

Zoltan Ligeti

Implications of LHCb Measurements and Future Prospects CERN, Nov 10–11, 2011

Who needs another Summary?

Zoltan Ligeti

Implications of LHCb Measurements and Future Prospects CERN, Nov 10–11, 2011

Comments & Perspectives

Zoltan Ligeti

Implications of LHCb Measurements and Future Prospects CERN, Nov 10–11, 2011

• We all know the importance of: $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \phi \phi$

• We all know the importance of: $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \phi \phi$

 $B_s \to \mu^+ \mu^-$

• We all know the importance of: $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \phi \phi$

$$B_s \to \mu^+ \mu^-$$

 $B \to K^* \mu^+ \mu^-$

• We all know the importance of: $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \phi \phi$

$$B_s \to \mu^+ \mu^-$$

 $B \to K^* \mu^+ \mu^-$

So I am not going to talk much about these...

• We all know the importance of: $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \phi \phi$

$$B_s \to \mu^+ \mu^-$$

 $B \to K^* \mu^+ \mu^-$

So I am not going to talk much about these...

• If we cannot even agree on spelling FLAVOR vs. FLAVOUR...

• We all know the importance of: $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \phi \phi$

$$B_s \to \mu^+ \mu^-$$

 $B \to K^* \mu^+ \mu^-$

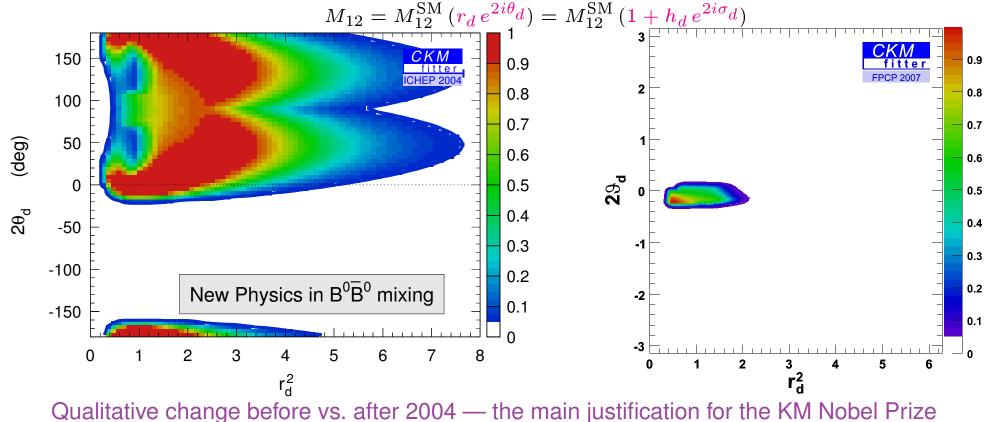
So I am not going to talk much about these...

- If we cannot even agree on spelling FLAVOR vs. FLAVOUR...
- At least, we all agree that today's date is 11.11.11

Every end is a new beginning — transition era

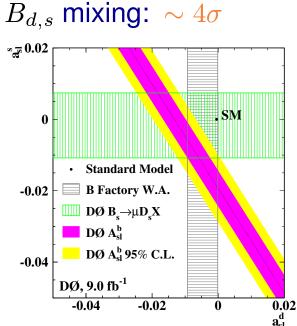
- Past: Ten years ago we did not know that the CKM picture was (essentially) correct
 O(1) deviations in CP violation were possible
- End: Nobel Prize in 2008 is formal recognition that the KM phase is the dominant source of CPV in flavor changing transitions of quarks
- Present: No significant deviations from SM O(1) effects in B_s FCNCs less and less viable

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

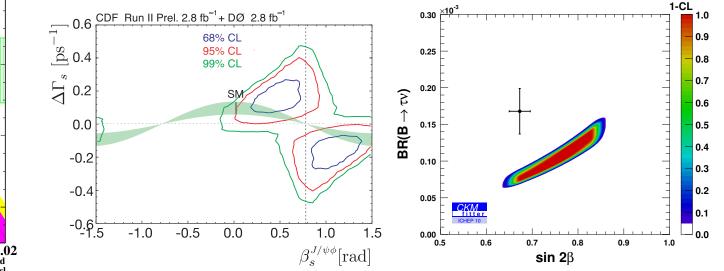

- Begin: Looking for corrections to the SM picture of flavor and CP violation
- Future: What can flavor physics teach us about beyond SM physics?

The one-page highlight of BaBar & Belle

• Constrain (NP/SM) in $B^0 - \overline{B}^0$ mixing changed from < 10 to < 1, approaching $\ll 1$

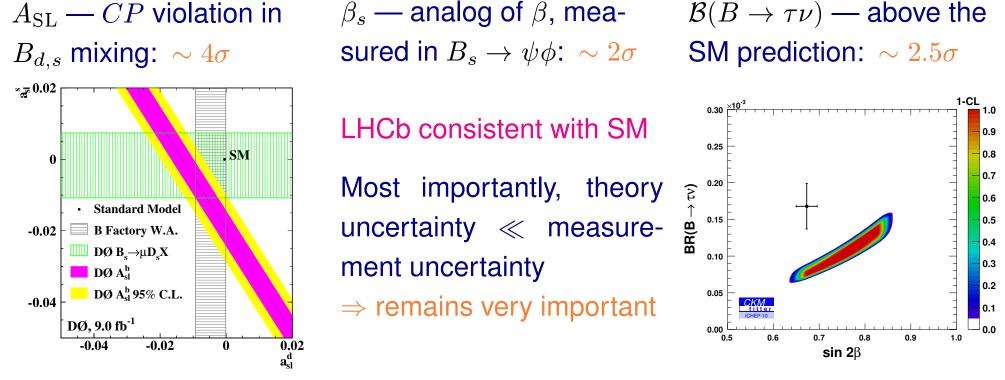

Qualitative change before vs. alter 2004 — the main justification for the Kivi Nobel Phze

- Strong constraints on new physics in many FCNC amplitudes $(+B \rightarrow X_s \gamma, \text{ etc.})$
- $\mathcal{O}(20\%)$ NP contributions to most loop processes still possible; is $\Lambda_{\text{flavor}} \gg \Lambda_{\text{weak}}$?


