A Discussion of CDF's
 Recent $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$Result

D.Glenzinski

Fermilab
27-Sep-2011

To be clear...

- "Search for $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B_{d} \rightarrow \mu^{+} \mu^{-}$Decays with CDF II"

$$
\begin{aligned}
& \text { - arXiv:1107.2304 } \\
& \text { - accepted to PRL }
\end{aligned}
$$

- Public web page
http://www-cdf.fnal.gov/physics/new/bottom/110707.blessed-Bsd2mumu/

Why?

Introduction

- In the SM $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$is an FCNC... only possible at the loop level

$$
B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.2 \pm 0.2) \times 10^{-9}
$$

(E.Gamiz et al. (HPQCD Collaboration), A.J. Buras et al.)

Introduction

- All this also true for $B_{d} \rightarrow \mu^{+} \mu^{-}$decays too

$$
B F\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.0 \pm 0.1) \times 10^{-10}
$$

(E.Gamiz et al. (HPQCD Collaboration), A.J. Buras et al.)

- BF relative to $\mathrm{BF}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$model dependent
- measurements of both sensitive to flavor structure of underlying physics model
- In MFV models, $\operatorname{BF}\left(B_{d} / B_{s}\right) \sim\left|V_{t d}\right|^{2} /\left|V_{t s}\right|^{2 \sim 1 / 20}$

Experimental Status: Spring 2011

- Has not yet been experimentally observed

Experimental Status: Spring 2011

- Has not yet been experimentally observed

Where?

Fermilab Tevatron

- $\mathrm{p} \overline{\mathrm{p}}$ collider at

$$
\mathrm{E}_{\mathrm{cm}}=2 \mathrm{TeV}
$$

- Run-II 2001-2011 (12 fb-1/ exp delivered)
- Performing excellently
- All B-hadron species copiously produced

The CDF Experiment

- Multipurpose collider detector
- Pioneered silicon detectors at a hadron collider
- International collaboration, 600+ members

CDF Detector

Features:

- Precision silicon vertexing
- Large radius drift chamber ($\mathrm{r}=1.4 \mathrm{~m}$)
- 1.4 T solenoid
- projective calorimetry ($|\eta|<3.5$)
- muon chambers ($|\eta|<1.0$)
- Particle identification
- Silicon Vertex Trigger

How?

Analysis Description

- This is a simple analysis

1) Find events with 2 muons in them
2) Identify means to suppress background while keeping as much signal as possible
3) Look for a bump in the $\mathrm{m}_{\mu \mu}$ distribution

Analysis Strategy

- Our strategy is simple
- "blind" ourselves to an extended mass signal region
- Use data in the mass sidebands to estimate the dominant backgnd contribution to the signal region
- Employ an a priori optimization to choose our final selection criteria
- Build confidence in background estimate using control regions prior to "opening the box"

Emphasis on being robust and unbiased

Definition of Signal / Sideband Regions

- We "blind" the data in an extended signal region

Search Region:

- $5.169<\mathrm{m}_{\mu \mu}<5.469 \mathrm{GeV} / \mathrm{c}^{2}$
- corresponds to $+/-4 \sigma\left(m_{\mu \mu}\right)$
- final region $+/-2.5 \sigma\left(m_{\mu \mu}\right)$

Sideband Regions:

- additional 0.5 GeV on either side of search region
- used to understand Bkgd

Some

 Preliminaries
CDF Run-II $B_{s} \rightarrow \mu^{+} \mu^{-}$Publications

1) $170 \mathrm{pb}^{-1}$ PRL 93, 032001 (2004). 78 citations

- Sensitivity x3 improvement over Run I

2) $350 \mathrm{pb}^{-1}$ PRL 95, 221805 (2005). 50 citations

- Sensitivity x4 improvement over 1)

3) $2 \mathrm{fb}^{-1}$ PRL 100, 101802 (2008). 197 citations

- Sensitivity x4 improvement over 2)

4) $7 \mathrm{fb}^{-1}$ accepted PRL, arXiv:1107.2304

- Sensitivity x3 improvement over 3)

Sensitivity Improvements

- Added acceptance
- Include events that pass near COT "spacer"
- Include events in CMX "mini-skirts"
- Improved background discrimination
- Improved dE/dX calibrations
- Improved performance of multi-variate discriminant used in final selection criteria

Additional Acceptance

CDF Tracking Drift Chamber - COT (not to scale)

- We've always had these events on tape
- Just needed to understand the trigger efficiencies in these regions

Additional Acceptance

- Kinematics unaffected

Improved Background Discrimination

- Improved Neural Net (NN) performance

Normalization

- We employ a relative normalization
- Using $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+} \rightarrow \mu^{+} \mu^{-} \mathrm{K}^{+}$events
- Collect B^{+}and signal events with same trigger
- Many exp. uncertainties significantly reduced

$$
B F\left(B_{s, d} \rightarrow \mu^{+} \mu^{-}\right)=\left(\frac{N_{B s, d}}{N_{B+}}\right)\left(\frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{B s, d} \varepsilon_{B s, d}}\right)\left(\frac{f_{u}}{f_{s}}\right) B F\left(B^{+} \rightarrow J / \psi K^{+}\right)
$$

Di-muon Mass Distribution from Trigger

- The trigger paths used for this analysis
- Collect signal sample: $B \rightarrow \mu^{+} \mu^{-}$
- Collect control sample: $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}, \mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}$

Our Trigger Paths

- Collect data using two separate trigger paths corresponding to two separate topologies:
- "Central-Central" (CC)
- both muons $|\eta|<0.6$
$-P_{T}(\mu)>1.5 \mathrm{GeV} / \mathrm{c}$
$-2.7<\mathrm{m}_{\mu \mu}<6.0 \mathrm{GeV} / \mathrm{c}^{2}$
$-\Delta \phi(\mu \mu)<2.25 \mathrm{rad}$
$-\mathrm{P}_{\mathrm{T}}\left(\mu^{+}\right)+\mathrm{P}_{\mathrm{T}}\left(\mu^{-}\right)>5 \mathrm{GeV} / \mathrm{c}$
- "Central-Forward" (CF)
$-\left|\eta_{\mu 1}\right|<0.6,0.6<\left|\eta_{\mu 2}\right|<1$
$-P_{T}(\mathrm{C})>1.5 \mathrm{GeV} / \mathrm{c}$
$-\mathrm{P}_{\mathrm{T}}(\mathrm{F})>2.0 \mathrm{GeV} / \mathrm{c}$
$-2.7<\mathrm{m}_{\mu \mu}<6.0 \mathrm{GeV} / \mathrm{c}^{2}$
$-\Delta \phi(\mu \mu)<2.25 \mathrm{rad}$
$-\mathrm{P}_{\mathrm{T}}\left(\mu^{+}\right)+\mathrm{P}_{\mathrm{T}}\left(\mu^{-}\right)>5 \mathrm{GeV} / \mathrm{c}$

CC vs CF Channels

Signal acceptance

Background Yields

- Treat each channel separately, combine at end

Normalization

- We employ a relative normalization

From fits to the data.

From the PDG 2010:

$$
\frac{f_{u}}{f_{s}}=3.55 \pm 0.47
$$

$$
B F\left(B^{+} \rightarrow J / \psi K^{+}\right) B F\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=(6.01 \pm 0.21) \times 10^{-5}
$$

Normalization: B+ Yield

- Use sideband subtracted signal yields
- $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$ contamination <1\%

Normalization

- We employ a relative normalization

$$
B F\left(B_{s, d} \rightarrow \mu^{+} \mu^{-}\right)=\left(\frac{N_{B s, d}}{N_{B+}} \|^{\prime} \frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{B s, d} \varepsilon_{B s, d}}, \frac{f_{u}}{f_{s}}\right) B F\left(B^{+} \rightarrow J / \psi K^{+}\right)
$$

$\alpha_{B} \equiv$ geometric and kinematic acceptance of trigger (from MC simulation)

$$
\varepsilon_{B} \equiv \varepsilon_{\mathrm{reco}} \cdot \varepsilon_{\mathrm{NN}} \cdot \varepsilon_{\mathrm{mass}}=\left(\varepsilon_{\mathrm{track}} \cdot \varepsilon_{\mu-\mathrm{ID}} \cdot \varepsilon_{\mathrm{vertex}}\right) \cdot \varepsilon_{\mathrm{NN}} \cdot \varepsilon_{\mathrm{mass}}
$$

