Direct CPV in charm hadron decays

A. Carbone, M. Gersabeck, V. Gligorov

Bologna, CERN

LHCb-Theory workshop, CERN

10th November 2011

Charm@LHC

Two types of charm production:

- **Prompt** : Charm produced directly in the primary interaction
- Secondary : Charm produced in B decays
 [B(B->DX) > 50%]

Prompt charm is much more abundant because the LHC charm cross-section is ~20x higher than the B cross-section

Must discriminate between the two for analyses : use the D impact parameter χ^2

р

2

0Ē

Entries 1200

800F

600

400

200

0 -10

Entries 90009

5000E

4000E

3000

2000

1000

2011 dataset 30-40 times larger => ~0.1% precision

Direct CPV in K_Sh

 $D_{(S)}^+ \rightarrow K_S h$:

Clean signals observed (modulo $D_{s}^{+} \rightarrow K_{s} \pi$)

Expected sensitivities :

D ⁺ →K _S π	~0.1%
D ⁺ →K _S K	~0.2%
$D_S^+ \rightarrow K_S K$	~0.2%
D _S ⁺ →K _S π	~0.5%

Need to decide on optimal combination of raw asymmetries for which

Production/detection asymmetries cancel We have a precise SM target to aim at.

Direct CPV in multi-body decays

Model-independent method (PRD **80** 096006, PRD **78** 051102) Divide Dalitz plot into bins and in each bin *i* calculate S_{CP}^{i} :

$$S_{CP}^{i} = \frac{N'(D^{+}) - \alpha N'(D^{-})}{\sqrt{N'(D^{+}) + \alpha^{2} N'(D^{-})}} , \qquad \alpha = \frac{N_{\text{tot}}(D^{+})}{N_{\text{tot}}(D^{-})}$$

Direct CPV in multi-body decays

We observe no evidence of CPV in the 2010 dataset

Paper presents results with two adaptive and two uniform binning schemes

Control modes $(D^+ \rightarrow K\pi\pi, D_S \rightarrow KK\pi)$ used to check for biases => none found

Binning	Fitted mean	Fitted width	χ^2/ndf	<i>p</i> -value (%)
Adaptive I	0.01 ± 0.23	1.13 ± 0.16	32.0/24	12.7
Adaptive II	-0.024 ± 0.010	1.078 ± 0.074	123.4/105	10.6
Uniform I	-0.043 ± 0.073	0.929 ± 0.051	191.3/198	82.1
Uniform II	-0.039 ± 0.045	1.011 ± 0.034	519.5/529	60.5

LHCb-Theory workshop, 10th November 2011

http://arxiv.org/abs/1110.3970, submitted to PRD 7

CPV and T-odd moments in $D \rightarrow 4h$

 $D^0 \rightarrow 4h$:

Clean signals observed (even in 4π mode!)

Many different analyses underway

5D "Miranda" style Dalitz analysis

In $D \rightarrow 4\pi$ expect ~100k events In $D \rightarrow K\pi\pi\pi$ expect 4k DCS, 2M CF In $D \rightarrow KK\pi\pi$ expect ~25k events

Same interplay with CPV in mixing as for the 2 body measurements

Search for $KK\mu\mu$, followed by T-odd moments analysis if/once discovered

Figure: D * (2010) mass - D^0 mass

Direct CPV in baryon decays

Studies of these modes have only begun recently, so far focusing on observing the $L_c \rightarrow pK\pi$ decays and understanding backgrounds etc.

Can expect ~4 M $L_c \rightarrow pK\pi$ signal events in 1fb⁻¹, sensitivity to direct CPV should be <0.1%

We are only scratching the surface however

Should we look for quasi two-body CPV, such as in $L_c \rightarrow p \phi$? Or do a Dalitz analysis for the CS modes too?

What about other baryons? Rare decays?

The LHC is producing uniquely large samples of charm baryons: we need to fully exploit them!

Session outline

Direct CP violation in the decays of charmed hadrons (90 minutes)

- LHCb introduction
- The theoretical uncertainty on direct CPV in singly cabibbo suppressed SM decays (A. Kagan)
- CP violation in Dalitz plots of multi-body charm decays (I. Bigi)
- Charmed baryons : CP violation and rare decays (A. Khodjamirian)
- Discussion