Intriguing anomalies — early 2011

 $A_{\rm SL} - CP$ violation in

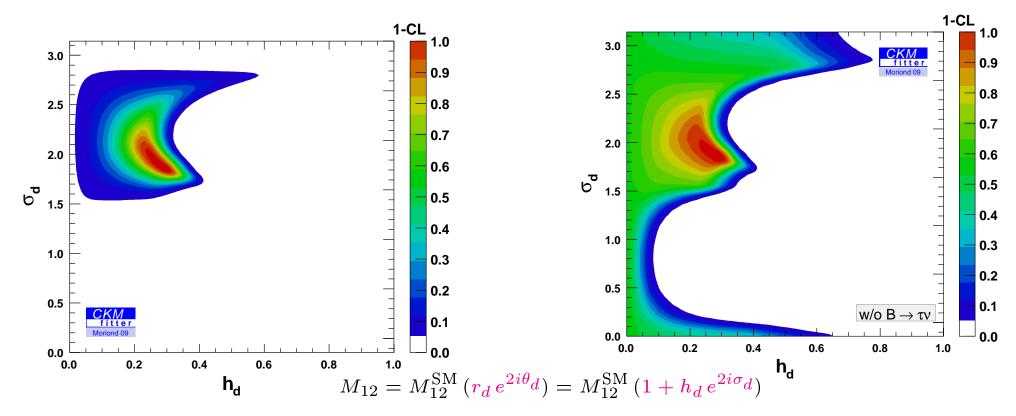
 β_s — analog of β , mea- $\mathcal{B}(B \to \tau \nu)$ — above the sured in $B_s \rightarrow \psi \phi$: ~ 2σ

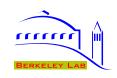

SM prediction: $\sim 2.5\sigma$

Intriguing anomalies — late 2011

• $B \to K\pi \ CP$ asymmetries: theoretically less clean, but very puzzling (many " σ ")

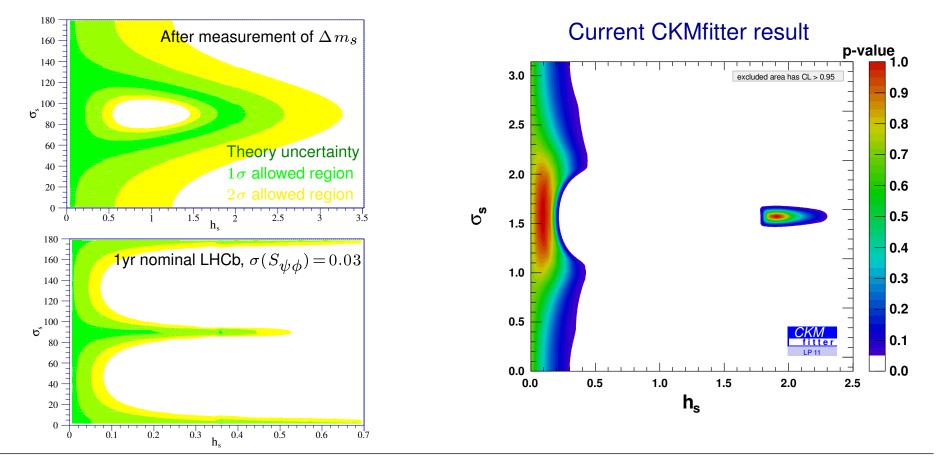
• Improved sensitivity can establish BSM physics in many other observables


As for Tevatron $t\bar{t}$ and Wjj anomalies, flavor properties will be important to understand what does (and what does not!) explain the high- p_T data


B_d : does $B \to \tau \nu$ hint at BSM?

• Some $2-3\sigma$ tensions (I don't think ϵ_K); many future measurements can show NP

- Tree-level measurements are crucial: $|V_{xb}|$ and γ
- Need precise γ measurement in order to substantially improve constraint on BSM



B_s : implication of $B_s ightarrow \psi \phi$ for BSM

• Is B_s mixing different from B_d ? We may approach the "BSM \ll SM limit" faster [ZL, Papucci, Perez, hep-ph/0604112]

Since the SM prediction of β_s is much better known (suppressed by λ^2) than that of β

rrrr

D^0 mixing — what's different?

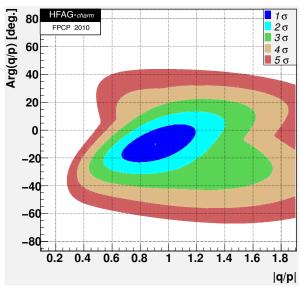
• General solution for q/p:

$$\frac{q^2}{p^2} = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}$$

• $B^0_{d,s}$: $|\Gamma_{12}| \ll |M_{12}|$, so $q/p = e^{iX}$ to a good approximation X determined by M_{12} (+ phase conventions) \Rightarrow sensitive to NP

• D^0 : $|\Gamma_{12}/M_{12}| = \mathcal{O}(1)$, so q/p depends on both Γ_{12} and M_{12}

Bounds on most CP violating effects in D^0 decays are $\leq 1 \%$, however, |q/p| - 1 is much less constrained



D^0 : mixing in up sector

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
 - 2007: observation of mixing, now $\gtrsim\!10\sigma$ [HFAG combination]
 - Only meson mixing generated by down-type quarks (SUSY: up-type squarks)
 - SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \Gamma$, since doubly-Cabibbo-suppressed and vanish in flavor SU(3) limit
 - Direct CPV bounds are approaching the 10^{-3} level

Don't known if |q/p| is near 1!

