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Introduction

CPV in charm provides a unique probe of New Physics (NP)

sensitive to NP in the up sector

SM charm physics is CP conserving to first approximation (2 generation dominance)

Nevertheless, the statement "any signal for CPV would be NP" needs sharpening due to
continuing improvement in experimental bounds:

In the SM, CPV in mixing enters at O(VcbVub/VcsVus) ∼ 10−3

how large can SM indirect CPV really be?

In the SM, direct CPV enters at O([VcbVub/VcsVus] αs/π) ∼ 10−4 in singly Cabibbo
suppressed decays (SCS)

how large can SM direct CPV really be?



Three types of D decays

Cabibbo Favored (CF)

c → sd̄u (D → K−π+)

Singly Cabibbo Suppressed (SCS)

c → ss̄u (D → K−K+)

c → dd̄u (D → π−π+)

Doubly Cabibbo Suppressed (DCS)

c → ds̄u (D → π−K+)
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Direct CP Violation

Consider CP conjugate decay amplitudes of mesons M → f and M̄ → f̄ :

Af (M → f) = AT
f e−iφT

f [1 + rf ei(δf +φf )]

A
f
(M̄ → f̄) = AT

f e
−iφT

f [1 + rfei(δf−φf )]

AT
f is a dominant tree-level amplitude with weak (CP violating) phase φT

f ; rf is relative
magnitude of subleading amplitude containing new weak phase φf , relative strong
phase δf ;

In SM SCS D decays the subleading amplitudes are the penguins

Direct CP asymmetry:

adir ≡
|Af |2 − |Āf̄ |2

|Af |2 − |Āf̄ |2
= 2rf sin φf sin δf



in charged D(s) decays, straightforward to measure - just the rate difference:

adir =
Γ(D+ → f) − Γ(D− → f̄)

Γ(D+ → f) + Γ(D− → f̄)

e.g., adir(KsK+) = (0.09 ± 0.63)% HFAG, (at Belle: 0.16 ± 0.6% )

D0’s more complicated: must subtract indirect CPV contribution from time integrated
CP asymmetries:

af ≡ Γ(D0 → f) − Γ(D0 → f)

Γ(D0 → f) + Γ(D0 → f)

The indirect CP asymmetry aind = am + ai

am: CP violation in mixing CPVMIX

ai: CP violation in the interference of decays with and without mixing CPVINT

aind is universal - independent of final state. Note aind = ∆Y (the
time-dependent CP asymmetry)



at the B-factories

af = adir
f + aind, aind = am + ai

at CDF (due to cuts on proper decay times):

aπ+π− = adir
π+π−

+ 2.40 aind, aK+K− = adir
K+K−

+ 2.65 aind

at LHCb (due to cuts on proper decay times):

aK+K− − aπ+π− = adir
K+K−

− adir
π+π−

+ (0.1 ± 0.01) aind



D → K+K− and D → π+π− in the SM
Obtain the effective weak ∆C = 1 Hamiltonian Heff at scales µ ∼ mc to NLO:

W is integrated out at µ ≈ mW

b-quark is integrated out at scale µ ≈ mb with NLO matching, yielding

H∆C=1
eff =

GF√
2

2

4

X

p=d,s

V ∗
cpVup

`

C1Qp
1 + C2Qp

2

´

− V ∗
cbVub

6
X

i=3

Ci(µ)Qi(µ) + C8gQ8g

3

5+H.c.

"Tree" operators (α, β are color indices)

Qp
1 = (p̄c)V −A(ūp)V −A Qp

2 = (p̄αcβ)V −A(ūβpα)V −A

Penguin operators (q = u, d, s)

Q3 = (ūc)V −A

P

q(q̄q)V −A Q4 = (ūαcβ)V −A

P

q(q̄βqα)V −A

Q5 = (ūc)V −A

P

q(q̄q)V +A Q6 = (ūαcβ)V −A

P

q(q̄βqα)V +A

Q8g = − gs

8π2 mcū σµν(1 + γ5)Gµνc

Renormalization group running of Wilson coefficients Ci(µ) from µ ≈ mb to µ ∼ mc



The tree amplitudes

the tree amplitudes (in SU(3)F diagrammatic notation) are

AT (K+K−) = V ∗
csVus(TKK + EKK), AT (π+π−) = V ∗

cdVud(Tππ + Eππ)

T is the usual tree-level amplitude, E is the "W -exchange " annihilation topology
power correction amplitude

