

1. Rare leptonic decays of charm

- These decays only proceed at one loop in the SM; GIM is very effective
 SM rates are expected to be small
 - \bigstar Rare decays D \to M e⁺e⁻/ μ ⁺ μ ⁻ and D \to e⁺e⁻/ μ ⁺ μ ⁻ are mediated by c \to u II

$$\mathcal{L}_{\mathrm{eff}}^{\mathrm{SD}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ub} \sum_{i=7,9,10} C_i Q_i,$$

$$Q_9 = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \ell, \quad Q_{10} = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \gamma_5 \ell,$$

- SM contribution is dominated by LD effects
- could be used to study NP effects

Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

Mode	LD	Extra heavy q	LD + extra heavy q
$D^+ \rightarrow \pi^+ e^+ e^-$	2.0×10^{-6}	1.3×10^{-9}	2.0×10^{-6}
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	2.0×10^{-6}	1.6×10^{-9}	2.0×10^{-6}
Mode	MSSM#	LD + MSSM#	
$D^+ \rightarrow \pi^+ e^+ e^-$	2.1×10^{-7}	2.3×10^{-6}	
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	6.5×10^{-6}	8.8×10^{-6}	

★ Example: R-partity-violating SUSY

- operators with the same parameters contribute to D-mixing
- feed results into rare decays

 \bigstar Easiest: D \rightarrow e⁺e⁻/ μ ⁺ μ ⁻

Fajfer, Kosnik, Prelovsek

LHCb Theory Workshop, CERN, 2011

Standard Model contribution to $D \rightarrow \mu^{\dagger} \mu^{-}$

★ Short distance analysis

$$Q_{10} = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \gamma_5 \ell,$$

- only Q_{10} contribute, SD effects amount to Br ~ 10^{-18}
- single non-perturbative parameter (decay constant)

$$B_{D^0\ell^+\ell^-}^{(\mathrm{s.d.})} \simeq \frac{G_F^2 M_W^2 f_D m_\ell}{\pi^2} F$$
,
 $F = \sum_{i=d,s,b} V_{ui} V_{ci}^* \left[\frac{x_i}{2} + \frac{\alpha_s}{4\pi} x_i \cdot \left(\ln^2 x_i + \frac{4 + \pi^2}{3} \right) \right]$

UKOCD, HPOCD: Jamin, Lange: Penin, Steinhauser; Khodjamirian

★ Long distance analysis

Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

$$B_{D^0\ell^+\ell^-}^{(\mathrm{mix})} = \sum_{P_n} \langle P_n | \mathcal{H}_{wk}^{(\mathrm{p.c.})} | D^0 \rangle \frac{1}{M_D^2 - M_{P_n^2}} B_{P_n\ell^+\ell^-}$$

- $B_{D^0\ell^+\ell^-}^{(\mathrm{mix})} \ = \ \sum_{P_n} \ \langle P_n | \mathcal{H}_{wk}^{(\mathrm{p.c.})} | D^0 \rangle \ \frac{1}{M_D^2 M_{P_n^2}} \ B_{P_n\ell^+\ell^-} \\ \ = \ \frac{1}{2!} \sum_{\lambda_1,\lambda_2} \int \frac{d^3q_1}{2\omega_1(2\pi)^3} \ \frac{d^3q_2}{2\omega_2(2\pi)^3} \\ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p q_1 q_2) \\ \ \times \ \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi$
 - LD effects amount to Br ~ 10⁻¹³
 - could be used to study NP effects in correlation with D-mixing

Standard Model contribution to $D \rightarrow \mu^{\dagger} \mu^{-}$

★ Short distance analysis

$$Q_{10} = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \gamma_5 \ell,$$

- only Q_{10} contribute, SD effects amount to Br ~ 10^{-18}
- single non-perturbative parameter (decay constant)

$$B_{D^0\ell^+\ell^-}^{(\mathrm{s.d.})} \simeq \frac{G_F^2 M_W^2 f_D m_\ell}{\pi^2} F ,$$

$$F = \sum_{i=d,s,b} V_{ui} V_{ci}^* \left[\frac{x_i}{2} + \frac{\alpha_s}{4\pi} x_i \cdot \left(\ln^2 x_i + \frac{4 + \pi^2}{3} \right) \right]$$