From data using "Tag and Probe"
From MC, checked with B^{+}and J / ψ data

Normalization

$$
B F\left(B_{s, d} \rightarrow \mu^{+} \mu^{-}\right)=\mathrm{N}_{\mathrm{Bs}, \mathrm{~d}} \cdot \operatorname{ses}
$$

	CC		CF	
$\left(\alpha_{B+} / \alpha_{B_{s}}\right)$	0.307 ± 0.018	($\pm 6 \%$)	0.197 ± 0.014	($\pm 7 \%$)
$\left(\epsilon_{B+}^{\text {trig }} / \epsilon_{B_{s}}^{\text {trig }}\right)$	0.99935 ± 0.00012	($<1 \%$)	0.97974 ± 0.00016	(< 1\%)
$\left(\epsilon_{B^{+}}^{\text {reco }} / \epsilon_{B_{s}}^{\text {reco }}\right)$	0.85 ± 0.06	($\pm 8 \%$)	0.84 ± 0.06	($\pm 9 \%$)
$\epsilon_{B_{S}}^{N N}(N N>0.70)$	0.915 ± 0.042	($\pm 4 \%$)	0.864 ± 0.040	($\pm 4 \%$)
$\epsilon_{B_{S}}^{N N}(N N>0.995)$	0.461 ± 0.021	($\pm 5 \%$)	0.468 ± 0.022	($\pm 5 \%$)
$N_{B^{+}}$	22388 ± 196	($\pm 1 \%$)	9943 ± 138	($\pm 1 \%$)
f_{u} / f_{S}	$3.55+/-0.47$	($\pm 13 \%)$	$3.55+/-0.47$	($\pm 13 \%)$
$B R\left(B^{+} \rightarrow J / \psi K^{+} \rightarrow \mu^{+} \mu^{-} K^{+}\right)$	$(6.01 \pm 0.21) \times 10^{-5}$	($\pm 4 \%$)	$(6.01 \pm 0.21) \times 10^{-5}$	($\pm 4 \%$)
SES (All bins)	$(2.9 \pm 0.5) \times 10^{-9}$	($\pm 18 \%$)	$(4.0 \pm 0.7) \times 10^{-9}$	($\pm 18 \%$)

$$
\operatorname{ses}(C C+C F)=1.7 \times 10^{-9}
$$

- Uncertainty includes: variations in the $\mathrm{p}_{\mathrm{T}}(\mathrm{B})$ spectrum, kinematic differences between J / ψ and $B_{s} \rightarrow \mu \mu$, variations in simulation parameters, differences between B^{+}data and MC

Some Definitions

- $P(B)=$ momentum of B

$$
P_{B}=P_{\mu \mu}=\vec{P}_{\mu+}+\vec{P}_{\mu-}
$$

3D and 2D versions of variables 2 D denoted with subscript "T"

- L : decay length

$$
L=\vec{L} \cdot \vec{P}_{\mu, u}| | \vec{P}_{\mu,} \mid
$$

- λ : proper decay time

$$
\lambda=\operatorname{cLm}_{\mu \mu} / P_{\mu \mu}
$$

- $\Delta \Omega=$ pointing angle

$$
\Delta \Omega=\angle\left(\vec{L}, \vec{P}_{\mu \mu}\right)
$$

The Details...

Analysis Description

- This is a simple analysis

1) Find events with 2 muons in them
2) Identify means to suppress background while keeping as much signal as possible
3) Look for a bump in the $\mathrm{m}_{\mu \mu}$ distribution

Suppress Background, Keep Signal

- We start with some simple "baseline" requirements to ensure two good muons that originate from a common vertex
- Then we exploit features of our signal events to discriminate signal from background

Baseline Requirements

We require:

- "good" COT tracks and μ track-stubs
->=3 silicon $r-\phi$ hits
- $4.669<\mathrm{m}_{\mu \mu}<5.969 \mathrm{GeV} / \mathrm{c}^{2}$
- "good" vertex
$-\sigma(\mathrm{L})<150 \mu \mathrm{~m}$
$-\chi^{2}<15$
- $\mathrm{LT}<1 \mathrm{~cm}$
- $\mathrm{P}_{\mathrm{T}}(\mathrm{C})>2.0, \mathrm{P}_{\mathrm{T}}(\mathrm{F})>2.2 \mathrm{GeV} / \mathrm{c}$
- $\mathrm{P}_{\mathrm{T}}(\mu \mu)>4 \mathrm{GeV} / \mathrm{c}$
- $\lambda<0.3 \mathrm{~cm}$
- $\lambda / \sigma_{\lambda}>2$
- $\Delta \Omega<0.70 \mathrm{rad}$
- Isolation > 0.50
maintain most the signal while significantly reducing bgd

Baseline sample

- Completely background dominated

Discriminate Signal from Background

Signal characteristics

- final state is fully reconstructed
- Bs has long lifetime (ct = $440 \mu \mathrm{~m}$)
- B fragmentation is hard

For real $\mathrm{B}_{s} \rightarrow \mu+\mu-$ expect:

- $m_{\mu \mu}=m\left(B_{s}\right)$
- $\lambda=\operatorname{cLt} \mathrm{m}_{\mu \mu} / \operatorname{Pt}(\mu \mu)$ to be large
- Lt and $\operatorname{Pt}(\mu \mu)$ to be co-linear (ie. small $\Delta \Omega$)
- few additional tracks

Discriminate Signal from Background

Contributing Backgrounds

- sequencial semi-leptonic decay, $b \rightarrow \mu-c X \rightarrow \mu+\mu-X$
- double semi-leptonic decay, $g \rightarrow b b \rightarrow \mu+\mu-X$
- continuum $\mu+\mu^{-}, \mu+$ fake fake+fake

In general:

- $\mathrm{m}_{\mu \mu} \neq \mathrm{m}\left(\mathrm{B}_{\mathrm{s}}\right)$
- $\lambda=\operatorname{cLt} \mathrm{m}_{\mu \mu} / \operatorname{Pt}(\mu \mu)$ will be smaller
- Lt and $\operatorname{Pt}(\mu \mu)$ will not be co-linear (large $\Delta \Omega$)
- more additional tracks

Discriminating Variables

- Some variables that take advantage of these distinguishing characteristics

Discriminating Variables

- more variables that take advantage of these distinguishing characteristics

Discriminate Signal from Background

- Employ a Neural Net to optimally combine the information from these variables
- We exclude mass information from the NN
- M.Feindt and U.Kerzel, NIM A 559, 190 (2006)
- Training
- Signal: $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$MC
- Background: mass sideband regions
- Some fraction of each sample set aside to test for bias and overtraining

MC modeling

- Verify modeling of signal MC using B^{+}events

MC modeling

- Verify modeling of signal MC using B^{+}events

MC modeling

- Verify modeling of signal MC using B^{+}events

NN correlation with $\mathrm{m}_{\mu \mu}$

- Important to verify v_{NN} is independent of $\mathrm{m}_{\mu \mu}$

NN correlation with $\mathrm{m}_{\mu \mu}$

background dominated control samples

NN correlation with $\mathrm{m}_{\mu \mu}$

- Important to verify $v_{N N}$ is independent of $m_{\mu \mu}$

NN Separation

- achieves powerful background discrimination

NN Variables

variable

description

$\Delta \Omega$	angle btwn L and $p(B)(3 D)$
Isolation	B candidate isolation
$\left\|d_{0}\left(\mu_{1}\right)\right\|$	muon i.p. where $\left\|d_{0}\left(\mu_{1}\right)\right\|>\left\|d_{0}\left(\mu_{2}\right)\right\|$
$\left\|d_{0}(B)\right\|$	B candidate i.p.
$L_{T} / \sigma_{L T}$	decay length significance in xy plane
$\chi^{2}(v t x)$	vertex chi-squared vertex
L	decay length (3D)
$\min \left(p_{T}\left(\mu_{1}\right), p_{T}\left(\mu_{2}\right)\right)$	minimum muon p_{T}
$\left\|d_{0}\left(\mu_{2}\right)\right\| / \sigma_{d 0}$	muon i.p. significance
$\lambda / \sigma_{\lambda}$	proper time significance
λ	proper time
$\left\|d_{0}\left(\mu_{2}\right)\right\|$	muon i.p.
$\Delta \Omega_{T}$	angle btwn L_{T} and $p_{T}(B)(2 D)$
$\left\|d_{0}\left(\mu_{1}\right)\right\| / \sigma_{d 0}$	muon i.p. significance

- A ranked list of the 14 variables used in the NN with the most significant variables at the top

