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Preliminaries

� We all know the importance of: Bs !  � and Bs ! ��

We all know the importance of: Bs ! �+��

We all know the importance of: B ! K��+��

So I am not going to talk much about these...

� If we cannot even agree on spelling FLAVOR vs. FLAVOUR...

� At least, we all agree that today’s date is 11.11.11
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Every end is a new beginning — transition era

� Past: Ten years ago we did not know that the
CKM picture was (essentially) correct

O(1) deviations in CP violation were possible

� End: Nobel Prize in 2008 is formal recognition
that the KM phase is the dominant source of
CPV in flavor changing transitions of quarks

� Present: No significant deviations from SM

O(1) effects in Bs FCNCs less and less viable

� Begin: Looking for corrections to the SM picture of flavor and CP violation

� Future: What can flavor physics teach us about beyond SM physics?
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The one-page highlight of BaBar & Belle

� Constrain (NP / SM) in B0 –B0 mixing changed from <10 to <1, approaching�1

M12 =MSM
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Qualitative change before vs. after 2004 — the main justification for the KM Nobel Prize

� Strong constraints on new physics in many FCNC amplitudes (+B ! Xs, etc.)
� O(20%)NP contributions to most loop processes still possible; is �avor � �weak?
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Intriguing anomalies — early 2011

� ASL — CP violation in
Bd;s mixing: � 4�
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Intriguing anomalies — late 2011

� ASL — CP violation in
Bd;s mixing: � 4�
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� B ! K� CP asymmetries: theoretically less clean, but very puzzling (many “�”)

� Improved sensitivity can establish BSM physics in many other observables

As for Tevatron t�t and Wjj anomalies, flavor properties will be important to understand what
does (and what does not!) explain the high-pT data
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Bd: does B ! �� hint at BSM?

� Some 2�3� tensions (I don’t think �K); many future measurements can show NP
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� Tree-level measurements are crucial: jVxbj and 

� Need precise  measurement in order to substantially improve constraint on BSM
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Bs: implication of Bs !  � for BSM

� Is Bs mixing different from Bd? We may approach the “BSM � SM limit” faster
[ZL, Papucci, Perez, hep-ph/0604112]

Since the SM prediction of �s is much better known (suppressed by �2) than that of �
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D0 mixing — what’s different?

� General solution for q=p:

q2

p2
=
2M�

12 � i��
12

2M12 � i�12

� B0
d;s: j�12j � jM12j, so q=p = eiX to a good approximation

B0
d;s: X determined by M12 (+ phase conventions) ) sensitive to NP

� D0: j�12=M12j = O(1), so q=p depends on both �12 and M12

Bounds on most CP violating effects in D0 decays are <� 1%, however, jq=pj � 1

is much less constrained
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D0: mixing in up sector

� Complementary to K;B: CPV, FCNC both GIM & CKM suppressed ) tiny in SM

– 2007: observation of mixing, now >�10� [HFAG combination]

– Only meson mixing generated by down-type quarks
(SUSY: up-type squarks)

– SM suppression: �mD; ��D <� 10�2 �, since doubly-
Cabibbo-suppressed and vanish in flavor SU(3) limit

– Direct CPV bounds are approaching the 10�3 level

– How small CPV would still unambiguously establish
new physics? [Kagan, Bobrowski]
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Don’t known if jq=pj is near 1!

� Particularly interesting for SUSY: �mD and �mK ) if first two squark doublets
are within LHC reach, they must be quasi-degenerate (alignment alone not viable)
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Where do we go from here?



Rich experimental future

� LHCb collects 2 fb�1/ yr until �10 fb�1; plan upgrade for �10 times the rate

� KEK-B / Belle upgrade in progress in Japan, Super-B approved in Italy

� �! e: MEG (PSI) sensitivity to 10�13, maybe 10�14 later

�N ! eN : Fermilab mu2e sensitivity 2� 10�17, maybe 10�18 later

�N ! eN : J-PARC: COMET sensitivity to 10�16, later PRISM/PRIME to 10�18

EDM experiments

� K ! ����: CERN NA62: about 60 K+ ! �+��� events / yr in 2012–2014
K ! ����: CERN NA62: plans for KL ! �0��� mode later

K ! ����: J-PARC E14 10�11 KL ! �0��� sensitivity, later 100 events

K ! ����: FNAL: proposals for K+ ! �+��� and KL ! �0��� at �1000 events

� Neutrino experiments

ZL — p.9



Very broad LHCb physics program

� Bs, B, D, baryons, plethora of observables, probe large fraction of terms inH(5;6)
weak

Cannot overestimate the value of the breadth of the physics program

E.g.: Best � &  measurements at BaBar/Belle not in previously expected modes

E.g.: Not to mention “new” QQ and Ds(2317; etc:) narrow states

� I hope there will be surprises and some “key” measurements are not yet known

� Keep an open mind about what may be possible — good to challenge each other!
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The name of the game

� SM shows impressive consistency — room for large deviations decrease rapidly

Only robust deviations from model independent theory are likely to be interesting

To avoid...