UKOCD, HPOCD: Jamin, Lange: Penin, Steinhauser; Khodjamirian

★ Long distance analysis

Burdman, Golowich, Hewett, Pakvasa; Fajfer, Prelovsek, Singer

$$B_{D^0\ell^+\ell^-}^{(\text{mix})} = \sum_{P_n} \langle P_n | \mathcal{H}_{wk}^{(\text{p.c.})} | D^0 \rangle \frac{1}{M_D^2 - M_{P_n^2}} B_{P_n\ell^+\ell^-}$$

$$B_{D^0\ell^+\ell^-}^{(\mathrm{mix})} \ = \ \sum_{P_n} \ \langle P_n | \mathcal{H}_{wk}^{(\mathrm{p.c.})} | D^0 \rangle \ \frac{1}{M_D^2 - M_{P_n^2}} \ B_{P_n\ell^+\ell^-} \\ \times \mathcal{M}_{D \to \gamma\gamma} \ \mathcal{M}_{\gamma\gamma \to \ell^+\ell^-}^* (2\pi)^4 \delta^{(4)}(p - q_1 - q_2)$$

- LD effects amount to Br ~ 10⁻¹³
- could be used to study NP effects in correlation with D-mixing

What about D-mixing?

 \star Let's write the most general ΔC =2 Hamiltonian

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^2} \sum_{i=1}^{8} C_i(\mu) Q_i$$

... with the following set of 8 independent operators...

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

 $\mu \leq 1\, TeV$

1

μ: 1*GeV*

$$Q_1 = (\overline{u}_L \gamma_\mu c_L) (\overline{u}_L \gamma^\mu c_L) ,$$
 $Q_5 = (\overline{u}_R \sigma_{\mu\nu} c_L) (\overline{u}_R \sigma^{\mu\nu} c_L) ,$
 $Q_2 = (\overline{u}_L \gamma_\mu c_L) (\overline{u}_R \gamma^\mu c_R) ,$ $Q_6 = (\overline{u}_R \gamma_\mu c_R) (\overline{u}_R \gamma^\mu c_R) ,$
 $Q_3 = (\overline{u}_L c_R) (\overline{u}_R c_L) ,$ $Q_7 = (\overline{u}_L c_R) (\overline{u}_L c_R) ,$
 $Q_4 = (\overline{u}_R c_L) (\overline{u}_R c_L) ,$ $Q_8 = (\overline{u}_L \sigma_{\mu\nu} c_R) (\overline{u}_L \sigma^{\mu\nu} c_R) ,$

RG-running relate $C_i(m)$ at NP scale to the scale of $m \sim 1$ GeV, where ME are computed (on the lattice)

$$\frac{d}{d\log\mu}\vec{C}(\mu) = \hat{\gamma}^T(\mu)\vec{C}(\mu)$$

Each model of New Physics provides unique matching condition for $C_i(\Lambda_{NP})$

Generic restrictions on NP

- \star Comparing to experimental value of x, obtain constraints on NP models
 - assume x is dominated by the New Physics model
 - assume no accidental strong cancellations b/w SM and NP

$$\mathcal{Q}_{1}^{cu} = \bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta},$$

$$Q_{1}^{cu} = \bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta},$$

$$Q_{2}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{R}^{\beta} c_{L}^{\beta},$$

$$Q_{2}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{R}^{\beta} c_{L}^{\beta},$$

$$Q_{3}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{R}^{\beta} c_{L}^{\alpha},$$

$$Q_{5}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{L}^{\beta} c_{R}^{\alpha},$$

★ ... which are

$$|z_1| \lesssim 5.7 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2$$
,
 $|z_2| \lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2$,
 $|z_3| \lesssim 5.8 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2$,
 $|z_4| \lesssim 5.6 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2$,
 $|z_5| \lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2$.