Optimization of NN Requirements

- Figure-of-merit: expected limit

$$
\begin{gathered}
\left\langle B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right\rangle=\left(\frac{\left\langle N_{B s}^{9 \sigma_{c L}}\right\rangle}{N_{B+}}\right)\left(\frac{f_{u}}{f_{s}}\right)\left(\frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{B s} \varepsilon_{B s}}\right) B F\left(B^{+} \rightarrow J / \psi K^{+}\right) \\
\left\langle N_{B s}^{90_{c} C L}\right\rangle=\sum_{n_{o b s e 0}^{\infty} \mathrm{P}\left(n_{o b s} \mid n_{b g}\right) \cdot N_{B s}^{90 \sigma_{C L}}\left(n_{b s}, \Delta_{b s}, \Delta_{\alpha \varepsilon}\right)} .
\end{gathered}
$$

- Exploit S / B differences in v_{NN} and $\mathrm{m}_{\mu \mu}$
- Bin in ($v_{N \mathbb{N}}, m_{\mu \mu}$) and optimize in 2D
- Broad minimum observed
- Move away from regions with very few SB events
- Choose something ~middle of minimum

Final NN Requirements

$v_{\text {NN }}$ bins
$0.700-0.760$
$0.760-0.850$
$0.850-0.900$
$0.900-0.940$
$0.940-0.970$
$0.970-0.987$
$0.987-0.995$
0.995 <
B_{s} mass bins
5310-5334
5334-5358
5358-5382
5382-5406
5406-5430
B_{d} mass bins
5219-5243
5243-5267
5267-5291
5291-5315
5315-5339

- Require $0.70<v_{\text {NN }}\left(\varepsilon_{S} \sim 90 \%, \varepsilon_{B} \sim x \%\right)$
- Use $40\left(v_{N N}, \mathrm{~m}_{\mu \mu}\right)$ bins
- Each for CC and CF channels

Analysis Description

- This is a simple analysis

1) Find events with 2 muons in them
2) Identify means to suppress background while keeping as much signal as possible
3) Look for a bump in the $m_{\mu \mu}$ distribution

Analysis Description

- This is a simple analysis

1) Find events with 2 muons in them
2) Identify means to suppress background while keeping as much signal as possible
3) Look for a bump in the $m_{\mu \mu}$ distribution

- Understand signal distributions
- Understand background yields

Estimating Signal Yield

- Signal yield estimated for each ($v_{N N}, m_{\mu \mu}$) bin using relative normalization

$$
\begin{gathered}
N_{B s, d}=\left(\frac{N_{B+}}{B F\left(B^{+} \rightarrow J / \psi K^{+}\right)}\right)\left(\frac{f_{s}}{f_{u}}\right)\left(\frac{\alpha_{B s, d} \varepsilon_{B s, d}}{\alpha_{B+} \varepsilon_{B+}}\right) B F\left(B_{s, d} \rightarrow \mu^{+} \mu^{-}\right) \\
\varepsilon_{B} \equiv \varepsilon_{\text {reco }} \cdot \varepsilon_{\mathrm{NN}} \cdot \varepsilon_{\text {mass }}=\left(\varepsilon_{\text {track }} \cdot \varepsilon_{\mu-\mathrm{ID}} \cdot \varepsilon_{\mathrm{vertex}}\right) \cdot \varepsilon_{\mathrm{NN}} \cdot \varepsilon_{\text {mass }} \\
\text { Varies bin-by-bin }
\end{gathered}
$$

Estimates of $\mathrm{SM}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$Yields

CC channel:

NN Bin/Mass Bin	$5.310-5.334$	$5.334-5.358$	$5.358-5.382$	$5.382-5.406$	$5.406-5.430$
$0.700-0.760$	0.002 ± 0.000	0.007 ± 0.001	0.011 ± 0.002	0.006 ± 0.001	0.001 ± 0.000
$0.760-0.850$	0.004 ± 0.001	0.015 ± 0.003	0.020 ± 0.004	0.011 ± 0.002	0.003 ± 0.001
$0.850-0.900$	0.004 ± 0.001	0.010 ± 0.002	0.014 ± 0.003	0.008 ± 0.001	0.002 ± 0.000
$0.900-0.940$	0.005 ± 0.001	0.016 ± 0.003	0.023 ± 0.004	0.012 ± 0.002	0.002 ± 0.000
$0.940-0.970$	0.008 ± 0.001	0.022 ± 0.004	0.032 ± 0.006	0.016 ± 0.003	0.003 ± 0.001
$0.970-0.987$	0.010 ± 0.002	0.029 ± 0.005	0.041 ± 0.007	0.022 ± 0.004	0.005 ± 0.001
$0.987-0.995$	0.013 ± 0.002	0.046 ± 0.008	0.062 ± 0.011	0.031 ± 0.006	0.007 ± 0.001
$0.995-1.000$	0.052 ± 0.009	0.167 ± 0.030	0.227 ± 0.040	0.119 ± 0.021	0.029 ± 0.005

$\Sigma=1.1 \mathrm{evt}$

CF channel:

NN Bin/Mass Bin	$5.310-5.334$	$5.334-5.358$	$5.358-5.382$	$5.382-5.406$	$5.406-5.430$
$0.700-0.760$	0.002 ± 0.000	0.006 ± 0.001	0.007 ± 0.001	0.005 ± 0.001	0.001 ± 0.000
$0.760-0.850$	0.003 ± 0.001	0.012 ± 0.002	0.015 ± 0.003	0.009 ± 0.002	0.002 ± 0.000
$0.850-0.900$	0.003 ± 0.001	0.009 ± 0.002	0.012 ± 0.002	0.006 ± 0.001	0.001 ± 0.000
$0.900-0.940$	0.004 ± 0.001	0.012 ± 0.002	0.017 ± 0.003	0.009 ± 0.002	0.002 ± 0.000
$0.940-0.970$	0.005 ± 0.001	0.015 ± 0.003	0.021 ± 0.004	0.013 ± 0.002	0.003 ± 0.001
$0.970-0.987$	0.008 ± 0.002	0.026 ± 0.005	0.036 ± 0.007	0.019 ± 0.003	0.005 ± 0.001
$0.987-0.995$	0.007 ± 0.001	0.021 ± 0.004	0.029 ± 0.005	0.017 ± 0.003	0.004 ± 0.001
$0.995-1.000$	0.039 ± 0.007	0.116 ± 0.021	0.159 ± 0.029	0.090 ± 0.016	0.023 ± 0.004

- Number of B_{s} signal events per bin, $\mathrm{BF}=\mathrm{SM}$

Estimating Background Yield

- Only 2 components to the background

1) Combinatoric

- Estimated using mass sidebands

2) Peaking

- Only source from $B \rightarrow h^{+} h^{--}(h=\pi$, or $K)$
- Kinematics taken from dedicated MC samples
- Probability that π, K survive muon ID criteria is taken from D* tagged $D \rightarrow \pi K$ sample
- Verify accuracy of estimates using background control samples

Estimating Combinatoric Background

- Slope: from fit to $m_{\mu \mu}>5 \mathrm{GeV} / \mathrm{c}^{2}$ for $0.70<v_{\mathrm{NN}}$
- CC and CF channels separately

Estimating Combinatoric Background

- Normalization determined for each v_{NN} bin separately (for CC and CF separately)

Estimating Combinatoric Background

- Normalization determined for each v_{NN} bin separately (for CC and CF separately)