(2�: 50 theory papers 3�: 200 theory papers 5�: strong sign of effect)
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The name of the game

� SM shows impressive consistency — room for large deviations decrease rapidly

Only robust deviations from model independent theory are likely to be interesting

� [strong interaction] model independent � theoretical uncertainty suppressed
[strong interaction] model independent � by small parameters

... so theorists argue about O(1)�(small numbers) instead of O(1) effects

� Most of the progress have come from expanding in powers of �=mQ, �s(mQ)

... a priori not known whether � � 200MeV or � 2GeV (f�;m�;m
2
K=ms)

... need experimental guidance to see how well the theory works

“When you have to descend into the brown muck, you abandon all pretense of doing elegant, pristine, first-principles

calculations. You have to get your hands dirty with uncontrolled approximations and models. When you are finished

with the brown muck you should wash your hands.” [H. Georgi, TASI lecture notes, 1991]
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The news of the week (year?): LHCb ! LHCc

� The 0:8% direct CPV (even 0:4%) is beyond all sensible SM estimates I know

What is “sensible”? When the �I = 1
2 rule is at play, we include the measured

�20 enhancement, but only a factor of a few in general (lore, like � variation)

It would be “more conservative” to say that we can get arbitrary enhancement, but it’s not practical,

and even misleading, because it would make many important measurements look uninteresting

� There will be a flood of model building papers: RPV, flavor off-diagonal Z 0s, etc.

� The important question is:
How do we convince ourselves that we do not see a “fluke” like the �I = 1

2 rule?

� How do we get from: “New physics could show up” () “Must be a sign of NP”

[We heard these and similar expressions in several talks]
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Small and large penguins

Galapagos: 45 cm, 2 kg

Gentoo: 80 cm, 6 kg

Emperor: 1:2m, 40 kg
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Small and large trees

Juniper: 0:1m, 0:1 kg

Cherry: 10m, 300 kg

Giant Sequoia: 100m, 106 kg
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Can LHCb help to pin down jVubj?

� Gino suggested measuring: Bs ! K+��� and / or Bd ! �+���

Definitely interesting — will have to rely on LQCD

How good can the q2 resolution get in such decays?

� The theoretically most precise jVubj determinations I know of:

use: fB

fBs
� fDs

fD
— two suppressions; LQCD: 1 within few % [Grinstein, ’93]

[Constrain SUSY — Nazila]

B(B ! `��)

B(Bs ! `+`�)
� B(Ds ! `��)

B(D ! `��)
— may get precise by �2020? [ZL, Ringberg workshop, ’03]

B(Bu ! `��)

B(Bd ! �+��)
— only uses isospin [Grinstein, CKM’06]
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Can LHCb help to pin down jVubj?

� Gino suggested measuring: Bs ! K+��� and / or Bd ! �+���

Definitely interesting — will have to rely on LQCD

How good can the q2 resolution get in such decays?

� The theoretically most precise jVubj determinations I know of:

use: fB

fBs
� fDs

fD
— two suppressions; LQCD: 1 within few % [Grinstein, ’93]

[Constrain SUSY — Nazila]

B(B ! `��)

B(Bs ! `+`�)
� B(Ds ! `��)

B(D ! `��)
— may get precise by �2020? [ZL, Ringberg workshop, ’03]

B(Bu ! `��)

B(Bd ! �+��)
— only uses isospin [Grinstein, CKM’06]

� Need both LHCb and Super-B... keep collecting data during the 28TeV run...?
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sin 2�e�, �,  — large improvements possible

sin(2β
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e
1
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� Key masurements will benefit from �100 times
more data ) 10 times smaller error

� Will improve bounds on NP substantially [need both LHCb and super-(KEK-)B]
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Only LHCb:  from Bs ! D�
s
K�

� Same weak phase in each Bs; Bs ! D�
s K

� decay ) the 4 time dependent rates
determine 2 amplitudes, a strong, and a weak phase (clean, although jfi 6= jfCP i)

Four amplitudes: Bs
A1! D+

s K
� (b! cus) ; Bs

A2! K+D�
s (b! ucs)

Four amplitudes: Bs
A1! D�

s K
+ (b! cus) ; Bs

A2! K�D+
s (b! ucs)

AD+
s K�

AD+
s K�

=
A1

A2

�
VcbV

�
us

V �ubVcs

�
;

AD�
s K+

AD�
s K+

=
A2

A1

�
VubV

�
cs

V �cbVus

�

Magnitudes and relative strong phase of A1 and A2 drop out if four time depen-
dent rates are measured ) no hadronic uncertainty:

�D+
s K� �D�

s K+ =

�
V �tbVts
VtbV �ts

�2�
VcbV

�
us

V �ubVcs

��
VubV

�
cs

V �cbVus

�
= e�2i(�2�s��K)

� Similarly, Bd ! D(�)��� determines  + 2�, since �D+�� �D��+ = e�2i(+2�)

... ratio of amplitudes O(�2) ) small asymmetries (tag side interference)
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Substantial discovery potential in many modes

� Some of the theoret-
ically cleanest modes
(�, � , inclusive) only
possible at e+e�

� Many modes first seen at

LHCb or super-(KEK-)B

� In some decay modes,
even in 2025:

(Exp. bound)
�

SM>�10
3

(E.g.: B(s) ! �+��

“unlimited” muddle building)

[Grossman, ZL, Nir, arXiv:0904.4262]
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Flavor information useful in all scenarios

� Simplest bottom-up approach to keep
SUSY as natural as possible, in light of
ATLAS & CMS constraints
[Papucci, Ruderman, Weiler, 1110.6926; Brust, Katz, Lawrence,

Sundrum, 1110.6670; Kats, Meade, Reece, Shih, 1110.6444;

Essig, Izaguirre, Kaplan, Wacker, 1110.6443]

Can use approximate MFV, GIM, etc.,
but as first two generations are pushed
heavier, typically expect larger breaking,
and increasing flavor signals

� Another scenario: LHC sees what looks like GMSB — will want lots of precision
tests to understand, at a detailed level, what the underlying theory really is

(As in SM: CPV+absence ofKL !��)GIM & CKM, but decades to establish it with precision)
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Charged LFV, search for � ! 3�, etc.

� �! e; eee vs. � ! �; ���

Very large model dependence
B(� ! �)=B(�! e) � 104�3

If a positive signal is seen, it’s the tip of an iceberg ) trigger broad program

� �� ! `�1 `
�
2 `

+
3 (few � 10�10) vs. � ! �?

Consider operators: ��R���F
���L, (��L��L)(��L��L)

Suppression of � and ��� final states by �em opposite
for these two operators ) winner is model dependent

sensitivity with 75 ab�1 e+e� data

� �! e and (g � 2)� operators are very similar: m�

�2
�����F

��
e ;

m�

�2
�����F

��
�

If coefficients are comparable, �! e gives much stronger bound already
If (g� 2)� is due to NP, large hierarchy of coefficients () model building lessons)
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“Odd” searches: probe DM models with B decays

� Observations of cosmic ray excesses lead to flurry of DM model building

E.g., “axion portal”: light (<� 1GeV) scalar particle coupling as (m =fa) � 5 a
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[Freytsis, ZL, Thaler, 0911.5355]

� Best bound in most of parameter space is from B ! K`+`� — can be improved
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Interesting hadronic physics

I do care about ��b — affects how much we trust ��Bs calculation, etc.

[Will be very brief]



B ! D(�)� decays in SCET

� Decays to ��: proven that leading order prediction is A / FB!D f� (also large Nc)

B0 ! D+�� B� ! D0�� B0 ! D+��

B� ! D0�� B0 ! D0�0 B0 ! D0�0

SCET: O(1) O(�QCD=Q) O(�QCD=Q) Q = fE�;mb;cg

� Predictions: B(B
� ! D(�)0��)

B(B0 ! D(�)+��)
= 1 +O(�QCD=Q) ;

data: � 1:8� 0:2 (also for �)
) O(30%) power corrections

[Beneke, Buchalla, Neubert, Sachrajda; Bauer, Pirjol, Stewart]

� Unforeseen: B(B0 ! D0�0)

B(B0 ! D�0�0)
= 1 +O(�QCD=Q) ;

data: � 1:1� 0:25

Not even guessed before SCET!
[Mantry, Pirjol, Stewart]
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Color suppressed B ! D(�)0�0 — cool stuff

� Single class of power suppressed SCETI
operators: T

�
O(0);L

(1)
�q ;L

(1)
�q

	
[Mantry, Pirjol, Stewart]
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� Not your garden variety factorization formula... S(i)(k+1 ; k
+
2 ) know about n

S
(0)
(k

+
1 ; k

+
2 ) =

hD0(v0)j(�h(c)
v0
S)n=PL(S

yh(b)v )( �dS)
k
+
1
n=PL(S

yu)
k
+
2
j �B0(v)i

p
mBmD

Separates scales, allows to use HQS without E�=mc = O(1) corrections

(i = 0; 8 above)
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Color suppressed B ! D(�)0�0 — cool stuff
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� Ratios: the 4 = 1 relations follow from naive
factorization and heavy quark symmetry