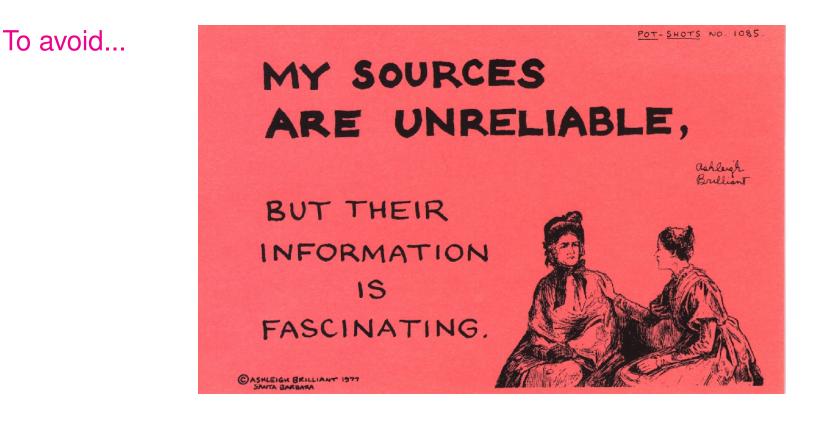
• Particularly interesting for SUSY: Δm_D and $\Delta m_K \Rightarrow$ if first two squark doublets are within LHC reach, they must be quasi-degenerate (alignment alone not viable)

Where do we go from here?

Rich experimental future

- LHCb collects 2 fb^{-1} /yr until $\sim 10 \text{ fb}^{-1}$; plan upgrade for ~ 10 times the rate
- KEK-B / Belle upgrade 🔍 🚟 in progress in Japan, Super-B 😁 approved in Italy
- $\mu \to e\gamma$: MEG (PSI) sensitivity to 10^{-13} , maybe 10^{-14} later 📥
 - $\mu N \rightarrow eN$: Fermilab mu2e sensitivity 2×10^{-17} , maybe 10^{-18} later J-PARC: COMET sensitivity to 10^{-16} , later PRISM/PRIME to 10^{-18} EDM experiments
- $K \to \pi \nu \bar{\nu}$: CERN NA62: about 60 $K^+ \to \pi^+ \nu \bar{\nu}$ events/yr in 2012–2014 plans for $K_L \to \pi^0 \nu \bar{\nu}$ mode later J-PARC E14 $V = 10^{-11} K_L \to \pi^0 \nu \bar{\nu}$ sensitivity, later 100 events FNAL: proposals for $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ at ~1000 events
- Neutrino experiments

Very broad LHCb physics program

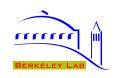

- B_s , B, D, baryons, plethora of observables, probe large fraction of terms in $\mathcal{H}^{(5,6)}_{\text{weak}}$ Cannot overestimate the value of the breadth of the physics program
 - E.g.: Best $\alpha \& \gamma$ measurements at BaBar/Belle not in previously expected modes Not to mention "new" $Q\overline{Q}$ and $D_s(2317, etc.)$ narrow states
- I hope there will be surprises and some "key" measurements are not yet known
- Keep an open mind about what may be possible good to challenge each other!

The name of the game

- SM shows impressive consistency room for large deviations decrease rapidly
 - Only robust deviations from model independent theory are likely to be interesting

 $(2\sigma: 50 \text{ theory papers})$

 3σ : 200 theory papers


 5σ : strong sign of effect)

The name of the game

- SM shows impressive consistency room for large deviations decrease rapidly
 Only robust deviations from model independent theory are likely to be interesting
- [strong interaction] model independent \equiv theoretical uncertainty suppressed by small parameters
 - ... so theorists argue about $\mathcal{O}(1)\times$ (small numbers) instead of $\mathcal{O}(1)$ effects
- Most of the progress have come from expanding in powers of Λ/m_Q , $\alpha_s(m_Q)$... a priori not known whether $\Lambda \sim 200 \text{ MeV}$ or $\sim 2 \text{ GeV}$ $(f_{\pi}, m_{\rho}, m_K^2/m_s)$... need experimental guidance to see how well the theory works

"When you have to descend into the brown muck, you abandon all pretense of doing elegant, pristine, first-principles calculations. You have to get your hands dirty with uncontrolled approximations and models. When you are finished with the brown muck you should wash your hands." [H. Georgi, TASI lecture notes, 1991]

The news of the week (year?): LHCb \rightarrow LHCc

• The 0.8% direct CPV (even 0.4%) is beyond all sensible SM estimates I know

What is "sensible"? When the $\Delta I = \frac{1}{2}$ rule is at play, we include the measured ~ 20 enhancement, but only a factor of a few in general (lore, like μ variation)

It would be "more conservative" to say that we can get arbitrary enhancement, but it's not practical, and even misleading, because it would make many important measurements look uninteresting


- There will be a flood of model building papers: RPV, flavor off-diagonal Z's, etc.
- The important question is: How do we convince ourselves that we do not see a "fluke" like the $\Delta I = \frac{1}{2}$ rule?
- How do we get from: "New physics could show up" \iff "Must be a sign of NP"

[We heard these and similar expressions in several talks]

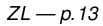
Small and large penguins

Galapagos: 45 cm, 2 kg

Gentoo: 80 cm, 6 kg

Emperor: 1.2 m, 40 kg

Small and large trees



Cherry: 10 m, 300 kg

Giant Sequoia: 100 m, 10^6 kg

Can LHCb help to pin down $|V_{ub}|$?