New Physics is either at a very high scales

tree level: $\Lambda_{NP} \geq (4-10) \times 10^3 \text{ TeV}$

loop level: $\Lambda_{NP} \geq (1-3) \times 10^2 \text{ TeV}$

or have highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez arXiv:0906.1879 [hep-ph]

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

[★] Constraints on particular NP models available

Example of a model of New Physics

★ Consider an example: FCNC Z⁰-boson

appears in models with
extra vector-like quarks
little Higgs models

1. Integrate out Z: for $\mu < M_Z$ get

$$\mathcal{H}_{2/3} = \frac{g^2}{8\cos^2\theta_w M_Z^2} (\lambda_{uc})^2 \bar{u}_L \gamma_\mu c_L \bar{u}_L \gamma^\mu c_L$$

2. Perform RG running to $\mu \sim m_c$ (in general: operator mixing)

$$\mathcal{H}_{2/3} = \frac{g^2}{8 \cos^2 \theta_w M_Z^2} (\lambda_{uc})^2 r_1(m_c, M_Z) Q_1$$

3. Compute relevant matrix elements and $x_{\rm D}$

$$x_D^{(2/3)} = \frac{2G_F f_D^2 M_D}{3\sqrt{2}\Gamma_D} B_D (\lambda_{uc})^2 r_1(m_c, M_Z)$$

4. Assume no SM - get an upper bound on NP model parameters/correlate with rare decays!

Generic NP contribution to D $\rightarrow \mu^{\dagger}\mu^{-}$

★ Most general effective Hamiltonian:

$$\begin{split} \widetilde{Q}_1 &= (\overline{\ell}_L \gamma_\mu \ell_L) \; (\overline{u}_L \gamma^\mu c_L) \;, \qquad \widetilde{Q}_4 = (\overline{\ell}_R \ell_L) \; (\overline{u}_R c_L) \;, \\ \langle f | \mathcal{H}_{NP} | i \rangle &= G \sum_{i=1}^{\infty} \tilde{C}_i(\mu) \; \langle f | Q_i | i \rangle (\mu) & \qquad \widetilde{Q}_2 &= (\overline{\ell}_L \gamma_\mu \ell_L) \; (\overline{u}_R \gamma^\mu c_R) \;, \qquad \widetilde{Q}_5 &= (\overline{\ell}_R \sigma_{\mu\nu} \ell_L) \; (\overline{u}_R \sigma^{\mu\nu} c_L) \;, \\ \widetilde{Q}_3 &= (\overline{\ell}_L \ell_R) \; (\overline{u}_R c_L) \;, \qquad \qquad \text{plus L} \; \leftrightarrow \; \mathbb{R} \end{split}$$

 \bigstar ... thus, the amplitude for D \rightarrow e⁺e⁻/ μ ⁺ μ ⁻ decay is

$$\begin{split} \mathcal{B}_{D^0 \to \ell^+ \ell^-} &= \frac{M_D}{8\pi \Gamma_{\rm D}} \sqrt{1 - \frac{4m_\ell^2}{M_D^2}} \left[\left(1 - \frac{4m_\ell^2}{M_D^2} \right) |A|^2 + |B|^2 \right] \;\;, \\ \mathcal{B}_{D^0 \to \mu^+ e^-} &= \frac{M_D}{8\pi \Gamma_{\rm D}} \left(1 - \frac{m_\mu^2}{M_D^2} \right)^2 \left[|A|^2 + |B|^2 \right] \;\;, \\ |A| &= G \frac{f_D M_D^2}{4m_c} \left[\tilde{C}_{3-8} + \tilde{C}_{4-9} \right] \;\;, \\ |B| &= G \frac{f_D}{4} \left[2m_\ell \left(\tilde{C}_{1-2} + \tilde{C}_{6-7} \right) + \frac{M_D^2}{m_c} \left(\tilde{C}_{4-3} + \tilde{C}_{9-8} \right) \right] \;\;, \quad \tilde{C}_{i-k} \equiv \tilde{C}_i - \tilde{C}_k \end{split}$$

Many NP models give contributions to both D-mixing and D \rightarrow e⁺e⁻/ μ ⁺ μ ⁻ decay: correlate!!!

