Ikaros Bigi (Notre Dame du Lac)

Ikaros Bigi (Notre Dame du Lac)

Motto for a Workshop: One should not give a lie!

Ikaros Bigi (Notre Dame du Lac)

Motto for a Workshop: One should not give a lie!

No problem for an experimentalist -- they talk about empirical facts --

Ikaros Bigi (Notre Dame du Lac)

Motto for Workshop: One should not give a lie!

No problem for an experimentalist -- they talk about empirical facts -- yet for a theorist?

Ikaros Bigi (Notre Dame du Lac)

Motto for Workshop: One should not give a lie!

No problem for an experimentalist -- they talk about empirical facts -- yet for a theorist?

Prof. Mannelli from Pisa once assured me that he does not entertain the illusion that theorists can speak the truth all the time -- speaking in good faith is all he expects from a theorist!

Ikaros Bigi (Notre Dame du Lac)

Motto Workshop: One should not give a lie!

No problem for an experimentalist -- they talk about empirical facts -- yet for a theorist?

Prof. Mannelli from Pisa once assured me that he does not entertain the illusion that theorists can speak the truth all the time -- speaking in good faith is all he expects from a theorist!

I will do it.

Ikaros Bigi (Notre Dame du Lac)

Motto for Workshop: One should not give a lie!

No problem for an experimentalist -- they talk about empirical facts -- yet for a theorist?

Prof. Mannelli from Pisa once assured me that he does not entertain the illusion that theorists can speak the truth all the time -- speaking in good faith is all he expects from a theorist!

I will do it. [Remember: prediction ≠ postdiction!]











minor asymmetry enhances their beauty & charm





minor asymmetry enhances their beauty & charm





minor asymmetry enhances their beauty & charm





CP asymmetry enhances Beauty & Charm decays!

CKM dynamics has been found at least as the leading source of the *observed* CPV in  $\Delta S \neq 0 \neq \Delta B$  dynamics

CKM dynamics has been found at least as the leading source of the *observed* CPV in  $\Delta S \neq 0 \neq \Delta B$  dynamics the goal is to find impact of New Dynamics (ND) on CP asymmetries in  $\Delta B \neq 0 \neq \Delta C$  (& in  $\Delta t \neq 0$ );

CKM dynamics has been found at least as the leading source of the *observed* CPV in  $\Delta S \neq 0 \neq \Delta B$  dynamics

the goal is to find impact of New Dynamics (ND) on CP asymmetries in  $\Delta B \neq 0 \neq \Delta C$  (& in  $\Delta t \neq 0$ );

indirect CP:

establish in 2 transitions & find in 3rd back-up one

CKM dynamics has been found at least as the leading source of the *observed* CPV in  $\Delta S \neq 0 \neq \Delta B$  dynamics the goal is to find impact of ND on CP asymmetries in  $\Delta B \neq 0 \neq \Delta C$  (& in  $\Delta t \neq 0$ );

indirect CP: establish in 2 transitions & find in 3<sup>rd</sup> back-up one direct CP: find & establish it in many channels as possible

CKM dynamics has been found at least as the leading source of the *observed* CPV in  $\Delta S \neq 0 \neq \Delta B$  dynamics

the goal is to find impact of ND on CP asymmetries in  $\Delta B \neq 0 \neq \Delta C$  (& in  $\Delta t \neq 0$ );

indirect CP:

establish in 2 transitions & find in 3rd back-up one

direct **ep**:

find & establish it in many channels as possible

CKM dynamics has been found at least as the leading source of the *observed* CPV in  $\Delta S \neq 0 \neq \Delta B$  dynamics

the goal is to find impact of ND CP asymmetries in  $\Delta B \neq 0 \neq \Delta C$  (& in  $\Delta t \neq 0$ );

indirect CP:

establish in 2 transitions & find in 3<sup>rd</sup> back-up one

direct **ep**:

find & establish it in many channels as possible

- → find out its shape & nature

 $\triangleright$  indir. & direct CPV established in 2-body final states for  $B_d$ ;

- > indir. & direct CPV established in 2-body final states for B<sub>d</sub>;
- $\triangleright$  indir. & direct CPV unclear in 2-body final states for  $B_s$ ;

- $\triangleright$  indir. & direct CPV established in 2-body final states for  $B_d$ ;
- $\triangleright$  indir. & direct CPV unclear in 2-body final states for  $B_s$ ; for SL transitions DO showed on June 30, 2011:

$$a_{SL}(B_d)|_{D0}$$
=(-0.12 ± 0.52)×10<sup>-2</sup>,  $a_{SL}(B_s)|_{D0}$ =(-1.81 ± 1.06)×10<sup>-2</sup>

- > indir. & direct CPV established in 2-body final states for B<sub>d</sub>;
- $\triangleright$  indir. & direct CPV unclear in 2-body final states for  $B_s$ ; for SL transitions DO showed on June 30, 2011:

$$a_{SL}(B_d)|_{D0}$$
=(-0.12 ± 0.52)×10<sup>-2</sup>,  $a_{SL}(B_s)|_{D0}$ =(-1.81 ± 1.06)×10<sup>-2</sup>

with input from LHCb satisfies Bell-Steinberger-Berger-Sehgal bound just



- indir. & direct CPV established in 2-body final states for B<sub>d</sub>;
   precision!
- $\triangleright$  indir. & direct CPV unclear in 2-body final states for  $B_s$ ;
  - precision!