Combinatoric Background Estimate: B_{s}

Combinatoric background: B_{s} region

NN Bin \quad Mass $\operatorname{Bin}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$5.310-5.334$	$5.334-5.358$	$5.358-5.382$	$5.382-5.406$	$5.406-5.430$
CC					
$0.700<\mathrm{NN}<0.760$	8.02 ± 0.62	7.94 ± 0.61	7.87 ± 0.61	7.79 ± 0.60	7.71 ± 0.59
$0.760<\mathrm{NN}<0.850$	8.42 ± 0.64	8.34 ± 0.63	8.26 ± 0.62	8.18 ± 0.62	8.10 ± 0.61
$0.850<\mathrm{NN}<0.900$	3.55 ± 0.39	3.51 ± 0.39	3.48 ± 0.39	3.44 ± 0.38	3.41 ± 0.38
$0.900<\mathrm{NN}<0.940$	3.51 ± 0.39	3.47 ± 0.39	3.44 ± 0.38	3.41 ± 0.38	3.37 ± 0.38
$0.940<\mathrm{NN}<0.970$	2.86 ± 0.35	2.83 ± 0.35	2.81 ± 0.34	2.78 ± 0.34	2.75 ± 0.34
$0.970<\mathrm{NN}<0.987$	1.61 ± 0.39	1.6 ± 0.39	1.58 ± 0.38	1.57 ± 0.38	1.55 ± 0.37
$0.987<\mathrm{NN}<0.995$	0.81 ± 0.23	0.80 ± 0.23	0.79 ± 0.22	0.78 ± 0.22	0.78 ± 0.22
$0.995<\mathrm{NN}<1.000$	0.16 ± 0.11	0.16 ± 0.10	0.16 ± 0.10	0.16 ± 0.10	0.16 ± 0.10
CF					
$0.700<\mathrm{NN}<0.760$	8.49 ± 0.65	8.39 ± 0.64	8.28 ± 0.63	8.17 ± 0.62	8.07 ± 0.61
$0.760<\mathrm{NN}<0.850$	9.45 ± 0.69	9.33 ± 0.68	9.21 ± 0.67	9.1 ± 0.66	8.98 ± 0.65
$0.850<\mathrm{NN}<0.900$	4.91 ± 0.48	4.85 ± 0.47	4.79 ± 0.46	4.73 ± 0.46	4.67 ± 0.45
$0.900<\mathrm{NN}<0.940$	3.87 ± 0.42	3.82 ± 0.41	3.77 ± 0.41	3.73 ± 0.40	3.68 ± 0.40
$0.940<\mathrm{NN}<0.970$	3.29 ± 0.38	3.25 ± 0.38	3.21 ± 0.37	3.17 ± 0.37	3.12 ± 0.36
$0.970<\mathrm{NN}<0.987$	2.37 ± 0.53	2.34 ± 0.53	2.31 ± 0.52	2.28 ± 0.52	2.25 ± 0.51
$0.987<\mathrm{NN}<0.995$	0.67 ± 0.20	0.66 ± 0.20	0.65 ± 0.20	0.64 ± 0.19	0.63 ± 0.19
$0.995<\mathrm{NN}<1.000$	0.54 ± 0.27	0.53 ± 0.27	0.53 ± 0.27	0.52 ± 0.26	0.51 ± 0.26

- uncertainty includes: slope \& normalization uncertainties as well as variations in fit function and range

Combinatoric Background Estimate: B_{c}

Combinatoric background: B_{d} region

Mass Bin $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$5.219-5.243$	$5.243-5.267$	$5.267-5.291$	$5.291-5.315$	$5.315-5.339$
NN Bin					
$0.700<\mathrm{NN}<0.760$	8.31 ± 0.64	8.24 ± 0.63	8.16 ± 0.63	8.08 ± 0.62	8.00 ± 0.62
$0.760<\mathrm{NN}<0.850$	8.73 ± 0.66	8.65 ± 0.65	8.57 ± 0.65	8.49 ± 0.64	8.41 ± 0.63
$0.850<\mathrm{NN}<0.900$	3.68 ± 0.41	3.64 ± 0.40	3.61 ± 0.40	3.57 ± 0.40	3.54 ± 0.39
$0.900<\mathrm{NN}<0.940$	3.63 ± 0.40	3.60 ± 0.40	3.57 ± 0.40	3.53 ± 0.39	3.50 ± 0.39
$0.940<\mathrm{NN}<0.970$	2.97 ± 0.36	2.94 ± 0.36	2.91 ± 0.36	2.88 ± 0.35	2.86 ± 0.35
$0.970<\mathrm{NN}<0.987$	1.67 ± 0.40	1.66 ± 0.40	1.64 ± 0.40	1.62 ± 0.39	1.61 ± 0.39
$0.987<\mathrm{NN}<0.995$	0.84 ± 0.24	0.83 ± 0.23	0.82 ± 0.23	0.81 ± 0.23	0.80 ± 0.23
$0.995<\mathrm{NN}<1.000$	0.17 ± 0.11	0.17 ± 0.11	0.16 ± 0.11	0.16 ± 0.11	0.16 ± 0.11
CF					
$0.700<\mathrm{NN}<0.760$	8.89 ± 0.68	8.78 ± 0.67	8.68 ± 0.66	8.57 ± 0.65	8.47 ± 0.65
$0.760<\mathrm{NN}<0.850$	9.89 ± 0.72	9.78 ± 0.71	9.66 ± 0.70	9.54 ± 0.69	9.42 ± 0.69
$0.850<\mathrm{NN}<0.900$	5.14 ± 0.50	5.08 ± 0.49	5.02 ± 0.49	4.96 ± 0.48	4.90 ± 0.47
$0.900<\mathrm{NN}<0.940$	4.05 ± 0.44	4.00 ± 0.43	3.96 ± 0.43	3.91 ± 0.42	3.86 ± 0.42
$0.940<\mathrm{NN}<0.970$	3.44 ± 0.40	3.40 ± 0.40	3.36 ± 0.39	3.32 ± 0.39	3.28 ± 0.38
$0.970<\mathrm{NN}<0.987$	2.48 ± 0.56	2.45 ± 0.55	2.43 ± 0.55	2.40 ± 0.54	2.37 ± 0.53
$0.987<\mathrm{NN}<0.995$	0.70 ± 0.21	0.69 ± 0.21	0.68 ± 0.21	0.67 ± 0.20	0.66 ± 0.20
$0.995<\mathrm{NN}<1.000$	0.57 ± 0.29	0.56 ± 0.28	0.55 ± 0.28	0.55 ± 0.28	0.54 ± 0.27

- uncertainty includes: slope \& normalization uncertainties as well as variations in fit function and range

Estimating Peaking Backgrounds

- Backgrounds which peak near the mass signal region will not be included in the combinatoric background estimates
- Only relevant sources of such events:
$-B_{d} \rightarrow K+\pi-, \pi+\pi-, K+K-$
$-B_{s} \rightarrow K+K-, \pi+K, \pi+\pi-$
- These are suppressed because:
- BF are small (10^{-5} to $<10^{-7}$)
$-\mathrm{m}_{\mu \mu}$ calculated assuming muon mass
- Probability $(\pi / \mathrm{K} \rightarrow$ fake $\mu)$ is small $\left(<1 \times 10^{-2}\right)$

Estimating Peaking Backgrounds

- To estimate yield, solve for $\mathrm{N}_{\mathrm{Bs,d}}$:

$$
\frac{B F\left(B_{s, d} \rightarrow h^{+} h^{--}\right)}{B F\left(B^{+} \rightarrow J / \psi K^{+}\right)}=\left(\frac{N_{B h h}}{N_{B+}}\right)\left(\frac{f_{u}}{f_{s, d}}\right)\left(\frac{\alpha_{B+} \varepsilon_{B+}}{\alpha_{B s, d} \varepsilon_{B s, d}}\right)
$$

- Obtain $\alpha^{*} \varepsilon$:
$\alpha_{B} \equiv$ geometric and kinematic acceptance of trigger

$$
\begin{gathered}
\varepsilon_{B} \equiv \varepsilon_{\text {reco }} \cdot \varepsilon_{\mathrm{NN}} \cdot \varepsilon_{\text {mass }}=\left(\varepsilon_{\text {track }} \cdot \varepsilon_{\mu-\mathrm{ID}} \cdot \varepsilon_{\text {vertex }}\right) \cdot \varepsilon_{\mathrm{NN}} \cdot \varepsilon_{\text {mass }} \\
\text { same as } \mathrm{B} \rightarrow \mu^{+} \mu^{-} \\
\text {requires special treatment }
\end{gathered}
$$

Estimating Peaking Backgrounds

CDF II $7 \mathrm{fb}^{-1}$

- $\varepsilon_{\mu \text {-fake }}$ is taken from D^{*} tagged $\mathrm{D}^{+} \rightarrow \pi^{+} \mathrm{K}^{-}$data