Mixing vs rare decays: a particular model

* Recent experimental constraints

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} \le 1.3 \times 10^{-6}, \qquad \mathcal{B}_{D^0 \to e^+ e^-} \le 1.2 \times 10^{-6},$$

$$B_{D^0 \to e^+e^-} \le 1.2 \times 10^{-6}$$

 $\mathcal{B}_{D^0 \to \mu^{\pm} e^{\mp}} \leq 8.1 \times 10^{-7}$,

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)

- * Relating mixing and rare decay
 - consider an example: heavy vector-like quark (Q=+2/3)
 - appears in little Higgs models, etc.

Mixing:
$$\mathcal{H}_{2/3}=rac{g^2}{8\cos^2\theta_w M_Z^2}\lambda_{uc}^2~Q_1~=~rac{G_F\lambda_{uc}^2}{\sqrt{2}}Q_1$$

$$x_{\rm D}^{(+2/3)} = \frac{2G_F \lambda_{uc}^2 f_D^2 M_D B_D r(m_c, M_Z)}{3\sqrt{2}\Gamma_D}$$

 $A_{D^0 \to \ell^+ \ell^-} = 0$ $B_{D^0 \to \ell^+ \ell^-} = \lambda_{uc} \frac{G_F f_D m_\mu}{\Omega}$ Rare decay:

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} = \frac{3\sqrt{2}}{64\pi} \frac{G_F m_\mu^2 x_D}{B_D r(m_c, M_Z)} \left[1 - \frac{4m_\mu^2}{M_D} \right]^{1/2}$$
$$\simeq 4.3 \times 10^{-9} x_D \le 4.3 \times 10^{-11} .$$

Note: a NP parameter-free relation!

Mixing vs rare decays

★ Correlation between mixing/rare decays

- possible for tree-level NP amplitudes

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)

Spin-1 intermediate boson:
$$\mathcal{H}_{V} = \mathcal{H}_{V}^{\text{FCNC}} + \mathcal{H}_{V}^{L}$$

$$\begin{split} \mathcal{H}_{V}^{\text{FCNC}} &= g_{V1}\bar{u}_{L}\gamma_{\mu}c_{L}V^{\mu} + g_{V2}\bar{u}_{R}\gamma_{\mu}c_{R}V^{\mu} \\ &+ g_{V3}\bar{u}_{L}\sigma_{\mu\nu}c_{R}V^{\mu\nu} + g_{V4}\bar{u}_{R}\sigma_{\mu\nu}c_{L}V^{\mu\nu} \end{split} \qquad \mathcal{H}_{V}^{L} = g_{V1}^{\prime}\bar{\ell}_{L}\gamma_{\mu}\ell_{L}V^{\mu} + g_{V2}^{\prime}\bar{\ell}_{R}\gamma_{\mu}\ell_{R}V^{\mu} \\ &+ g_{V3}^{\prime}\bar{\ell}_{L}\sigma_{\mu\nu}\ell_{R}V^{\mu\nu} + g_{V4}^{\prime}\bar{\ell}_{R}\sigma_{\mu\nu}\ell_{L}V^{\mu\nu} \end{split}$$

