Direct CP violation in SCS D decays: Standard Model versus Current Bounds

Alex Kagan

University of Cincinnati

Introduction

CPV in charm provides a unique probe of New Physics (NP)

- sensitive to NP in the up sector
- SM charm physics is CP conserving to first approximation (2 generation dominance)

Nevertheless, the statement "any signal for CPV would be NP" needs sharpening due to continuing improvement in experimental bounds:

- In the SM, CPV in mixing enters at $O(V_{cb}V_{ub}/V_{cs}V_{us}) \sim 10^{-3}$
 - how large can SM indirect CPV really be?
- In the SM, direct CPV enters at $O([V_{cb}V_{ub}/V_{cs}V_{us}] \ \alpha_s/\pi) \sim 10^{-4}$ in singly Cabibbo suppressed decays (SCS)
 - how large can SM direct CPV really be?

Three types of D decays

Cabibbo Favored (CF)

$$c \to s\bar{d}u \ (D \to K^-\pi^+)$$

Singly Cabibbo Suppressed (SCS)

$$c \to s\bar{s}u \ (D \to K^-K^+)$$

 $c \to d\bar{d}u \ (D \to \pi^-\pi^+)$

Doubly Cabibbo Suppressed (DCS)

$$c \to d\bar{s}u \ (D \to \pi^- K^+)$$

Direct CP Violation

Consider CP conjugate decay amplitudes of mesons $M \to f$ and $\bar{M} \to \bar{f}$:

$$A_f(M \to f) = A_f^T e^{-i\phi_f^T} [1 + r_f e^{i(\delta_f + \phi_f)}]$$

$$\overline{A}_{\overline{f}}(\overline{M} \to \overline{f}) = A_f^T e^{-i\phi_f^T} [1 + r_f e^{i(\delta_f - \phi_f)}]$$

- $m A_f^T$ is a dominant tree-level amplitude with weak (CP violating) phase ϕ_f^T ; r_f is relative magnitude of subleading amplitude containing new weak phase ϕ_f , relative strong phase δ_f ;
- In SM SCS D decays the subleading amplitudes are the penguins
- Direct CP asymmetry:

$$a^{\text{dir}} \equiv \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 - |\bar{A}_{\bar{f}}|^2} = 2r_f \sin \phi_f \sin \delta_f$$

• in charged $D_{(s)}$ decays, straightforward to measure - just the rate difference:

$$a^{\text{dir}} = \frac{\Gamma(D^+ \to f) - \Gamma(D^- \to \bar{f})}{\Gamma(D^+ \to f) + \Gamma(D^- \to \bar{f})}$$

e.g.,
$$a^{\rm dir}(K_sK^+) = (0.09 \pm 0.63)\%$$
 HFAG, (at Belle: $0.16 \pm 0.6\%$)

 $m{\mathcal{D}}^0$'s more complicated: must subtract indirect CPV contribution from time integrated CP asymmetries:

$$a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

- The indirect CP asymmetry $a^{\text{ind}} = a^m + a^i$
 - \bullet a^m : CP violation in mixing CPVMIX
 - \bullet a^i : CP violation in the interference of decays with and without mixing CPVINT
 - $m{\omega}$ $a^{
 m ind}$ is universal independent of final state. Note $a^{
 m ind} = \Delta Y$ (the time-dependent CP asymmetry)

at the B-factories

$$a_f = a_f^{\text{dir}} + a^{\text{ind}}, \quad a^{\text{ind}} = a^m + a^i$$

at CDF (due to cuts on proper decay times):

$$a_{\pi^+\pi^-} = a_{\pi^+\pi^-}^{\rm dir} + 2.40\,a^{\rm ind}, \qquad a_{K^+K^-} = a_{K^+K^-}^{\rm dir} + 2.65\,a^{\rm ind}$$

at LHCb (due to cuts on proper decay times):

$$a_{K^+K^-} - a_{\pi^+\pi^-} = a_{K^+K^-}^{\text{dir}} - a_{\pi^+\pi^-}^{\text{dir}} + (0.1 \pm 0.01) a^{\text{ind}}$$

$D \to K^+K^-$ and $D \to \pi^+\pi^-$ in the SM

Obtain the effective weak $\Delta C=1$ Hamiltonian $H_{\rm eff}$ at scales $\mu\sim m_c$ to NLO:

- $m{P} W$ is integrated out at $\mu pprox m_W$

$$H_{\text{eff}}^{\Delta C=1} = \frac{G_F}{\sqrt{2}} \left[\sum_{p=d,s} V_{cp}^* V_{up} \left(C_1 Q_1^p + C_2 Q_2^p \right) - V_{cb}^* V_{ub} \sum_{i=3}^6 C_i(\mu) Q_i(\mu) + C_{8g} Q_{8g} \right] + \text{H.c.}$$

■ "Tree" operators (α , β are color indices)

$$Q_1^p = (\bar{p}c)_{V-A}(\bar{u}p)_{V-A}$$
 $Q_2^p = (\bar{p}_{\alpha}c_{\beta})_{V-A}(\bar{u}_{\beta}p_{\alpha})_{V-A}$

Penguin operators (q = u, d, s)

$$Q_{3} = (\bar{u}c)_{V-A} \sum_{q} (\bar{q}q)_{V-A}$$

$$Q_{4} = (\bar{u}_{\alpha}c_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_{5} = (\bar{u}c)_{V-A} \sum_{q} (\bar{q}q)_{V+A}$$

$$Q_{6} = (\bar{u}_{\alpha}c_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

$$Q_{8g} = -\frac{g_{s}}{8\pi^{2}} m_{c}\bar{u} \sigma_{\mu\nu} (1+\gamma_{5}) G^{\mu\nu} c$$

ullet Renormalization group running of Wilson coefficients $C_i(\mu)$ from $\mupprox m_b$ to $\mu\sim m_c$

The tree amplitudes

• the tree amplitudes (in $SU(3)_F$ diagrammatic notation) are

$$A^{T}(K^{+}K^{-}) = V_{cs}^{*}V_{us}(T_{KK} + E_{KK}), \quad A^{T}(\pi^{+}\pi^{-}) = V_{cd}^{*}V_{ud}(T_{\pi\pi} + E_{\pi\pi})$$

T is the usual tree-level amplitude, E is the "W-exchange" annihilation topology power correction amplitude

- T_{PP} at leading power and in naive factorization is the familiar $T \propto f_{\pi} F_{D \to \pi}$
- ightharpoonup The PP data implies

$$E_{KK} \sim T_{KK}, \quad E_{\pi\pi} \sim T_{\pi\pi}$$

with large relative strong phases, large SU(3) breaking

Set magnitudes of tree amplitudes equal to the measured ones

$$10^6 A^T (K^+ K^-) \approx 0.8 \text{ GeV}, \quad 10^6 A^T (\pi^+ \pi^-) \approx 0.5 \text{ GeV}$$

The QCD penguin amplitudes at leading power

the penguin amplitudes are

$$A^{P}(K^{+}K^{-}) = -V_{cb}^{*}V_{ub}P_{KK}, \quad A^{P}(\pi^{+}\pi^{-}) = -V_{cb}^{*}V_{ub}P_{\pi\pi}$$

weak phases (relative to trees): $-\gamma \ (\pi\pi)$ and $\pi - \gamma \ (KK)$, and $\sin \gamma \approx 0.9$

- Evaluate leading power penguin amplitudes at NLO in QCD factorization: naive factorization + $O(\alpha_s)$ corrections (down and strange quark loop penguin contractions, vertex corrections, hard spectator interactions)
- Study penguin/tree amplitude ratios for K^+K^- , $\pi^+\pi^-$:

$$r^{\rm LP} \equiv \left| \frac{A^P({\rm leading\ power})}{A^T({\rm exp})} \right|$$

$$r^{\text{LP}}(K^+K^-) \approx (0.01 - 0.02)\%, \quad r^{\text{LP}}(\pi^+\pi^-) \approx (0.015 - 0.025)\%$$

(ren. scales $\mu \in [1, m_D]$ GeV; $m_d, m_s \sim 0.1 - 0.4$ GeV in the penguin contraction loops,....)

Leading power would yield the naive expectation $a^{\rm dir}=O(0.01\%)$, assuming O(1) strong phases δ_f

QCD penguin power corrections

Consider "annihilation" topology: two examples

$$\operatorname{Amp}_{1}(PP) = -\frac{G_{F}}{\sqrt{2}} V_{cb} V_{ub}^{*} C_{6}^{\text{eff}} \times \langle P^{+}P^{-}| - 2 (\bar{u}u)_{S+P} \otimes^{A} (\bar{u}c)_{S-P} | D^{0} \rangle$$

$$\operatorname{Amp}_{2}(PP) = -\frac{G_{F}}{\sqrt{2}} V_{cb} V_{ub}^{*} 2 \left(C_{4}^{\text{eff}} + C_{6}^{\text{eff}} \right) \times \langle P^{+} P^{-} | (\bar{u}_{\alpha} u_{\beta})_{V \pm A} \otimes^{A} (\bar{u}_{\beta} c_{\alpha})_{V - A} | D^{0} \rangle$$