Estimating Peaking Backgrounds

$\mathrm{B} \rightarrow$ hh Background Estimate: B_{s}

$B \rightarrow$ hh background: B_{s} region

NN Bin Mass Bin $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$5.310-5.334$	$5.334-5.358$	$5.358-5.382$	$5.382-5.406$	$5.406-5.430$
CC					
$0.700<$ NN <0.760	0.002 ± 0.001	0.001 $\pm<0.001$	-	-	-
$0.760<\mathrm{NN}<0.850$	0.004 ± 0.001	$0.002 \pm<0.001$	0.001 $\pm<0.001$	-	-
$0.850<N N<0.900$	0.004 ± 0.001	$0.001 \pm<0.001$	-	-	-
$0.900<N N<0.940$	0.005 ± 0.001	$0.002 \pm<0.001$	0.001 $\pm<0.001$	-	-
$0.940<\mathrm{NN}<0.970$	0.008 ± 0.002	0.002 ± 0.001	$0.001 \pm<0.001$	-	-
$0.970<N N<0.987$	0.010 ± 0.002	0.003 ± 0.001	$0.001 \pm<0.001$	-	-
$0.987<$ NN <0.995	0.013 ± 0.003	0.005 ± 0.001	0.002 ± 0.001	$0.001 \pm<0.001$	-
$0.995<\mathrm{NN}<1.000$	0.052 ± 0.012	0.019 ± 0.005	0.006 ± 0.003	0.002 ± 0.001	$0.001 \pm<0.001$
CF					
$0.700<$ NN <0.760	$0.001 \pm<0.001$	-	-	-	-
$0.760<\mathrm{NN}<0.850$	$0.001 \pm<0.001$	$0.001 \pm<0.001$	-	-	-
$0.850<N N<0.900$	$0.001 \pm<0.001$	-	-	-	-
$0.900<\mathrm{NN}<0.940$	$0.002 \pm<0.001$	$0.001 \pm<0.001$	-	-	-
$0.940<\mathrm{NN}<0.970$	0.002 ± 0.001	$0.001 \pm<0.001$	-	-	-
$0.970<N N<0.987$	0.003 ± 0.001	$0.001 \pm<0.001$	$0.001 \pm<0.001$	-	-
$0.987<\mathrm{NN}<0.995$	0.003 ± 0.001	$0.001 \pm<0.001$	-	- ${ }^{-}$	-
$0.995<\mathrm{NN}<1.000$	0.015 ± 0.004	0.006 ± 0.002	0.002 ± 0.001	$0.001 \pm<0.001$	-

- Uncertainty includes: BF and fake- μ rate uncertainties (statistics of D^{*} subsamples, D^{0} fits, residual luminosity dependence)

$B \rightarrow$ hh Background Estimate: B_{d}

$B \rightarrow$ hh background: B_{d} region

Mass Bin $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$5.219-5.243$	$5.243-5.267$	$5.267-5.291$	$5.291-5.315$	$5.315-5.339$
NN Bin					
$0.700<\mathrm{NN}<0.760$	0.011 ± 0.003	0.010 ± 0.002	0.008 ± 0.002	0.004 ± 0.001	$0.002 \pm<0.001$
$0.760<\mathrm{NN}<0.850$	0.019 ± 0.006	0.019 ± 0.004	0.014 ± 0.003	0.008 ± 0.002	0.003 ± 0.001
$0.850<\mathrm{NN}<0.900$	0.016 ± 0.005	0.013 ± 0.003	0.010 ± 0.002	0.006 ± 0.001	$0.002 \pm<0.001$
$0.900<\mathrm{NN}<0.940$	0.022 ± 0.006	0.021 ± 0.005	0.016 ± 0.004	0.009 ± 0.002	0.003 ± 0.001
$0.940<\mathrm{NN}<0.970$	0.034 ± 0.010	0.028 ± 0.006	0.022 ± 0.005	0.012 ± 0.003	0.004 ± 0.001
$0.970<\mathrm{NN}<0.987$	0.042 ± 0.013	0.037 ± 0.009	0.029 ± 0.007	0.016 ± 0.004	0.006 ± 0.001
$0.987<\mathrm{NN}<0.995$	0.060 ± 0.018	0.059 ± 0.014	0.043 ± 0.010	0.024 ± 0.006	0.008 ± 0.002
$0.995<\mathrm{NN}<1.000$	0.231 ± 0.068	0.211 ± 0.049	0.157 ± 0.036	0.090 ± 0.022	0.035 ± 0.008
CF					
$0.700<\mathrm{NN}<0.760$	0.003 ± 0.001	0.003 ± 0.001	0.002 ± 0.001	$0.001 \pm<0.001$	-
$0.760<\mathrm{NN}<0.850$	0.005 ± 0.002	0.006 ± 0.002	0.004 ± 0.001	0.003 ± 0.001	$0.001 \pm<0.001$
$0.850<\mathrm{NN}<0.900$	0.004 ± 0.001	0.004 ± 0.001	0.004 ± 0.001	0.002 ± 0.001	$0.001 \pm<0.001$
$0.900<\mathrm{NN}<0.940$	0.006 ± 0.002	0.006 ± 0.002	0.005 ± 0.001	0.003 ± 0.001	$0.001 \pm<0.001$
$0.940<\mathrm{NN}<0.970$	0.008 ± 0.003	0.008 ± 0.002	0.006 ± 0.002	0.004 ± 0.001	$0.001 \pm<0.001$
$0.970<\mathrm{NN}<0.987$	0.012 ± 0.004	0.013 ± 0.003	0.011 ± 0.003	0.006 ± 0.002	0.002 ± 0.001
$0.987<\mathrm{NN}<0.995$	0.010 ± 0.003	0.011 ± 0.003	0.009 ± 0.002	0.005 ± 0.001	$0.002 \pm<0.001$
$0.995<\mathrm{NN}<1.000$	0.057 ± 0.018	0.061 ± 0.015	0.048 ± 0.012	0.028 ± 0.007	0.011 ± 0.003

- Uncertainty includes: BF and fake- μ rate uncertainties (statistics of D^{*} subsamples, D^{0} fits, residual luminosity dependence)

Background Summary: B_{s} Search

Combinatoric:

NN Bin	CC	CF
$0.700<N N<0.970$	129.2 ± 6.5	146.3 ± 7.0
$0.970<N N<0.987$	7.9 ± 1.9	11.6 ± 1.8
$0.987<N N<0.995$	4.0 ± 1.1	3.3 ± 1.0
$0.995<N N<1.000$	0.79 ± 0.52	2.6 ± 1.5

$\mathrm{B} \rightarrow \mathrm{hh}:$

NN Bin	CC	CF
$0.700<N N<0.970$	0.03 ± 0.01	$0.01 \pm<0.01$
$0.970<N N<0.987$	$0.01 \pm<0.01$	$0.01 \pm<0.01$
$0.987<N N<0.995$	$0.02 \pm<0.01$	$0.01 \pm<0.01$
$0.995<N N<1.000$	0.08 ± 0.02	0.03 ± 0.01

- Focus on 3 most sensitive $v_{N N}$ bins
- integrating over $m_{\mu \mu}$ bins, first $5 v_{N N}$ bins

Background Summary: B_{d} Search

Combinatoric:

NN Bin	CC	CF
$0.700<N N<0.970$	134.0 ± 6.6	153.4 ± 7.3
$0.970<N N<0.987$	8.2 ± 2.0	12.1 ± 1.9
$0.987<N N<0.995$	4.1 ± 1.2	3.4 ± 1.1
$0.995<N N<1.000$	0.8 ± 0.5	2.8 ± 1.6

$\mathrm{B} \rightarrow$ hh:

NN Bin	CC	CF
$0.700<N N<0.970$	0.31 ± 0.08	0.09 ± 0.02
$0.970<N N<0.987$	0.13 ± 0.03	0.05 ± 0.01
$0.987<N N<0.995$	0.19 ± 0.05	0.04 ± 0.01
$0.995<N N<1.000$	0.72 ± 0.20	0.20 ± 0.05

- Focus on 3 most sensitive v_{NN} bins
- integrating over $\mathrm{m}_{\mu \mu}$ bins, first $5 v_{\mathrm{NN}}$ bins

Cross-check Background Methodology

- We employ these data samples:
- Opposite sign $\mu \mu$
- L > 0 (OS+) this is our signal sample
- L < 0 (OS-) bgd control sample
- Dominated by combinatoric background
- Kinematics very similar to signal sample
- Same sign $\mu \mu$ (SS) bgd control sample
- Dominated by combinatoric background
- Different kinematics from signal sample
- Fake- μ enhanced sample (FM) bgd control sample (require >=1 muon to fail μ-ID requirements)
- Large $B \rightarrow$ hh contribution
- Different kinematics from signal sample