Mixing:
$$x_D^{(V)} = \frac{f_D^2 M_D B_D}{2M_V^2 \Gamma_D} \bigg[\frac{2}{3} (C_1(m_c) + C_6(m_c)) - \bigg[\frac{1}{2} + \frac{\eta}{3} \bigg] C_2(m_c) + \bigg[\frac{1}{12} + \frac{\eta}{2} \bigg] C_3(m_c) \bigg],$$

$$C_1(m_c) = r(m_c, M_V) g_{V1}^2,$$

$$C_2(m_c) = 2r(m_c, M_V)^{1/2} g_{V1} g_{V2},$$

$$C_3(m_c) = \frac{4}{3} [r(m_c, M_V)^{1/2} - r(m_c, M_V)^{-4}] g_{V1} g_{V2},$$

$$C_6(m_c) = r(m_c, M_V) g_{V2}^2.$$

Rare decay:
$$\mathcal{B}_{D^0 \to \ell^+ \ell^-}^{(V)} = \frac{f_D^2 m_\ell^2 M_D}{32 \pi M_V^4 \Gamma_D} \sqrt{1 - \frac{4 m_\ell^2}{M_D^2}} \\ \times (g_{V1} - g_{V2})^2 (g_{V1}' - g_{V2}')^2.$$

NO contribution from vectors (vector current conservation)

Mixing vs rare decays

★ Correlation between mixing/rare decays

- possible for tree-level NP amplitudes

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)

Spin-0 intermediate boson:
$$\mathcal{H}_{S} = \mathcal{H}_{S}^{FCNC} + \mathcal{H}_{S}^{L}$$
,

$$\begin{split} \mathcal{H}_{S}^{\text{FCNC}} &= g_{S1} \bar{u}_L c_R S + g_{S2} \bar{u}_R c_L S + g_{S3} \bar{u}_L \gamma_\mu c_L \partial^\mu S \\ &+ g_{S4} \bar{u}_R \gamma_\mu c_R \partial^\mu S \end{split} \qquad \begin{split} \mathcal{H}_{S}^L &= g_{S1}' \bar{\ell}_L \ell_R S + g_{S2}' \bar{\ell}_R \ell_L S + g_{S3}' \bar{\ell}_L \gamma_\mu \ell_L \partial^\mu S \\ &+ g_{S4}' \bar{\ell}_R \gamma_\mu \ell_R \partial^\mu S. \end{split}$$

$$\mathcal{H}_{S}^{L} = g_{S1}^{\prime} \bar{\ell}_{L} \ell_{R} S + g_{S2}^{\prime} \bar{\ell}_{R} \ell_{L} S + g_{S3}^{\prime} \bar{\ell}_{L} \gamma_{\mu} \ell_{L} \partial^{\mu} S + g_{S4}^{\prime} \bar{\ell}_{R} \gamma_{\mu} \ell_{R} \partial^{\mu} S.$$

Mixing:
$$x_D^{(S)} = -\frac{f_D^2 M_D B_D}{2\Gamma_D M_S^2} \bigg[\bigg[\frac{1}{12} + \frac{\eta}{2} \bigg] C_3(m_c) \\ - \frac{5\eta}{12} (C_4(m_c) + C_7(m_c)) + \eta (C_5(m_c) + C_8(m_c)) \bigg],$$

Rare decay:
$$\mathcal{B}_{D^0 \to \ell^+ \ell^-}^{(S)} = \frac{f_D^2 M_D^5}{128 \pi m_c^2 M_S^4 \Gamma_D} \sqrt{1 - \frac{4 m_\ell^2}{M_D^2}} (g_{S1} - g_{S2})^2 \\ \times \left[(g_{S1}' + g_{S2}')^2 \left(1 - \frac{4 m_\ell^2}{M_D^2}\right) + (g_{S1}' - g_{S2}')^2 \right].$$

NO contribution from scalars

Mixing vs rare decays

- ★ Correlation between mixing/rare decays
 - possible for tree-level NP amplitudes
 - some relations possible for loop-dominated transitions

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)

★ Consider several popular models

Model	$\mathcal{B}_{D^0 o \mu^+ \mu^-}$
Standard Model (SD)	$\sim 10^{-18}$
Standard Model (LD)	$\sim {\rm several} \times 10^{-13}$
Q=+2/3 Vectorlike Singlet	4.3×10^{-11}
Q=-1/3 Vectorlike Singlet	$1 \times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$
Q=-1/3 Fourth Family	$1 \times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$
Z^\prime Standard Model (LD)	$2.4\times 10^{-12}/(M_{Z'}({\rm TeV}))^2$
Family Symmetry	$0.7 \ 10^{-18} \ (Case \ A)$
RPV-SUSY	$1.7\times 10^{-9}~(500~{\rm GeV}/m_{\bar{d}_k})^2$

Obtained upper limits on rare decay branching ratios.