• Gino suggested measuring: $B_s \to K^+ \mu^- \nu$ and / or $B_d \to \pi^+ \mu^- \nu$

Definitely interesting — will have to rely on LQCD

How good can the q^2 resolution get in such decays?

• The theoretically most precise $|V_{ub}|$ determinations I know of:

USE:
$$\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D}$$
 — two suppressions; LQCD: 1 within few % [Grinstein, '93]
[Constrain SUSY — Nazila]
 $\frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})}$ — may get precise by ~ 2020? [ZL, Ringberg workshop, '03]
 $\frac{\mathcal{B}(B_u \to \ell \bar{\nu})}{\mathcal{B}(B_d \to \mu^+ \mu^-)}$ — only uses isospin [Grinstein, CKM'06]

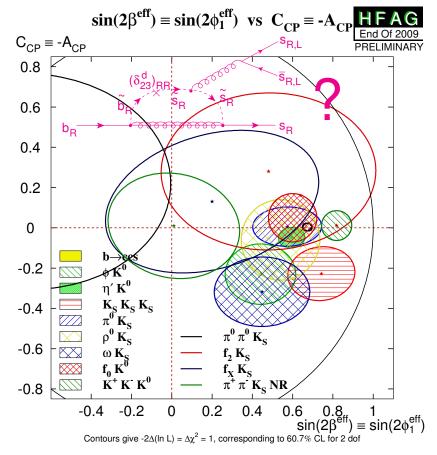
Can LHCb help to pin down $|V_{ub}|$?

• Gino suggested measuring: $B_s \to K^+ \mu^- \nu$ and / or $B_d \to \pi^+ \mu^- \nu$

Definitely interesting — will have to rely on LQCD

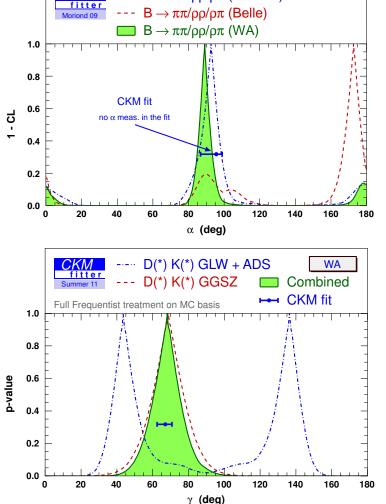
How good can the q^2 resolution get in such decays?

• The theoretically most precise $|V_{ub}|$ determinations I know of:


USE:
$$\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D}$$
 — two suppressions; LQCD: 1 within few %[Grinstein, '93]
[Constrain SUSY — Nazila] $\frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})}$ — may get precise by ~ 2020?[ZL, Ringberg workshop, '03]
[ZL, Ringberg workshop, '03] $\frac{\mathcal{B}(B_u \to \ell \bar{\nu})}{\mathcal{B}(B_d \to \mu^+ \mu^-)}$ — only uses isospin[Grinstein, CKM'06]

• Need both LHCb and Super-B... keep collecting data during the 28 TeV run...?

$\sin 2eta_{ m eff}$, lpha, γ — large improvements possible



• Key masurements will benefit from ~ 100 times more data $\Rightarrow 10$ times smaller error

--- $B \rightarrow \pi \pi / \rho \rho / \rho \pi$ (BABAR)

CKM

Only LHCb: γ from $B_s o D_s^\pm K^\mp$

• Same weak phase in each $B_s, \overline{B}_s \to D_s^{\pm} K^{\mp}$ decay \Rightarrow the 4 time dependent rates determine 2 amplitudes, a strong, and a weak phase (clean, although $|f\rangle \neq |f_{CP}\rangle$)

Four amplitudes:
$$\overline{B}_s \stackrel{A_1}{\to} D_s^+ K^- \quad (b \to c\overline{u}s), \qquad \overline{B}_s \stackrel{A_2}{\to} K^+ D_s^- \quad (b \to u\overline{c}s)$$

 $B_s \stackrel{A_1}{\to} D_s^- K^+ \quad (\overline{b} \to \overline{c}u\overline{s}), \qquad B_s \stackrel{A_2}{\to} K^- D_s^+ \quad (\overline{b} \to \overline{u}c\overline{s})$
 $\frac{\overline{A}_{D_s^+ K^-}}{A_{D_s^+ K^-}} = \frac{A_1}{A_2} \left(\frac{V_{cb} V_{us}^*}{V_{ub}^* V_{cs}} \right), \qquad \frac{\overline{A}_{D_s^- K^+}}{A_{D_s^- K^+}} = \frac{A_2}{A_1} \left(\frac{V_{ub} V_{cs}^*}{V_{cb}^* V_{us}} \right)$

Magnitudes and relative strong phase of A_1 and A_2 drop out if four time dependent rates are measured \Rightarrow no hadronic uncertainty:

$$\lambda_{D_s^+K^-} \lambda_{D_s^-K^+} = \left(\frac{V_{tb}^*V_{ts}}{V_{tb}V_{ts}^*}\right)^2 \left(\frac{V_{cb}V_{us}^*}{V_{ub}^*V_{cs}}\right) \left(\frac{V_{ub}V_{cs}^*}{V_{cb}^*V_{us}}\right) = e^{-2i(\gamma - 2\beta_s - \beta_K)}$$

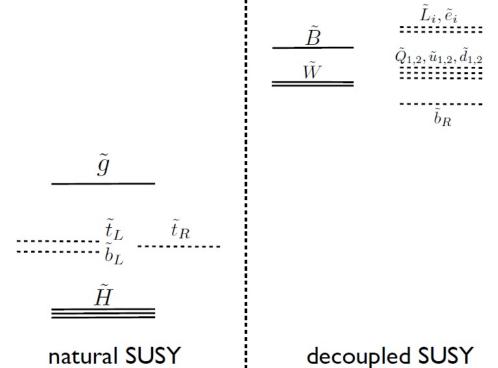
Similarly, $B_d \to D^{(*)\pm}\pi^{\mp}$ determines $\gamma + 2\beta$, since $\lambda_{D^+\pi^-}\lambda_{D^-\pi^+} = e^{-2i(\gamma+2\beta)}$... ratio of amplitudes $\mathcal{O}(\lambda^2) \Rightarrow$ small asymmetries (tag side interference)