The � = 1 relations do not — a prediction of
SCET not foreseen by model calculations

Also predict equal strong phases between
amplitudes to D(�)� in I = 1=2 and 3=2

Data: �(D�) = (30� 5)�, �(D��) = (31� 5)�

D0π0 0η
0 0K

0η’

0ω

D
D D

D
D0ρ0

D+π-
D0π-

D+ρ-
D0ρ-D+Κ-

D0 -Κ

A(D*M)
A(D M)

0.0

0.5

1.0

1.5

2.0
color allowed
color suppressed

SCET  prediction

*

* ω + ω
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Color suppressed B ! D(�)0�0 — cool stuff

� Single class of power suppressed SCETI
operators: T

�
O(0);L

(1)
�q ;L

(1)
�q

	
[Mantry, Pirjol, Stewart]
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(understood)

[A. Gaz, BaBar,

a EPS-HEP 2011]
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�b and Bs decays

� CDF measured in 2003: �(�b ! �+c �
�)=�(B0 ! D+��) � 2

Factorization does not follow from large Nc, but holds at
leading order in �QCD=Q

�(�b ! �c�
�)

�(B0 ! D(�)+��)
' 1:8

�
�(w�

max)

�(wD(�)
max )

�2
[Leibovich, ZL, Stewart, Wise]

Isgur-Wise functions may be expected to be comparable

Lattice could nail this

� Bs ! Ds� is pure tree, can help to determine relative size of E vs. C

[CDF ’03: B(Bs ! D�
s �

+)=B(B0 ! D��+) ' 1:35� 0:43 (using fs=fd = 0:26� 0:03)]

Lattice could help: Factorization relates tree amplitudes, need SU(3) breaking in
Bs ! Ds`�� vs. B ! D`�� form factors from exp. or lattice
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More complicated: �b ! �c�

� Recall quantum numbers:

�c = �c(2455), ��
c = �c(2520)

multiplets sl I(JP )

�c 0 0(12
+
)

�c, ��
c 1 1(12

+
), 1(32

+
)

� Can’t address
in naive factor-
ization, since
�b ! �c form factor
vanishes by isospin

[Leibovich, ZL, Stewart, Wise, hep-ph/0312319]

O(�QCD=Q) O(�QCD=Q) O(�2QCD=Q
2)

� Prediction:
�(�b ! ��c�)

�(�b ! �c�)
= 2 +O

�
�QCD=Q ; �s(Q)

�
=
�(�b ! ��0c �

0)

�(�b ! �0
c�

0)

Only charged particles in ratio on r.h.s. — measurable? (�(�)0
c ! �c�

�, �0 ! ���+)
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Final comments



A personal concern

� As the possibilities of large deviations from SM are being cornered, understanding
systematic effects will become important to be able to claim BSM discovery

Clear history of constructive competitions: BaBar – Belle, LEP experiments, CLEO – Argus

In many cases cross-checks are possible (with super-B for some angles, pen-
guins, etc., and maybe ATLAS/CMS for Bs ! ��)

� In many key Bs measurements, LHCb will be without cross-checks
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Conclusions

� Consistency of precision flavor measurements with SM is a problem for NP @ TeV
However, new physics in most FCNC processes may still be >� 20% of the SM

� Few hints of discrepancies — hopefully LHCb will confirm some and find new
ones (theoretical uncertainties won’t be limiting in many cases)

� Low energy tests will improve a lot in next decade, by 10–1000 in some channels
Exploring influence of NP requires LHCb, super-B, K, lepton flavor violation

� If LHC discovers “only” the Higgs, precision measurements are the only possibility
to show the way ahead (sensitive to �TeV), and point to the next energy scale

� If new particles are discovered, their flavor properties will be important to under-
stand the underlying physics in all scenarios

� We shall learn an incredible amount in the next decade!
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Bd: does B ! �� hint at BSM?

� The 2011 update (note the different scales!); change mostly due to AbSL from DØ
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(From a 4-parameter fit with NP in both Bd;s, projected on 2-d)
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A super-(KEK-)B best buy list

� Include observables: (i) sensitive to different NP, (ii) measurements can improve
by an order of magnitude, (iii) not limited by hadronic uncertainties

� Difference of CP asymmetries, S KS � S�KS
�  from CP asymmetries in tree-level decays vs.  from S KS and �md=�ms

� Search for charged lepton flavor violation, � ! �, � ! 3�, and similar modes

� Search for CP violation in D0 �D0 mixing

� CP asymmetry in semileptonic decay (dilepton asymmetry), ASL

� CP asymmetry in the radiative decay, SK�

� Rare decay searches and refinements: b! s���, B ! � ��, etc.

� Complementary to LHCb

� Any one of these measurements has the potential to establish new physics
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