the effective Wilson coefficients correspond to combinations of the annihilation and "penguin contraction" annihilation transition operators. They eliminate the leading $\log(\mu)$ dependence, and scheme dependence in the amplitudes

$$C_6^{\text{eff}}\left(\mu, \frac{q^2}{m_c^2}\right) = C_6(\mu) + C_1(\mu) \frac{\alpha_s(\mu)}{2\pi} \left(\frac{1}{6} + \frac{1}{3}\log\left(\frac{m_c}{\mu}\right) - \frac{1}{8}G\left[\frac{m_s^2}{m_c^2}, \frac{m_d^2}{m_c^2}, \frac{q^2}{m_c^2}\right]\right)$$

We can obtain the order of magnitudes of these matrix elements by appealing to the tree-level "W-exchange annihilation amplitudes

can write the latter as

$$E_{PP} = \frac{G_F}{\sqrt{2}} C_1 \sin \theta_c \langle P^+ P^- | (\bar{p}_{\alpha} p_{\beta})_{V-A} \otimes^A (\bar{u}_{\beta} c_{\alpha})_{V-A} | D \rangle, \quad p = d, s$$

expect that

$$\frac{\langle P^+P^-|(\bar{u}u)_{S+P}\otimes^A(\bar{u}c)_{S-P}|D^0\rangle}{\langle P^+P^-|(\bar{p}_{\alpha}p_{\beta})_{V-A}\otimes^A(\bar{u}_{\beta}c_{\alpha})_{V-A}|D\rangle} = O(N_c)$$

$$\frac{\langle P^+P^-|(\bar{u}_{\alpha}u_{\beta})_{V\pm A} \otimes^A (\bar{u}_{\beta}c_{\alpha})_{V-A}|D^0\rangle}{\langle P^+P^-|(\bar{p}_{\alpha}p_{\beta})_{V-A} \otimes^A (\bar{u}_{\beta}c_{\alpha})_{V-A}|D\rangle} = O(1)$$

- ullet know that $E_{KK} \sim T_{KK}$ and $E_{\pi\pi} \sim T_{\pi\pi}$ from experiment
- ullet setting E_{KK} , $E_{\pi\pi}$ equal to the measured amplitudes yields estimates for the non-perturbative annihilation amplitudes
- the resulting estimates for |P/T| depend on the momentum transfer (q^2/m_c^2) in the "annihilation penguin contractions"

Order of magnitude estimates of |P/T|

Plots of |P/T| vs. q^2/m_c^2 for annihilation example ${\rm Amp}_1$, for three renormalization scales: $\mu=m_D$, 1 GeV, 0.8 GeV ($m_s=0.3,\,m_d=0.1$ in the penguin contractions)

 K^+K^- (purple), and $\pi^+\pi^-$ (blue)

0.00045

Order of magnitude estimates of |P/T|

Plots of |P/T| vs. q^2/m_c^2 for ${\rm Amp}_2$, for three renormalization scales: $\mu=m_D$, 1 GeV, 0.8 GeV ($m_s=0.3,\,m_d=0.1$ in the penguin contractions)

$$K^+K^-$$
 (purple), and $\pi^+\pi^-$ (blue)

Conclusion

- find that its plausible that QCD penguin power corrections can yield $|P/T| \lesssim 0.1\%$ for $\pi^+\pi^-$ and K^+K^-
- ullet given that $\sin\gamma\approx 0.9$, and that large strong phases are expected in power corrections, particularly at the D mass scale, it is therefore also plausible that $a^{
 m dir}\lesssim 0.1\%$ for K^+K^- and $\pi^+\pi^-$.
- the generic expectation from U-spin symmetry is that $a^{\rm dir}(\pi^+\pi^-)=-a^{\rm dir}(K^+K^-)$ Grossman, AK, Nir
 - $m{\mathscr{D}}$ -spin predicts that the "Tree" amplitudes have opposite sign, while the penguin amplitudes have same sign
 - this is also true for New Physics in the penguins that could enhance the asymmetries
 - ullet large U-spin violation in power corrections could soften this conclusion, and lead to different magnitudes for the two asymmetries
- An example of New Physics in penguins that could enhance the direct CP asymmetries by O(10) without violating the $D^0-\overline{D^0}$ mixing bound is supersymmetric gluino squark loops with large charm-top squark mass insertions Grossman, AK, Nir
- Other examples with enhancement exist, e.g., little Higgs models Bigi et al.