Substantial discovery potential in many modes

- Some of the theoretically cleanest modes (ν, τ, inclusive) only possible at e⁺e⁻
- Many modes first seen at LHCb or super-(KEK-)B
- In some decay modes, even in 2025:
 - (Exp. bound)/SM $\gtrsim 10^3$ (E.g.: $B_{(s)} \rightarrow \tau^+ \tau^-$
 - "unlimited" muddle building)

[Grossman, ZL, Nir, arXiv:0904.4262]

et-	Observable	Approximate	Present	Uncertainty / number of events	
51	Observable	SM prediction	status	Super- B (50 ab ⁻¹)	LHCb $(10 {\rm fb}^{-1})$
es	$S_{\psi K}$	input	0.671 ± 0.024	0.005	0.01
00	$S_{\phi K}$	$S_{\psi K}$	0.44 ± 0.18	0.03	0.1
ıly	$S_{\eta'K}$	$S_{\psi K}$	0.59 ± 0.07	0.02	not studied
''y	$\alpha(\pi\pi, \rho\rho, \rho\pi)$	α	$(89 \pm 4)^{\circ}$	2°	4°
	$\gamma(DK)$	γ	$(70^{+27}_{-30})^{\circ}$	2°	3°
	$S_{K^*\gamma}$	few $\times 0.01$	-0.16 ± 0.22	0.03	
	$S_{B_s o \phi \gamma}$	few $\times 0.01$			0.05
at	$\beta_s(B_s \to \psi \phi)$	1°	$(22^{+10}_{-8})^{\circ}$	<u>10-10</u>	0.3°
al	$\beta_s(B_s \to \phi \phi)$	1°	_		1.5°
	$A^d_{ m SL}$	-5×10^{-4}	$-(5.8 \pm 3.4) \times 10^{-3}$	10^{-3}	10^{-3}
	$A^s_{ m SL}$	2×10^{-5}	$(1.6 \pm 8.5) \times 10^{-3}$	$\Upsilon(5S)$ run?	10^{-3}
	$A_{CP}(b \rightarrow s\gamma)$	< 0.01	-0.012 ± 0.028	0.005	
es,	$ V_{cb} $	input	$(41.2 \pm 1.1) \times 10^{-3}$	1%	
,	$ V_{ub} $	input	$(3.93 \pm 0.36) \times 10^{-3}$	4%	
	$B \rightarrow X_s \gamma$	3.2×10^{-4}	$(3.52 \pm 0.25) \times 10^{-4}$	4%	
	$B \rightarrow \tau \nu$	1×10^{-4}	$(1.73 \pm 0.35) \times 10^{-4}$	5%	(<u>*</u>))
03	$B \to X_s \nu \bar{\nu}$	3×10^{-5}	$< 6.4 \times 10^{-4}$	only $K\nu\bar{\nu}$?	1000
0^3	$B \to X_s \ell^+ \ell^-$	6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	6%	not studied
	$B_s \to \tau^+ \tau^-$	1×10^{-6}	< few %	$\Upsilon(5S)$ run?	
	$B \to X_s \tau^+ \tau^-$	5×10^{-7}	< few %	not studied	—
	$B \rightarrow \mu \nu$	4×10^{-7}	$< 1.3 \times 10^{-6}$	6%	
ıg)	$B \rightarrow \tau^+ \tau^-$	5×10^{-8}	$< 4.1 \times 10^{-3}$	$\mathcal{O}(10^{-4})$	_
	$B_s \to \mu^+ \mu^-$	3×10^{-9}	$< 5 \times 10^{-8}$		$> 5\sigma$ in SM
	$B ightarrow \mu^+ \mu^-$	1×10^{-10}	$< 1.5 \times 10^{-8}$	$< 7 \times 10^{-9}$	not studied
51	$B \to K^* \ell^+ \ell^-$	1×10^{-6}	$(1 \pm 0.1) \times 10^{-6}$	15k	36k
2]	$B \to K \nu \bar{\nu}$	4×10^{-6}	$< 1.4 \times 10^{-5}$	20%	



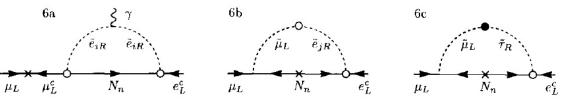
Flavor information useful in all scenarios

 Simplest bottom-up approach to keep SUSY as natural as possible, in light of ATLAS & CMS constraints

[Papucci, Ruderman, Weiler, 1110.6926; Brust, Katz, Lawrence, Sundrum, 1110.6670; Kats, Meade, Reece, Shih, 1110.6444; Essig, Izaguirre, Kaplan, Wacker, 1110.6443]

Can use approximate MFV, GIM, etc., but as first two generations are pushed heavier, typically expect larger breaking, and increasing flavor signals

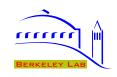
 Another scenario: LHC sees what looks like GMSB — will want lots of precision tests to understand, at a detailed level, what the underlying theory really is


(As in SM: CPV + absence of $K_L \rightarrow \mu \mu \Rightarrow$ GIM & CKM, but decades to establish it with precision)

Charged LFV, search for $au o 3\mu$, etc.