TP P at leading power and in naive factorization is the familiar T ∝ fπFD→π

The PP data implies

EKK ∼ TKK , Eππ ∼ Tππ

with large relative strong phases, large SU(3) breaking

Set magnitudes of tree amplitudes equal to the measured ones

106AT (K+K−) ≈ 0.8 GeV, 106AT (π+π−) ≈ 0.5 GeV



The QCD penguin amplitudes at leading power

the penguin amplitudes are

AP (K+K−) = −V ∗
cbVubPKK , AP (π+π−) = −V ∗

cbVubPππ

weak phases (relative to trees): −γ (ππ) and π − γ (KK), and sin γ ≈ 0.9

Evaluate leading power penguin amplitudes at NLO in QCD factorization: naive
factorization + O(αs) corrections (down and strange quark loop penguin contractions,
vertex corrections, hard spectator interactions)

Study penguin/tree amplitude ratios for K+K−, π+π−:

rLP ≡
˛

˛

˛

˛

AP (leading power)

AT (exp)

˛

˛

˛

˛

rLP(K+K−) ≈ (0.01 − 0.02)%, rLP(π+π−) ≈ (0.015 − 0.025)%

(ren. scales µ ∈ [1, mD ] GeV; md, ms ∼ 0.1 − 0.4 GeV in the penguin contraction
loops,....)

Leading power would yield the naive expectation adir = O(0.01%), assuming O(1)

strong phases δf



QCD penguin power corrections

Consider "annihilation" topology: two examples

Amp1(PP ) = −GF√
2

VcbV ∗
ub Ceff

6 × 〈P+P−|− 2 (ūu)S+P ⊗A (ūc)S−P |D0〉

Amp2(PP ) = −GF√
2

VcbV
∗
ub 2 (Ceff

4 + Ceff
6 ) × 〈P+P−| (ūαuβ)V ±A ⊗A (ūβcα)V −A|D0〉

the effective Wilson coefficients correspond to combinations of the annihilation and
"penguin contraction" annihilation transition operators. They eliminate the leading
log(µ) dependence, and scheme dependence in the amplitudes
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We can obtain the order of magnitudes of these matrix elements by appealing to the
tree-level "W -exchange annihilation amplitudes

can write the latter as

EP P =
GF√

2
C1 sin θc〈P+P−|(p̄αpβ)V −A ⊗A (ūβcα)V −A|D〉, p = d, s

expect that
〈P+P−|(ūu)S+P ⊗A (ūc)S−P |D0〉

〈P+P−|(p̄αpβ)V −A ⊗A (ūβcα)V −A|D〉
= O(Nc)

〈P+P−| (ūαuβ)V ±A ⊗A (ūβcα)V −A|D0〉
〈P+P−|(p̄αpβ)V −A ⊗A (ūβcα)V −A|D〉

= O(1)

know that EKK ∼ TKK and Eππ ∼ Tππ from experiment

setting EKK , Eππ equal to the measured amplitudes yields estimates for the
non-perturbative annihilation amplitudes

the resulting estimates for |P/T | depend on the momentum transfer (q2/m2
c ) in

the "annihilation penguin contractions"





Order of magnitude estimates of |P/T |

Plots of |P/T | vs. q2/m2
c for annihilation example Amp1, for three renormalization scales:

µ = mD , 1 GeV, 0.8 GeV (ms = 0.3, md = 0.1 in the penguin contractions)
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Order of magnitude estimates of |P/T |

Plots of |P/T | vs. q2/m2
c for Amp2, for three renormalization scales: µ = mD , 1 GeV, 0.8

GeV (ms = 0.3, md = 0.1 in the penguin contractions)
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Conclusion
find that its plausible that QCD penguin power corrections can yield |P/T | . 0.1% for
π+π− and K+K−

given that sin γ ≈ 0.9, and that large strong phases are expected in power corrections,
particularly at the D mass scale, it is therefore also plausible that adir . 0.1% for
K+K− and π+π−.

the generic expectation from U -spin symmetry is that adir(π+π−) = −adir(K+K−)

Grossman, AK, Nir

U -spin predicts that the "Tree" amplitudes have opposite sign,while the penguin
ampltiudes have same sign

this is also true for New Physics in the penguins that could enhance the
asymmetries

large U -spin violation in power corrections could soften this conclusion, and lead
to different magnitudes for the two asymmetries

An example of New Physics in penguins that could enhance the direct CP
asymmetries by O(10) without violating the D0 − D0 mixing bound is supersymmetic
gluino - squark loops with large charm-top squark mass insertions Grossman, AK, Nir

Other examples with enhancement exist, e.g., little Higgs models Bigi et al
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