Can we apply the same idea where better data exists?

Same idea can be employed to relate D-mixing to K-mixing

Blum, Grossman, Nir, Perez arXiv:0903.2118 [hep-ph]

2. D⁰-mixing vs B_s-mixing

$\overline{D^0}$ – D^0 mixing	$\overline{B^0} - B^0$ mixing
 intermediate down-type quarks SM: b-quark contribution is negligible due to V_{cd}V_{ub}* 	intermediate up-type quarksSM: t-quark contribution is dominant
. $rate \propto f(m_s) - f(m_d)$ (zero in the SU(3) limit) Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002 $2^{\rm nd}$ order effect!!!	• $rate \propto m_t^2$ (expected to be large)
 Sensitive to long distance QCD Small in the SM: New Physics! (must know SM x and y) 	1. Computable in QCD (*) 2. Large in the SM: CKM!

(*) up to matrix elements of 4-quark operators

Available experimental data for Bs

 \triangleright LHCb will probe $B_s \rightarrow \mu^{\dagger} \mu^{-}$ at the SM level within a year

$$\bigstar$$
 B_s mixing data: $\Delta M_{B_s}^{(\mathrm{expt})} = (117.0 \pm 0.8) \times 10^{-13} \; \mathrm{GeV},$

E.Golowich, J. Hewett, S. Pakvasa, A.A.P. and G. Yeghiyan PRD83, 114017 (2011)

$$\Delta M_{B_s}^{(\mathrm{SM})} = \frac{\left(G_{\mathrm{F}} M_{\mathrm{W}} |V_{\mathrm{ts}}^* V_{\mathrm{tb}}|\right)^2}{6\pi^2} M_{B_s} f_{B_s}^2 \hat{B}_{B_s} \eta_{B_s} S_0(\bar{x}_t) = \left(125.2^{+13.8}_{-12.7}\right) \times 10^{-13} \; \mathrm{GeV}$$

Nierste, Lenz: Buras

$\alpha_s(M_Z) = 0.1184 \pm 0.0007$ [6]	$ V_{ts} = 0.0403^{+0.0011}_{-0.0007}$ [7]	
$\Delta M_{B_s} = (117.0 \pm 0.8) \times 10^{-13} \text{ GeV } [7]$	$\Delta\Gamma_{B_s}/\Gamma_{B_s} = 0.092^{+0.051}_{-0.054}$ [7]	
$\bar{m}_t(\bar{m}_t) = (163.4 \pm 1.2) \text{ GeV } [8]$	$f_{B_s} \sqrt{\hat{B}_{B_s}} = 275 \pm 13 \text{ MeV } [9]$	
$\hat{B}_{B_x} = 1.33 \pm 0.06$ [9]	$f_{B_s} = 0.2388 \pm 0.0095 \text{ GeV } [9]$	

$$\mathcal{B}r_{B_s \to \mu^+ \mu^-}^{(\mathrm{PDG})} < 47 \times 10^{-9} \qquad (\mathrm{CL} \ = 90\%) \ ; \qquad \mathcal{B}r_{B_s \to \mu^+ \mu^-}^{(\mathrm{CDF})} = \left(18^{+11}_{-9}\right) \times 10^{-9}$$