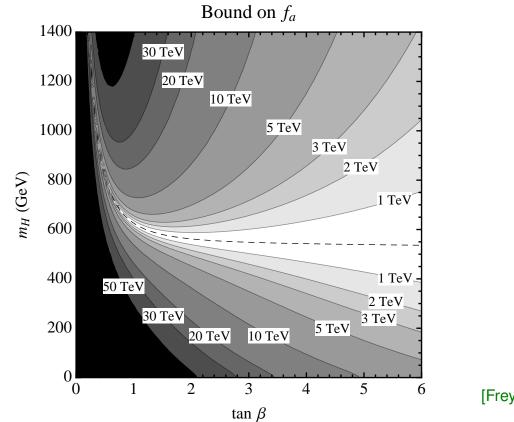
• $\mu \to e\gamma, eee \text{ VS. } \tau \to \mu\gamma, \mu\mu\mu$ Very large model dependence $\mathcal{B}(\tau \to \mu\gamma)/\mathcal{B}(\mu \to e\gamma) \sim 10^{4\pm3}$

If a positive signal is seen, it's the tip of an iceberg \Rightarrow trigger broad program


• $\tau^- \rightarrow \ell_1^- \ell_2^- \ell_3^+$ (few $\times 10^{-10}$) vs. $\tau \rightarrow \mu \gamma$? Consider operators: $\bar{\tau}_R \sigma_{\alpha\beta} F^{\alpha\beta} \mu_L$, $(\bar{\tau}_L \gamma^{\alpha} \mu_L) (\bar{\mu}_L \gamma_{\alpha} \mu_L)$ Suppression of $\mu \gamma$ and $\mu \mu \mu$ final states by α_{em} opposite for these two operators \Rightarrow winner is model dependent

se	nsitivity with 75 ab	$-1 e^+ e^-$ data	
	Process	Sensitivity	
	$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}	
	$\mathcal{B}(\tau \to e \gamma)$	2×10^{-9}	
	$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}	
	$\mathcal{B}(\tau \to eee)$	2×10^{-10}	

• $\mu \to e\gamma$ and $(g-2)_{\mu}$ operators are very similar: $\frac{m_{\mu}}{\Lambda^2} \bar{\mu} \sigma_{\alpha\beta} F^{\alpha\beta} e$, $\frac{m_{\mu}}{\Lambda^2} \bar{\mu} \sigma_{\alpha\beta} F^{\alpha\beta} \mu$

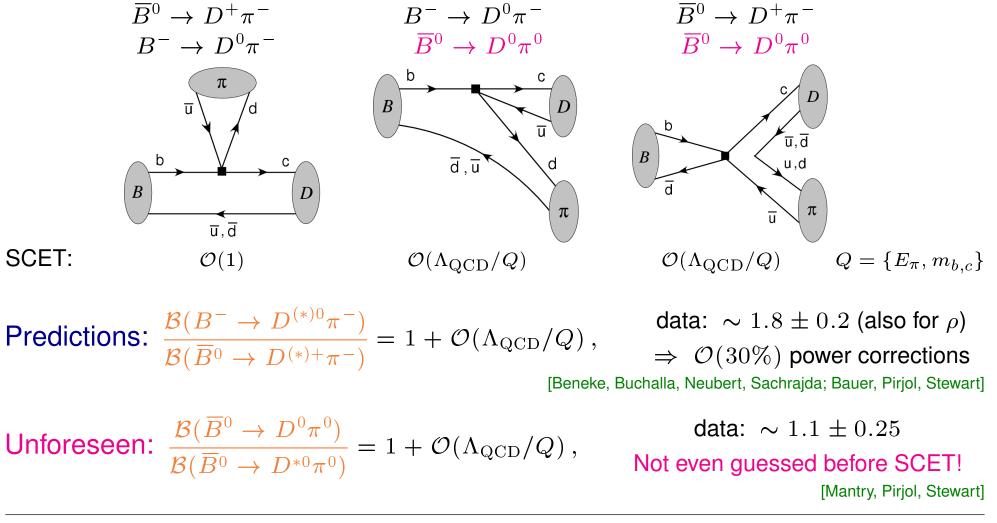

If coefficients are comparable, $\mu \to e\gamma$ gives much stronger bound already If $(g-2)_{\mu}$ is due to NP, large hierarchy of coefficients (\Rightarrow model building lessons)

"Odd" searches: probe DM models with B decays

- Observations of cosmic ray excesses lead to flurry of DM model building
 - E.g., "axion portal": light ($\lesssim 1 \, \text{GeV}$) scalar particle coupling as $(m_{\psi}/f_a) \, \bar{\psi} \gamma_5 \psi \, a$

[Freytsis, ZL, Thaler, 0911.5355]

• Best bound in most of parameter space is from $B \to K\ell^+\ell^-$ — can be improved

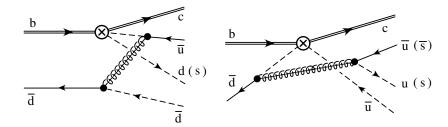

Interesting hadronic physics

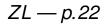
I do care about τ_{Λ_b} — affects how much we trust $\Delta \Gamma_{B_s}$ calculation, etc.