- indir. & direct CPV established in 2-body final states for B<sub>d</sub>;
   precision!
- > indir. & direct CPV unclear in 2-body final states for  $B_s$ ; ❖ precision!
- > no indir. & dir. CPV found in 2-body final states in D decays

- indir. & direct CPV established in 2-body final states for B<sub>d</sub>;
   precision!
- > indir. & direct CPV unclear in 2-body final states for  $B_s$ ; ❖ precision!
- > no indir. & dir. CPV found in 2-body final states in D decays
  - \* accuracy & complementarity!

> its existence &

- > its existence &
- > its (their?) nature(s) & shape(s)!

- > its existence &
- > its (their?) nature(s) & shape(s)!

When the presence of ND has established, you want to find its features -  $CPV \sim S \times P$  or  $V \times A$  etc.

- > its existence &
- > its (their?) nature(s) & shape(s)!
- When the presence of ND has established, you want to find its features  $CPV \sim S \times P$  or  $V \times A$  etc.
  - $\Rightarrow$  Dalitz analyses of CKM suppr. 3-body transitions  $D/B_{(s)}$  vs.  $\overline{D}/\overline{B}_{(s)} \rightarrow KK\pi$ ,  $K\pi\pi$  etc. will help greatly,

- > its existence &
- > its (their?) nature(s) & shape(s)!
- When the presence of ND has established, you want to find its features  $CPV \sim S \times P$  or  $V \times A$  etc.
  - $\Rightarrow$  Dalitz analyses of CKM suppr. 3-body transitions  $D/B_{(s)}$  vs.  $\overline{D}/\overline{B}_{(s)} \rightarrow KK\pi$ ,  $K\pi\pi$  etc. will help greatly,
    - probably importantly so!

like a criminal case where you did *not* see two witnesses at the crime:

like a criminal case where you did *not* see two witnesses at the crime:

No golden test of flavour dynamics -- you have to rely on a series of several arguments with correlations!

ightharpoonup A Catholic Scenario for B/D ightharpoonup PPP: single path to heaven - asymmetries in the Dalitz plot

- $\triangleright$  A Catholic Scenario for  $B/D \rightarrow PPP$ :
- single path to heaven asymmetries in the Dalitz plot
  - - ✓ much less dependent on production asym.

- $\triangleright$  A Catholic Scenario for  $B/D \rightarrow PPP$ :
- single path to heaven asymmetries in the Dalitz plot
  - - much less dependent on production asym.

need

lots of statistics

- $\triangleright$  A Catholic Scenario for  $B/D \rightarrow PPP$ :
- single path to heaven asymmetries in the Dalitz plot
  - - ✓ much less dependent on production asym.

need

lots of statistics

robust pattern recognition

- A Catholic Scenario for B/D → PPP:
   single path to heaven asymmetries in the Dalitz plot
   can rely on relative rather than absolute CP asym
   ✓ much less dependent on production asym.
   need
  - lots of statistics
    robust pattern recognition
    'Miranda' procedure
    pattern recognition learnt from astronomers

Bediaga et al.: 'significance'  $[N(i)-\overline{N}(i)]/[N(i)+\overline{N}(i)]^{1/2}$ 





DP depend on  $|T(3P)|^2$  vs.  $|T(3P)|^2$ , weak & strong phases Analyze the topologies of Dalitz plots



DP depend on  $|T(3P)|^2$  vs.  $|T(3P)|^2$ , weak & strong phases Analyze the topologies of Dalitz plots

► like an analysis with *out* theoretical input for an immediate process: *significance*  $s(i) = [N(i)-N(i)]/[N(i)+N(i)]^{1/2}$ 



DP depend on  $|T(3P)|^2$  vs.  $|T(3P)|^2$ , weak & strong phases Analyze the topologies of Dalitz plots

- ≥ like an analysis with *out* theoretical input for an immediate process:  $significance s(i) = [N(i)-N(i)]/[N(i)+N(i)]^{1/2}$
- > most CP asymmetries in the DP are *in*dependent of production asymmetries!

theoretical guidance:  $B/D \rightarrow PPP$ 

theoretical guidance:  $B/D \rightarrow PPP$ 

> chiral dynamics & FSI are not strengths of LQCD

- theoretical guidance:  $B/D \rightarrow PPP$
- > chiral dynamics & FSI are not strengths of LQCD
- From Hadron Physics/MEP often unused great experience for chiral dynam. & FSI use for profit!

