC NN bin	Exp Bkg	2.87 ± 0.35	2.84 ± 0.35	2.81 ± 0.34	2.78 ± 0.34	2.75 ± 0.34	14.04
0.94-0.97	Obs	4	5	2	3	4	18
CC NN bin	Exp Bkg	1.62 ± 0.49	1.60 ± 0.48	1.58 ± 0.47	1.57 ± 0.47	1.55 ± 0.46	7.92
0.97-0.987	Obs	1	4	7	1	3	16
CC NN bin	Exp Bkg	0.82 ± 0.27	0.80 ± 0.27	0.79 ± 0.26	0.78 ± 0.26	0.78 ± 0.26	3.97
0.987-0.995	Obs	1	1	3	0	0	5
CC NN bin	Exp Bkg	0.21 ± 0.14	0.18 ± 0.13	0.16 ± 0.12	0.16 ± 0.12	0.16 ± 0.12	0.87
0.995-1	Obs	0	1	2	0	1	4
CF NN bin	Exp Bkg	8.49 ± 0.65	8.39 ± 0.64	8.28 ± 0.63	8.17 ± 0.62	8.07 ± 0.61	41.4
0.7-0.76	Obs	8	13	9	9	9	48
CF NN bin	Exp Bkg	9.45 ± 0.69	$9.33 {\pm} 0.68$	9.21 ± 0.67	9.1 ± 0.66	$8.98 {\pm} 0.65$	46.07
0.76-0.85	Obs	7	8	7	11	4	37
CF NN bin	Exp Bkg	4.91 ± 0.48	4.85 ± 0.47	4.79 ± 0.46	4.73 ± 0.46	4.67 ± 0.45	23.95
0.85-0.9	Obs	1	5	6	3	5	20
CF NN bin	Exp Bkg	3.87±0.42	3.82 ± 0.41	3.77 ± 0.41	3.73 ± 0.4	$3.68 {\pm} 0.4$	18.88
0.9-0.94	Obs	4	1	6	3	3	17
CF NN bin	Exp Bkg	3.29 ± 0.38	3.25 ± 0.38	3.21 ± 0.37	3.17 ± 0.37	3.12 ± 0.36	16.04
0.94-0.97	Obs	0	5	3	4	5	17
CF NN bin	Exp Bkg	2.38 ± 0.56	2.34 ± 0.55	2.31 ± 0.54	2.28 ± 0.54	2.25 ± 0.53	11.57
0.97-0.987	Obs	1	4	3	1	2	11
CF NN bin	Exp Bkg	0.67 ± 0.24	$0.66 {\pm} 0.24$	0.65 ± 0.24	0.64 ± 0.23	0.63 ± 0.22	3.25
0.987-0.995	Obs	1	1	0	1	0	3
CF NN bin	Exp Bkg	0.56 ± 0.39	$0.54 {\pm} 0.38$	0.53 ± 0.38	$0.52 {\pm} 0.37$	$0.51 {\pm} 0.36$	2.66
0.995-1	Obs	1	1	0	1	1	4

Table: B_s signal window for CC(top) and CF(bottom): Expected backgrounds, including $B \rightarrow hh$, and number of observed events.

p-value using best fit BF

pseudo-experiments used BF=best fit BF=5.6*SM

Comparisons with Old NN

 The high score newNN events also high score in the oldNN

Comparisons with Old NN

m_{µµ} distributions using oldNN and binning optimized for oldNN in 2 fb⁻¹ PRL

Comparisons with Old NN

m_{µµ} distributions using oldNN and binning optimized for oldNN in 2 fb⁻¹ PRL