[Will be very brief]

$B ightarrow D^{(*)} \pi$ decays in SCET

• Decays to π^\pm : proven that leading order prediction is $A\propto {\cal F}^{B o D}\,f_\pi$ (also large N_c)




Color suppressed $B ightarrow D^{(*)0} \pi^0$ — cool stuff

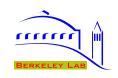
• Single class of power suppressed SCET_I operators: $T \{ \mathcal{O}^{(0)}, \mathcal{L}^{(1)}_{\xi q}, \mathcal{L}^{(1)}_{\xi q} \}$ [Mantry, Pirjol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert, strong phase}} \phi_{M}(x) + \dots$$

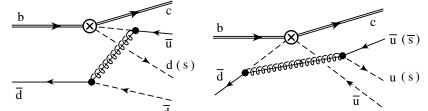
Color suppressed $B ightarrow D^{(*)0} \pi^0$ — cool stuff

- Single class of power suppressed SCET_I operators: $T\left\{\mathcal{O}^{(0)}, \mathcal{L}^{(1)}_{\xi q}, \mathcal{L}^{(1)}_{\xi q}\right\}_{[Mantry, Pirjol, Stewart]}$ $A(D^{(*)0}M^{0}) = N_{0}^{M}\int dz \, dx \, dk_{1}^{+}dk_{2}^{+} T^{(i)}(z) J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$
- Not your garden variety factorization formula... $S^{(i)}(k_1^+, k_2^+)$ know about n $S^{(0)}(k_1^+, k_2^+) = \frac{\langle D^0(v') | (\bar{h}_{v'}^{(c)}S) \not n P_L(S^{\dagger}h_v^{(b)}) (\bar{d}S)_{k_1^+} \not n P_L(S^{\dagger}u)_{k_2^+} | \bar{B}^0(v) \rangle}{\sqrt{m_B m_D}}$

Separates scales, allows to use HQS without $E_{\pi}/m_c = \mathcal{O}(1)$ corrections (i = 0, 8 above)

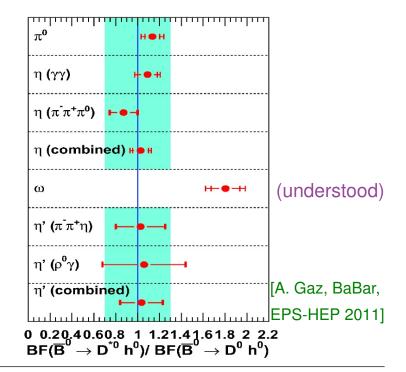


Color suppressed $B ightarrow D^{(*)0} \pi^0$ — cool stuff


Single class of power suppressed SCET_I \overline{u} (\overline{s}) operators: $T\{\mathcal{O}^{(0)}, \mathcal{L}^{(1)}_{\xi a}, \mathcal{L}^{(1)}_{\xi a}\}$ d (s) đ [Mantry, Pirjol, Stewart] $A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} T^{(i)}(z) J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{S} \phi_{M}(x) + \dots$ complex – nonpert. strong phase Ratios: the $\triangle = 1$ relations follow from naive \triangle color allowed A(D*M)color suppressed $D^0 \rho^0$ factorization and heavy quark symmetry $D^0 \omega$ 1.5 The $\bullet = 1$ relations do not — a prediction of SCET not foreseen by model calculations 1.0 Also predict equal strong phases between 0.5 amplitudes to $D^{(*)}\pi$ in I = 1/2 and 3/2SCET prediction [Blechman, Mantry, Stewart] Data: $\delta(D\pi) = (30 \pm 5)^{\circ}, \ \delta(D^*\pi) = (31 \pm 5)^{\circ}$ 0.0

Color suppressed $B ightarrow D^{(*)0} \pi^0$ — cool stuff

Single class of power suppressed SCET_I operators: $T \{ \mathcal{O}^{(0)}, \mathcal{L}^{(1)}_{\xi q}, \mathcal{L}^{(1)}_{\xi q} \}$ [Mantry, Pirjol, Stewart]

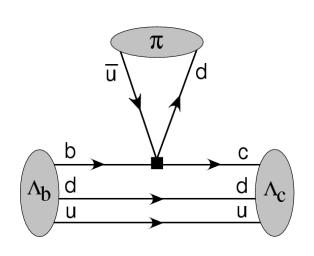


$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

- Ratios: the $\triangle = 1$ relations follow from naive factorization and heavy quark symmetry
 - The $\bullet = 1$ relations do not a prediction of SCET not foreseen by model calculations

Also predict equal strong phases between amplitudes to $D^{(*)}\pi$ in I = 1/2 and 3/2

Data:
$$\delta(D\pi) = (30 \pm 5)^{\circ}$$
, $\delta(D^*\pi) = (31 \pm 5)^{\circ}$



 Λ_b and B_s decays

• CDF measured in 2003: $\Gamma(\Lambda_b \to \Lambda_c^+ \pi^-) / \Gamma(\overline{B}{}^0 \to D^+ \pi^-) \approx 2$

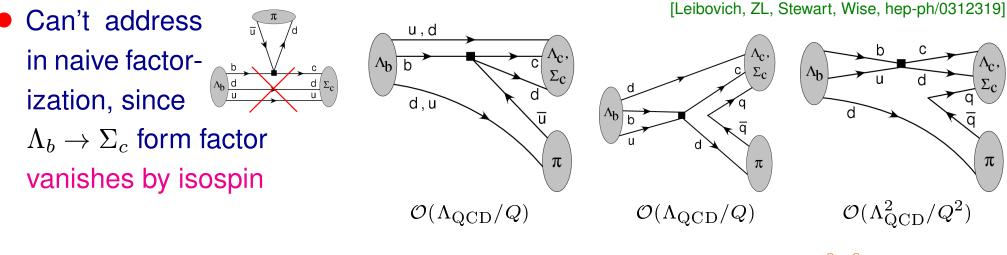
Factorization does not follow from large N_c , but holds at leading order in $\Lambda_{\rm QCD}/Q$ $\frac{\Gamma(\Lambda_b \to \Lambda_c \pi^-)}{\Gamma(\overline{B}{}^0 \to D^{(*)+}\pi^-)} \simeq 1.8 \left(\frac{\zeta(w_{\rm max}^{\Lambda})}{\xi(w_{\rm max}^{D^{(*)}})}\right)^2$ [Leibovich, ZL, Stewart, Wise] Isgur-Wise functions may be expected to be comparable