- theoretical guidance:  $B/D \rightarrow PPP$
- > chiral dynamics & FSI are not strengths of LQCD
- > from Hadron Physics/MEP often unused great experience for chiral dynam. & FSI use for profit!
- working group of theorists & experimentalists founded by Hanhart, Mannel, Meissner, ibi to deal with

CPV in Dalitz studies

Name: `Les Nabis' = `The Prophets'!

theoretical guidance:  $B/D \rightarrow PPP$ 

> chiral dynamics & FSI are not strengths of LQCD

From Hadron Physics/MEP often unused great experience for chiral dynam. & FSI - use for profit!

working group of theorists & experimentalists founded by Hanhart, Mannel, Meissner, ibi to deal with CPV in Dalitz studies

Name: `Les Nabis' = `The Prophets'!



- theoretical guidance:  $B/D \rightarrow PPP$
- > chiral dynamics & FSI are not strengths of LQCD
- > from Hadron Physics/MEP often unused great experience for chiral dynam. & FSI use for profit!
- working group of theorists & experimentalists founded by Hanhart, Mannel, Meissner, ibi to deal with CPV in Dalitz studies
  - Name: `Les Nabis' = `The Prophets'!
- CP: 3 sources
- > with quasi-2-body final states (resonances)

- theoretical guidance:  $B/D \rightarrow PPP$
- > chiral dynamics & FSI are not strengths of LQCD
- From Hadron Physics/MEP often unused great experience for chiral dynam. & FSI use for profit!
- working group of theorists & experimentalists founded by Hanhart, Mannel, Meissner, ibi to deal with CPV in Dalitz studies
  - Name: `Les Nabis' = `The Prophets'!
- CP: 3 sources
- > with quasi-2-body final states (resonances)
- > with interference between quasi-2-body final states

- theoretical guidance:  $B/D \rightarrow PPP$
- > chiral dynamics & FSI are not strengths of LQCD
- From Hadron Physics/MEP often unused great experience for chiral dynam. & FSI use for profit!
- working group of theorists & experimentalists founded by Hanhart, Mannel, Meissner, ibi to deal with CPV in Dalitz studies
  - Name: `Les Nabis' = `The Prophets'!

## CP: 3 sources

- > with quasi-2-body final states (resonances)
- > with interference between quasi-2-body final states
- $\triangleright$  contributions from true 3-body FS or broad resonances like  $\sigma$ .

### One example:

$$D/B_d \rightarrow \pi^+\pi^-\pi^0 \leftarrow D/B_d$$

$$\rho^{0}\pi^{0}$$
,  $\rho^{+/-}\pi^{-/+}$ ,  $f_{0}(980)\pi^{0}$ ,  $\sigma\pi^{0}$   
 $V+P$ ,  $V+P$ ,  $S+P$   
BW, BW, ~BW, not BW!  
BW = Breit-Wigner

experience of HP/MEP very useful!

➤ Need detailed analyses of 3- & 4-body final states, including CPV - despite the large start-up work!

➤ Need detailed analyses of 3- & 4-body final states, including CPV - despite the large start-up work!

#### Remember -

finding the Devil on a fresco in the Basilica San Francesco in Assisi in Italy painted in the  $14^{th}$  century took till now!

- ➤ Need detailed analyses of 3- & 4-body final states, including CPV despite the large start-up work!
  - Dalitz plots, T odd correlations

- ➤ Need detailed analyses of 3- & 4-body final states, including CPV despite the large start-up work!
  - Dalitz plots, T odd correlations
  - include progresses in hadron analyses
    - chiral dynamics etc., not only LQCD

- ➤ Need detailed analyses of 3- & 4-body final states, including CPV despite the large start-up work!
  - Dalitz plots, T odd correlations
  - include progresses in hadron analyses
    - chiral dynamics etc., not only LQCD

Lagrangian — Observables

- ➤ Need detailed analyses of 3- & 4-body final states, including CPV despite the large start-up work!
  - Dalitz plots, T odd correlations
  - include progresses in hadron analyses
    - chiral dynamics etc., not only LQCD



- $\triangleright$  Need detailed analyses of 3- & 4-body final states, including CPV despite the large start-up work!
  - Dalitz plots, T odd correlations
  - include progresses in hadron analyses
    - chiral dynamics etc., not only LQCD





Achilles

Aias

# Achilles = ATLAS



Aias

Achilles = ATLAS



Aias = CMS

## Odysseus = need force & lots of cunning of exp. & th.

Achilles = ATLAS



Aias = CMS

## Odysseus = need force & lots of cunning of exp. & th. LHCb!

Achilles = ATLAS



Aias = CMS

## theor. pre[post]dictions WA data

 $0.939 \pm 0.022$