Cross-check Background Methodology

sample	NN cut	CC		
		pred	obsv	prob(\%)
OS-	$0.700<\mathrm{NN}<0.760$	$217.4 \pm$ (12.5)	203	77.7
	$0.760<\mathrm{NN}<0.850$	$262.0 \pm$ (14.1)	213	99.1
	$0.850<\mathrm{NN}<0.900$	$117.9 \pm$ (8.6)	120	44.7
	$0.900<\mathrm{NN}<0.940$	$112.1 \pm(8.4)$	116	39.4
	$0.940<\mathrm{NN}<0.970$	$112.7 \pm$ (8.4)	108	64.2
	$0.970<$ NN <0.987	$80.2 \pm$ (6.9)	75	68.3
	$0.987<\mathrm{NN}<0.995$	$67.6 \pm$ (6.3)	41	99.8
	$0.995<\mathrm{NN}<1.000$	$32.5 \pm$ (4.2)	35	37.5
SS+	$0.700<\mathrm{NN}<0.760$	$3.0 \pm$ (0.9)	3	55.0
	$0.760<\mathrm{NN}<0.850$	$3.3 \pm$ (1.0)	5	25.4
	$0.850<\mathrm{NN}<0.900$	$1.5 \pm$ (0.7)	2	43.2
	$0.900<\mathrm{NN}<0.940$	$0.9 \pm$ (0.5)	1	56.8
	$0.940<\mathrm{NN}<0.970$	$1.2 \pm$ (0.6)	1	65.9
	$0.970<\mathrm{NN}<0.987$	$1.5 \pm(0.7)$	2	43.2
	$0.987<$ NN <0.995	$0.3 \pm$ (0.3)	0	74.1
	$0.995<\mathrm{NN}<1.000$	$0.3 \pm$ (0.3)	0	74.1
SS-	$0.700<$ NN <0.760	$5.7 \pm$ (1.3)	8	23.7
	$0.760<\mathrm{NN}<0.850$	$8.4 \pm$ (1.6)	7	69.8
	$0.850<\mathrm{NN}<0.900$	$3.3 \pm$ (1.0)	6	14.3
	$0.900<\mathrm{NN}<0.940$	$2.4 \pm$ (0.8)	4	24.0
	$0.940<\mathrm{NN}<0.970$	$2.4 \pm$ (0.8)	4	24.0
	$0.970<\mathrm{NN}<0.987$	$2.1 \pm(0.8)$	0	12.2
	$0.987<\mathrm{NN}<0.995$	$1.5 \pm$ (0.7)	0	22.3
	$0.995<\mathrm{NN}<1.000$	$0.3 \pm$ (0.3)	1	30.0
FM+	$0.700<\mathrm{NN}<0.760$	$118.3 \pm$ (8.6)	136	11.1
	$0.760<\mathrm{NN}<0.850$	$110.5 \pm$ (8.3)	121	22.3
	$0.850<\mathrm{NN}<0.900$	$52.0 \pm$ (5.4)	37	96.3
	$0.900<\mathrm{NN}<0.940$	$37.3 \pm$ (4.5)	37	53.0
	$0.940<\mathrm{NN}<0.970$	$20.1 \pm$ (3.3)	20	52.3
	$0.970<\mathrm{NN}<0.987$	$8.3 \pm$ (2.0)	6	77.1
	$0.987<$ NN <0.995	$8.7 \pm$ (2.0)	3	97.5
	$0.995<\mathrm{NN}<1.000$	$20.8 \pm$ (3.5)	24	30.7

- Compare \#observed to \#predicted in all $80\left(v_{\mathrm{NN}}, \mathrm{m}_{\mu \mu}\right)$ bins across all background dominated control samples

Cross－check Background Methodology

sample	NN cut	CF		
		pred	obsv	prob（\％）
OS－	$0.700<\mathrm{NN}<0.760$	$209.3 \pm$（12．0）	187	88.8
	$0.760<\mathrm{NN}<0.850$	$332.3 \pm$（16．3）	325	62.0
	$0.850<\mathrm{NN}<0.900$	$146.7 \pm$（9．7）	144	57.7
	$0.900<\mathrm{NN}<0.940$	144．2土（9．6）	139	63.9
	$0.940<\mathrm{NN}<0.970$	128．6土（8．9）	112	88.4
	$0.970<\mathrm{NN}<0.987$	92．8土（7．4）	89	63.0
	$0.987<$ NN＜ 0.995	$45.4 \pm$（5．0）	55	14.0
	$0.995<$ NN <1.000	$38.3 \pm$（4．5）	37	58.2
SS＋	$0.700<$ NN <0.760	$0.3 \pm$（0．3）	1	30.0
	$0.760<\mathrm{NN}<0.850$	$4.2 \pm(1.1)$	4	57.8
	$0.850<\mathrm{NN}<0.900$	$0.3 \pm$（0．3）	3	1.3
	$0.900<\mathrm{NN}<0.940$	$0.6 \pm(0.4)$	1	45.4
	$0.940<\mathrm{NN}<0.970$	$0.9 \pm(0.5)$	1	56.8
	$0.970<\mathrm{NN}<0.987$	$0.6 \pm(0.4)$	0	54.9
	$0.987<\mathrm{NN}<0.995$	$0.5 \pm(0.4)$	0	60.1
	$0.995<$ NN <1.000	$0.3 \pm(0.3)$	1	30.0
SS－	$0.700<$ NN <0.760	$4.2 \pm(1.1)$	4	57.8
	$0.760<\mathrm{NN}<0.850$	$5.1 \pm$（1．2）	7	27.1
	$0.850<\mathrm{NN}<0.900$	$2.7 \pm$（0．9）	2	71.0
	$0.900<\mathrm{NN}<0.940$	$0.9 \pm$（0．5）	4	2.8
	$0.940<\mathrm{NN}<0.970$	$3.0 \pm(0.9)$	1	92.3
	$0.970<\mathrm{NN}<0.987$	$2.4 \pm$（0．8）	5	12.2
	$0.987<$ NN <0.995	$0.6 \pm(0.4)$	0	54.9
	$0.995<$ NN <1.000	$1.8 \pm(0.7)$	0	16.5
FM +	$0.700<\mathrm{NN}<0.760$	$54.8 \pm$（5．6）	66	12.7
	$0.760<\mathrm{NN}<0.850$	$66.3 \pm$（6．2）	57	83.1
	$0.850<\mathrm{NN}<0.900$	$33.7 \pm$（4．3）	25	90.3
	$0.900<\mathrm{NN}<0.940$	17．4土（3．1）	26	6.6
	$0.940<\mathrm{NN}<0.970$	$9.5 \pm(2.2)$	15	10.2
	$0.970<\mathrm{NN}<0.987$	$5.3 \pm(1.7)$	9	13.4
	$0.987<$ NN <0.995	$2.7 \pm$（1．2）	3	49.3
	$0.995<\mathrm{NN}<1.000$	$2.1 \pm(1.0)$	8	0.7

－Compare \＃observed to \＃predicted in all $80\left(v_{\mathrm{NN}}, \mathrm{m}_{\mu \mu}\right)$ bins across all background dominated control samples

Cross-check Background Methodology

Control Sample	Prediction	Nobs	Prob(N $>=$ Nobs)
OS-	2140.0 ± 53.9	1999	98%
SS+	19.7 ± 3.4	25	19%
SS-	46.8 ± 5.3	53	25%
FM+	567.8 ± 25.4	593	24%
Sum	2774.3 ± 59.9	2670	91%

Table: A comparison of the predicted and observed number of events in an extended signal mass region for all NN cuts for all the control samples. This is used as a cross check of the background estimates.

- Integrating over all bins in each sample

Cross-check Background Methodology

- Observe B \rightarrow hh in predicted place at predicted rate

What?