$$\bigstar \text{ Rare decays } \mathcal{B}r_{B_s \to \mu^+ \mu^-}^{(\mathrm{LHC})} < 9 \times 10^{-9} \qquad (\mathrm{CL} \ = 90\%) \ ; \qquad \mathcal{B}r_{B_s \to \mu^+ \mu^-}^{(\mathrm{LHC})} < 11 \times 10^{-9} \qquad (\mathrm{CL} \ = 95\%)$$

$$\mathcal{B}r_{B_s \to \mu^+ \mu^-}^{(\mathrm{SM})} = \frac{1}{8\pi^5} \cdot \frac{M_{B_s}}{\Gamma_{B_s}} \cdot \left(G_F^2 M_W^2 m_\mu f_{B_s} | V_{\mathrm{ts}}^* V_{\mathrm{tb}} | \eta_Y Y(\bar{x}_t)\right)^2 \left[1 - 4 \frac{m_\mu^2}{M_{B_s}^2}\right]^{1/2}$$

$$\mathcal{B}r_{B_s\to\mu^+\mu^-}^{(\mathrm{SM})} = \frac{3}{4\pi^3} \cdot \frac{\Delta M_{B_s}^{(\mathrm{Expt})}}{\Gamma_{B_s}} \cdot \frac{(G_F M_W m_\mu \eta_Y Y)^2}{\hat{n} \hat{B}_B S_0(\bar{x}_t)} \left[1 - 4 \frac{m_\mu^2}{M_B^2} \right]^{1/2} = (3.3 \pm 0.2) \times 10^{-9}$$

Gori, Isidori

New Physics in B_s-mixing

 \triangleright Relate NP contributions in B_s mixing and rare decays

$$\bigstar$$
 B_s mixing data: $\Delta M_{B_s} = \Delta M_{B_s}^{(\mathrm{SM})} + \Delta M_{B_s}^{(\mathrm{NP})} \cos \phi$.

$$\Delta M_{B_s}^{(\mathrm{Expt})} = \Delta M_{B_s}^{(\mathrm{SM})} + \Delta M_{B_s}^{(\mathrm{NP})}$$

$$\Delta M_{B_s}^{(NP)} = (-20.9 \rightarrow +5.6) \times 10^{-13} \text{ GeV}$$

This characterizes the size of NP "window" still possible in B_s -mixing. This is what should be related to rare decays (same formulas...)

E.Golowich, J. Hewett, S. Pakvasa, A.A.P, and G. Yeghiyan PRD83, 114017 (2011)

Mixing vs rare decays: some models

$$\mathcal{W}_{k} = \frac{1}{2}\lambda_{ijk}L_{i}L_{j}E_{k}^{c} + \lambda_{ijk}^{\prime}L_{i}Q_{j}D_{k}^{c} + \frac{1}{2}\lambda_{ijk}^{\prime\prime}U_{i}^{c}D_{j}^{c}D_{k}^{c}$$

Mixing:
$$\mathcal{L}_R = -\lambda'_{i23}\tilde{\nu}_{i_L}\bar{b}_R s_L - \lambda'_{i32}\tilde{\nu}_{i_L}\bar{s}_R b_L + \text{H.c.},$$

$$\Delta M_{B_s}^{(R)} = \frac{5}{24} f_{B_s}^2 M_{B_s} F(C_3, B_3) \sum_i \frac{\lambda'_{i23} \lambda'^*_{i32}}{M_{\bar{\nu}_i}^2},$$