Lattice could nail this

• $B_s \rightarrow D_s \pi$ is pure tree, can help to determine relative size of E vs. C

[CDF '03: $\mathcal{B}(B_s \to D_s^- \pi^+) / \mathcal{B}(B^0 \to D^- \pi^+) \simeq 1.35 \pm 0.43$ (using $f_s / f_d = 0.26 \pm 0.03$)]

Lattice could help: Factorization relates tree amplitudes, need SU(3) breaking in $B_s \rightarrow D_s \ell \bar{\nu}$ vs. $B \rightarrow D \ell \bar{\nu}$ form factors from exp. or lattice



More complicated: $\Lambda_b o \Sigma_c \pi$

Recall quantum numbers:

$$\begin{array}{c|ccc} \text{multiplets} & s_l & I(J^P) \\ & \Lambda_c & 0 & 0(\frac{1}{2}^+) \\ & \Sigma_c, \Sigma_c^* & 1 & 1(\frac{1}{2}^+), 1(\frac{3}{2}^+) \end{array}$$

$$\Sigma_c = \Sigma_c(2455), \Sigma_c^* = \Sigma_c(2520)$$

• Prediction:
$$\frac{\Gamma(\Lambda_b \to \Sigma_c^* \pi)}{\Gamma(\Lambda_b \to \Sigma_c \pi)} = 2 + \mathcal{O}\left[\Lambda_{\rm QCD}/Q, \, \alpha_s(Q)\right] = \frac{\Gamma(\Lambda_b \to \Sigma_c^{*0} \rho^0)}{\Gamma(\Lambda_b \to \Sigma_c^0 \rho^0)}$$

Only charged particles in ratio on r.h.s. — measurable? ($\Sigma_c^{(*)0} \rightarrow \Lambda_c \pi^-, \rho^0 \rightarrow \pi^- \pi^+$)

Final comments

A personal concern

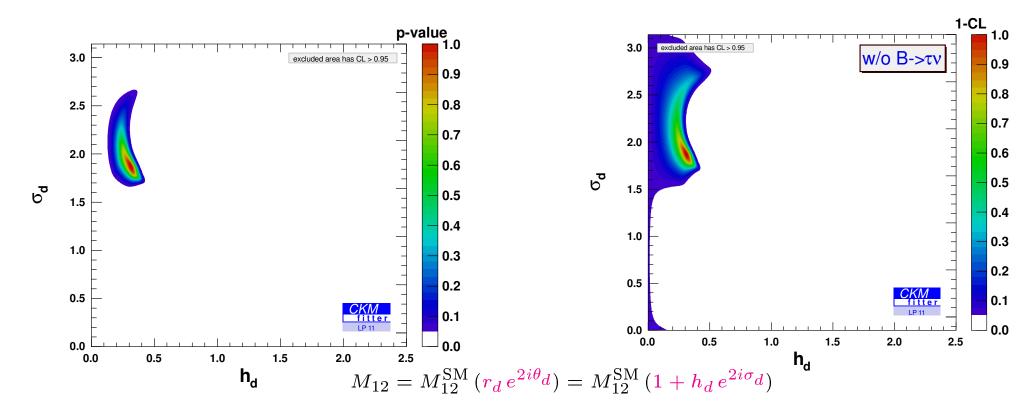
- As the possibilities of large deviations from SM are being cornered, understanding systematic effects will become important to be able to claim BSM discovery
 - Clear history of constructive competitions: BaBar Belle, LEP experiments, CLEO Argus

In many cases cross-checks are possible (with super-*B* for some angles, penguins, etc., and maybe ATLAS/CMS for $B_s \rightarrow \mu\mu$)

In many key B_s measurements, LHCb will be without cross-checks

Conclusions

- Consistency of precision flavor measurements with SM is a problem for NP @ TeV However, new physics in most FCNC processes may still be $\gtrsim 20\%$ of the SM
- Few hints of discrepancies hopefully LHCb will confirm some and find new ones (theoretical uncertainties won't be limiting in many cases)
- Low energy tests will improve a lot in next decade, by 10–1000 in some channels Exploring influence of NP requires LHCb, super-B, *K*, lepton flavor violation
- If LHC discovers "only" the Higgs, precision measurements are the only possibility to show the way ahead (sensitive to $\gg TeV$), and point to the next energy scale
- If new particles are discovered, their flavor properties will be important to understand the underlying physics in all scenarios
- We shall learn an incredible amount in the next decade!


Let's thank Fredric, Gilad, Guy, John, Tim for organizing a very enjoyable workshop!

Backup slides

B_d : does $B \to \tau \nu$ hint at BSM?

• The 2011 update (note the different scales!); change mostly due to A_{SL}^b from DØ

(From a 4-parameter fit with NP in both $B_{d,s}$, projected on 2-d)

A super-(KEK-)*B* best buy list

 Include observables: (i) sensitive to different NP, (ii) measurements can improve order of magnitude, (iii) not limited by hadronic uncertainties

- Difference of CP asymmetries, $S_{\psi K_S} S_{\phi K_S}$
- γ from CP asymmetries in tree-level decays vs. γ from $S_{\psi K_S}$ and $\Delta m_d/\Delta m_s$
- Search for charged lepton flavor violation, $au o \mu \gamma$, $au o 3\mu$, and similar modes
- Search for CP violation in $D^0 \overline{D}^0$ mixing
- CP asymmetry in semileptonic decay (dilepton asymmetry), $A_{\rm SL}$
- CP asymmetry in the radiative decay, $S_{K^*\gamma}$
- Rare decay searches and refinements: $b \to s \nu \bar{\nu}, B \to \tau \bar{\nu}$, etc.
- Complementary to LHCb
- Any one of these measurements has the potential to establish new physics