Sensitivity

- CDF expected sensitivity $\mathrm{BF}(\mathrm{B} \rightarrow \mu \mu)$:

$$
\begin{array}{r}
\mathrm{B}_{\mathrm{d}}: 4.6 \mathrm{E}-9 @ 95 \% \mathrm{CL} \\
3.6 \mathrm{E}-9 @ 90 \% \mathrm{CL} \\
\mathrm{~B}_{\mathrm{s}}: 1.5 \mathrm{E}-8 @ 95 \% \mathrm{CL} \\
1.1 \mathrm{E}-8 @ 90 \% \mathrm{CL}
\end{array}
$$

- Among world's best in both channels
- CMS: $\quad B_{d}=4.8 E-9 \quad B_{s}=1.8 \mathrm{E}-8$
-LHCb: $B_{d}=3.1 \mathrm{E}-9 \quad \mathrm{~B}_{\mathrm{s}}=1.0 \mathrm{E}-8$
@ 95\% CL
(all of these derived assuming background-only)

Result

- Comparison of data to background prediction in the $\left(v_{N N}, m_{\mu \mu}\right)$ bins from the optimization
- Only showing systematic uncertainties

Likelihood ratio

- We fit the data twice

1) Assuming signal $=0$
2) Leave signal $B F$ floating

- Then take ratio: $\mathrm{Q}=\mathrm{L}(\mathrm{s}+\mathrm{b}) / \mathrm{L}(\mathrm{b})$
- The likelihood:

$$
\begin{aligned}
& \mathrm{L}=\left[\prod_{i=1}^{\mathrm{Nbins}} \mathrm{P}\left(n_{o b s}^{i} \mid s_{i}+b_{i}\right)\right] \prod_{\mathrm{j}=1}^{\mathrm{Nsyst}} \mathrm{G}\left(x_{j} \mid \sigma_{j}\right) \\
& s_{i}=F\left(B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), x_{j}\right), \quad b_{i}=F\left(x_{j}\right)
\end{aligned}
$$

Result: B_{d}

- p-value using background-only pseudo-exp.

Result: B_{d}

Result: B_{s}

- p-value using background-only pseudo-exp.
- If we include SM signal, p-value $\rightarrow 1.9 \%$ (2.1 σ)

Result: B_{s}

CDF II 7 fb $^{-1}$

But...

Not so fast...

-What is this?

Not so fast...

Uncertainty: syst \oplus Poisn.

Possibilities

- Only two possible problems to consider (this is a simple analysis):

1) Problem with background estimate

- e.g. your $\pi /$ K fake rates are wrong

2) Problem with NN

- e.g. NN is over trained or mis-modeled

Recall

- Background estimate in B_{d} region
- Uses exact same sideband events
- Uses exact same sideband fits for slope and normalization
- Uses exact same $\pi / \mathrm{K} \rightarrow$ " μ " fake rates

Recall

- Background estimate in B_{d} region
- Uses exact same sideband events
- Uses exact same sideband fits for slope and normalization
- Uses exact same $\pi / K \rightarrow$ " μ " fake rates

- Accurately predicts data in signal region

Recall

- The yield of $B \rightarrow$ hh events in B_{d} region is about a factor of 10 larger than in the B_{s} region
- If there were a problem with the π / K fake rates, it would show-up much more significantly in B_{d}
- In order to account for the observed excess, fake rates would have to be off by $\times 10$
- They have a systematic uncertainty of 20\%
- Would generate much larger excesses in other bins

Possibilities

- Only two possible problems to consider (this is a simple analysis):

1) Problem with background estimate - e.g. your $\pi /$ K fake rates are wrong
2) Problem with NN

- e.g. NN is over trained or mis-modeled

Possibilities

- Only two possible problems to consider (this is a simple analysis):

ฟ) Problem with background estimate - e.g. your π / K fake rates are wrong
2) Problem with NN

- NN over trained and biases comb. bgd. Iow
- NN has mass bias suppressing B_{d} events
- Shape of $v_{N N}$ distribution poorly modeled

Problems with NN: Overtraining?

- No evidence of overtraining or bias

Recall

- No evidence that $v_{N N}$ is correlated with $m_{\mu \mu}$ (cf. pages 36-38)

Recall

- No evidence of a significant MC mis-modeling of v_{NN} distribution for real B-decays

In addition

- Even in the steeply falling region above 0.99

Possibilities

- Only two possible problems to consider (this is a simple analysis):

ฟ) Problem with background estimate - e.g. your π / K fake rates are wrong
2) Problem with NN
\checkmark NN over trained and biases comb. bgd. Low \checkmark NN has mass bias suppressing B_{d} events \checkmark Shape of v_{NN} distribution poorly modeled

So?

Our conclusion

From the PRL:
"The source of the data excess in the $0.970<v_{\mathrm{NN}}<0.987$ bin of the B_{s} signal region is investigated. ... Because the data in the B_{d} search region shows no excess, problems with the background estimates are ruled out. ... Problems with the NN are ruled out ... [since] studies find no evidence of a $v_{N N}-m_{\mu \mu}$ correlation, no evidence of overtraining, and no evidence of a significant mis-modeling of the v_{NN} shape.... In short, there is no evidence that the excess in this bin is caused by a mistake or systematic error in our background estimates or our modeling of the v_{NN} performance and distribution. The most plausible remaining explanation is that this is a statistical fluctuation."

Our conclusion

"For our central result we use the full set of bins that had been established a priori since this represents an unbiased choice."

$$
\begin{aligned}
p-\text { value }(\mathrm{b}-\text { only }) & =0.27 \% \\
p-\text { value }(\mathrm{b}+\mathrm{SM}) & =1.9 \%
\end{aligned}
$$

$$
B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}
$$

$$
4.6 \times 10^{-9}<B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<3.9 \times 10^{-8} @ 90 \% C L
$$

FYI

"...if we remove the $0.970<v_{\mathrm{NN}}<0.987$ bin the results are not significantly affected."

$$
\begin{gathered}
\text { All bins }\left(0.70<v_{\mathrm{NN}}\right) \\
\hline \hline p-\text { value }(\mathrm{b}-\text { only })=0.27 \% \\
p-\text { value }(\mathrm{b}+\mathrm{SM})=1.9 \% \\
B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8} \\
(4.6-39) \times 10^{-9} @ 90 \% C L
\end{gathered}
$$

2 Highest Bins ($0.987<v_{\mathrm{NN}}$)
p-value (b-only) $=0.66 \%$

$$
p-\text { value }(\mathrm{b}+\mathrm{SM})=4.1 \%
$$

$$
B F\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.4_{-0.8}^{+1.0}\right) \times 10^{-8}
$$

(3.3-33) $\times 10^{-9} @ 90 \% C L$

Closing Remarks

- CDF has an excess of $B_{s} \rightarrow \mu^{+} \mu^{-}$events at the level of $>2.7 \sigma$ relative to bgd-only
- The fitted BF is compatible with the results from other experiments and the SM
- CDF will increase the data set by another 40\% and publish a PRD

Closing Remarks

Backup Slides

Trigger efficiency

- "Tag-and-Probe" method using $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$ events collected with a single-leg μ trigger

Trigger Efficiency

Expected Limit

We used the set of requirements which yielded the minimum a priori expected BR Limit:

$$
\left\langle B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right\rangle=\frac{\left\langle N_{s i g n a l}^{90 \% C L}\right\rangle}{\alpha \cdot \varepsilon_{\text {total }} \cdot \sigma_{B_{s}} \int L d t}
$$

where we've summed over all possible nobs:

$$
\begin{array}{|cc}
\left\langle N_{\text {signal }}^{90 \% C L}\right\rangle=\sum_{n_{\text {obs }=0}}^{\infty} \mathrm{P}\left(n_{\text {obs }} \mid n_{b g}\right) \cdot N_{\text {signal }}^{90 \% C L}\left(n_{b g}, \Delta_{b g}, \Delta_{\alpha \cdot \varepsilon}\right) \\
\text { Poisson prob of observing } \\
\text { nobs when expecting nbg }
\end{array} \begin{gathered}
90 \% \text { CL UL on Nsignal when } \\
\text { expecting nbg bkgd evts } \\
\text { using Bayesian Method } \\
\text { and including uncertainties }
\end{gathered}
$$

Hadron to muon Fake Rates: FM+ Sample

CDF II 7 fb-1

- These rates are about x5 larger than signal event sample

Hadron to muon Fake Rates: FM+ Sample

CDF II 7 fb-1

- These rates are about x2 larger than signal event sample

Cross-check Background Methodology

- Excess in this bin looks more consistent with combinatoric than $B \rightarrow h h$