$$\begin{aligned} \text{Rare decay:} \quad \mathcal{B}^{(\vec{k})}_{B_s \to \mu^+ \mu^-} &= \frac{f_{B_s}^2 M_{B_s}^3}{64 \pi \Gamma_{B_s}} \Big(\frac{M_{B_s}}{m_b} \Big)^2 \Big(1 - \frac{2 m_{\mu}^2}{M_{B_s}^2} \Big) \sqrt{1 - \frac{4 m_{\mu}^2}{M_{B_s}^2}} \\ &\qquad \qquad \mathcal{B}^{(\vec{k})}_{B_s \to \mu^+ \mu^-} = k \frac{f_{B_s}^2 M_{B_s}^3}{64 \pi \Gamma_{B_s}} \Big(\frac{\lambda_{i22} \lambda'_{i32}}{M_{\tilde{\nu}_i}^2} \Big)^2 \Big(\frac{M_{B_s}}{m_b} \Big)^2 \Big(1 - \frac{2 m_{\mu}^2}{M_{B_s}^2} \Big) \\ &\qquad \qquad \times \Big(\left| \sum_i \frac{\lambda_{i22}^* \lambda'_{i32}}{M_{\tilde{\nu}_i}^2} \right|^2 + \left| \sum_i \frac{\lambda_{i22} \lambda'_{i23}}{M_{\tilde{\nu}_i}^2} \right|^2 \Big). \end{aligned} \\ &\qquad \qquad \times \sqrt{1 - \frac{4 m_{\mu}^2}{M_{B_s}^2}}, \end{aligned}$$

...assume that a single sneutrino dominates, neglect possible CP-violation...

$$\begin{split} \mathcal{B}_{B_s \to \mu^+ \mu^-}^{(\vec{k})} &= \frac{3}{20\pi} \frac{M_{B_s}^2}{F(C_3, B_3)} \Big(\frac{M_{B_s}}{m_b} \Big)^2 \Big(1 - \frac{2m_\mu^2}{M_{B_s}^2} \Big) \\ &\times \sqrt{1 - \frac{4m_\mu^2}{M_{B_s}^2}} x_{B_s}^{(\vec{k})} \frac{\lambda_{k22}^2}{M_{\tilde{\nu}_i}^2}. \end{split}$$

E.Golowich, J. Hewett, S. Pakvasa, A.A.P, and G. Yeghiyan PRD83, 114017 (2011)

Alexey A Petrov (WSU & MCTP)

LHCb Theory Workshop, CERN, 2011

Mixing vs rare decays: some models

> FCNC pseudoscalars:

$$\mathcal{B}_{B_{s}^{0}\to\ell^{+}\ell^{-}}^{(a)} = \frac{3}{10\pi} \cdot \frac{M_{B_{s}}^{4} x_{s}^{(a)}}{m_{b}^{2} f_{a}(\bar{C}_{i}, m_{b})} \left(1 - \frac{4m_{\ell}^{2}}{M_{B_{s}}^{2}}\right)^{1/2} \left(\frac{\lambda_{22}^{E}}{M_{a}}\right)^{2}$$

E.Golowich, J. Hewett, S. Pakvasa, A.A.P, and G. Yeghiyan PRD83, 114017 (2011)

Mixing vs rare decays: some models

E.Golowich, J. Hewett, S. Pakvasa, A.A.P, and G. Yeghiyan PRD83, 114017 (2011)

Sequential 4th generation of quarks:

$$\begin{split} \mathcal{B}_{B_s \to \mu^+ \mu^-} &= \frac{3\alpha^2 m_\mu^2 x_{B_s}}{8\pi \hat{B}_{B_s} M_W^2} \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2} \frac{|C_{10}^{tot}|^2}{|\Delta'|}}, \\ \Delta' &= \eta_t S_0(x_t) + \eta_{t'} R_{t't}^2 S_0(x_{t'}) + 2\eta_{t'} R_{t't} S_0(x_t, x_{t'}) \end{split}$$

Soni et al

Alexey A Petrov (WSU & MCTP)

LHCb Theory Workshop, CERN, 2011

Things to take home

- Indirect effects of New Physics at flavor factories help to distinguish among models possibly observed at the LHC in the future
 - a combination of bottom/charm sector studies
- Charm provides great opportunities for New Physics studies
 - unique access to up-type quark sector
 - large available statistics/in many cases small SM background
 - contributions from New Physics are still possible
- Can correlate mixing and rare decays with New Physics models
 - signals in D-mixing vs rare decays help differentiate among models
 - similar correlations in $\mathsf{B}_{\mathtt{s}}$ studies restrict parameter space of several popular models