Search sample: $v_{N N}$ vS $m_{\mu,}$ distribution

- Extended signal region blinded

Results in B_{d} Region

- B_{d} results for CC and CF separately

Results in B_{d} Region

	Mass Bin ($\mathrm{GeV} / \mathrm{c}^{2}$)	5.219-5.243	5.243-5.267	5.267-5.291	5.291-5.315	5.315-5.339	Total
CC NN bin	Exp Bkg	8.32 ± 0.64	8.25 ± 0.63	8.17 ± 0.63	8.09 ± 0.62	8.01 ± 0.62	40.83
0.7-0.76	Obs	11	10	6	5	7	39
CC NN bin	Exp Bkg	8.75 ± 0.66	8.67 ± 0.65	8.58 ± 0.65	8.5 ± 0.64	8.41 ± 0.63	42.91
0.76-0.85	Obs	8	10	5	6	9	38
CC NN bin	Exp Bkg	3.69 ± 0.41	3.66 ± 0.4	3.62 ± 0.4	3.58 ± 0.4	3.54 ± 0.39	18.09
0.85-0.9	Obs	7	2	6	5	4	24
CC NN bin	Exp Bkg	3.66 ± 0.4	3.62 ± 0.4	3.58 ± 0.4	3.54 ± 0.39	3.5 ± 0.39	17.9
0.9-0.94	Obs	5	8	5	5	5	28
CC NN bin	Exp Bkg	3.0 ± 0.36	2.97 ± 0.36	2.93 ± 0.36	2.9 ± 0.35	2.86 ± 0.35	14.65
0.94-0.97	Obs	2	3	4	3	4	16
CC NN bin	Exp Bkg	1.71 ± 0.50	1.69 ± 0.50	1.67 ± 0.50	1.64 ± 0.49	1.62 ± 0.49	8.33
0.97-0.987	Obs	1	2	3	1	3	10
CC NN bin	Exp Bkg	0.90 ± 0.28	0.89 ± 0.28	0.86 ± 0.27	0.84 ± 0.27	0.81 ± 0.27	4.29
0.987-0.995	Obs	3	2	1	0	1	7
CC NN bin	Exp Bkg	0.40 ± 0.21	0.38 ± 0.20	0.32 ± 0.17	0.25 ± 0.15	0.20 ± 0.14	1.54
0.995-1	Obs	1	1	1	0	1	4
CF NN bin		$8.89+0.68$	$8.79+0.67$	$8.68+0.66$	$8.58+0.65$		
0.7-0.76	Obs	7	10	10	12	9	48
CF NN bin	Exp Bkg	9.9 ± 0.72	9.78 ± 0.71	9.66 ± 0.7	9.54 ± 0.69	9.42 ± 0.69	48.31
0.76-0.85	Obs	7	10	11	13	10	51
CF NN bin	Exp Bkg	5.15 ± 0.5	5.09 ± 0.49	5.02 ± 0.49	4.96 ± 0.48	4.9 ± 0.47	25.12
0.85-0.9	Obs	3	4	1	2	1	11
CF NN bin	Exp Bkg	4.06 ± 0.44	4.01 ± 0.43	3.96 ± 0.43	3.91 ± 0.42	3.86 ± 0.42	19.8
0.9-0.94	Obs	3	5	5	6	4	23
CF NN bin	Exp Bkg	3.45 ± 0.4	3.41 ± 0.4	3.37 ± 0.39	3.32 ± 0.39	3.28 ± 0.38	16.83
0.94-0.97	Obs	5	6	2	1	1	15
CF NN bin	Exp Bkg	2.50 ± 0.59	2.47 ± 0.58	2.44 ± 0.58	2.40 ± 0.57	2.37 ± 0.56	12.17
0.97-0.987	Obs	1	1	3	1	3	9
CF NN bin	Exp Bkg	0.71 ± 0.25	0.70 ± 0.25	0.69 ± 0.25	0.68 ± 0.24	0.67 ± 0.24	3.44
0.987-0.995	Obs	4	0	1	0	1	6
CF NN bin	Exp Bkg	0.62 ± 0.42	0.62 ± 0.42	0.60 ± 0.41	0.57 ± 0.40	0.55 ± 0.39	2.97
0.995-1	Obs	1	0	0	0	1	2

Table: $\quad B_{d}$ signal window for $\mathrm{CC}($ top $)$ and $\operatorname{CF}($ bottom): Expected backgrounds, including $B \rightarrow h h$, and number of observed events.

Results in B_{s} Region

	Mass Bin ($\mathrm{GeV} / \mathrm{c}^{2}$)	5.31-5.334	5.334-5.358	5.358-5.382	5.382-5.406	5.406-5.43	Total
CC NN bin	Exp Bkg	8.02 ± 0.62	7.94 ± 0.61	7.87 ± 0.61	7.79 ± 0.6	7.71 ± 0.59	39.34
0.7-0.76	Obs	9	6	6	2	5	28
CC NN bin	Exp Bkg	8.43 ± 0.64	8.34 ± 0.63	8.26 ± 0.62	8.18 ± 0.62	8.1 ± 0.61	41.32
0.76-0.85	Obs	8	6	11	11	7	43
CC NN bin	Exp Bkg	3.55 ± 0.39	3.51 ± 0.39	3.48 ± 0.39	3.44 ± 0.38	3.41 ± 0.38	17.4
0.85-0.9	Obs	5	6	2	5	4	22
CC NN bin	Exp Bkg	3.51 ± 0.39	3.47 ± 0.39	3.44 ± 0.38	3.41 ± 0.38	3.37 ± 0.38	17.2
0.9-0.94	Obs	4	5	4	5	7	25
CC NN bin	Exp Bkg	2.87 ± 0.35	2.84 ± 0.35	2.81 ± 0.34	2.78 ± 0.34	2.75 ± 0.34	14.04
0.94-0.97	Obs	4	5	2	3	4	18
CC NN bin	Exp Bkg	1.62 ± 0.49	1.60 ± 0.48	1.58 ± 0.47	1.57 ± 0.47	1.55 ± 0.46	7.92
0.97-0.987	Obs	1	4	7	1	3	16
CC NN bin	Exp Bkg	0.82 ± 0.27	0.80 ± 0.27	0.79 ± 0.26	0.78 ± 0.26	0.78 ± 0.26	3.97
0.987-0.995	Obs	1	1	3	0	0	5
CC NN bin	Exp Bkg	0.21 ± 0.14	0.18 ± 0.13	0.16 ± 0.12	0.16 ± 0.12	0.16 ± 0.12	0.87
0.995-1	Obs	0	1	2	0	1	4
CF NN bin	Exp Bkg	8.49 ± 0.65	8.39 ± 0.64	8.28 ± 0.63	8.17 ± 0.62	8.07 ± 0.61	41.4
0.7-0.76	Obs	8	13	9	9	9	48
CF NN bin	Exp Bkg	9.45 ± 0.69	9.33 ± 0.68	9.21 ± 0.67	9.1 ± 0.66	8.98 ± 0.65	46.07
0.76-0.85	Obs	7	8	7	11	4	37
CF NN bin	Exp Bkg	4.91 ± 0.48	4.85 ± 0.47	4.79 ± 0.46	4.73 ± 0.46	4.67 ± 0.45	23.95
0.85-0.9	Obs	1	5	6	3	5	20
CF NN bin	Exp Bkg	3.87 ± 0.42	3.82 ± 0.41	3.77 ± 0.41	3.73 ± 0.4	3.68 ± 0.4	18.88
0.9-0.94	Obs	4	1	6	3	3	17
CF NN bin	Exp Bkg	3.29 ± 0.38	3.25 ± 0.38	3.21 ± 0.37	3.17 ± 0.37	3.12 ± 0.36	16.04
0.94-0.97	Obs	0	5	3	4	5	17
CF NN bin	Exp Bkg	2.38 ± 0.56	2.34 ± 0.55	2.31 ± 0.54	2.28 ± 0.54	2.25 ± 0.53	11.57
0.97-0.987	Obs	1	4	3	1	2	11
CF NN bin	Exp Bkg	0.67 ± 0.24	0.66 ± 0.24	0.65 ± 0.24	0.64 ± 0.23	0.63 ± 0.22	3.25
0.987-0.995	Obs	1	1	0	1	0	3
CF NN bin	Exp Bkg	0.56 ± 0.39	0.54 ± 0.38	0.53 ± 0.38	0.52 ± 0.37	0.51 ± 0.36	2.66
0.995-1	Obs	1	1	0	1	1	4

Table: $\quad B_{s}$ signal window for $\mathrm{CC}($ top $)$ and $C F($ bottom): Expected backgrounds, including $B \rightarrow h$, and number of observed events.

p-value using best fit BF

- pseudo-experiments used $B F=$ best fit $B F=5.6^{*}$ SM

Comparisons with Old NN

- The high score newNN events also high score in the oldNN

Comparisons with Old NN

- $\mathrm{m}_{\mu \mu}$ distributions using oldNN and binning optimized for oldNN in $2 \mathrm{fb}^{-1} \mathrm{PRL}$

Comparisons with Old NN

- $\mathrm{m}_{\mu \mu}$ distributions using oldNN and binning optimized for oldNN in $2 \mathrm{fb}^{-1} \mathrm{PRL}$

