Charmed baryons: CP violation and rare decays

Alexander Khodjamirian

LHCb /TH Workshop, CERN, November 10, 2011

Weakly decaying charmed baryons

•
$$J^P = 1/2^+$$
: $SU(3)_{fl} \bar{3}$ -plet: $SU(3)_{fl} \bar{6}$ -tet:
 $\boxed{\Lambda_c \ [cud]}$
 $\boxed{\Xi_c^0 \ [cds]}$ $\boxed{\Xi_c^+ \ [cus]}$ $\boxed{\Omega_c^0 \ [css]}$

- all other charmed baryons decay strongly or e.m.
- LHCb: at 1 fb^{-1} "expect 4 M $\Lambda_c \rightarrow pK\pi$ events" (*BR* ~ 5%)
- ~ number of events for $\Xi_c^{+,0}$?,
- antibaryons (for direct CP violation) production ratio $(pp \rightarrow \overline{\Lambda}_c + ...)/(pp \rightarrow \Lambda_c + ...)$ at LHCb? $\overline{\Lambda}/\Lambda \sim$ "smaller in data than predicted in simulation" [1107.0882]
- SCS modes ($c \rightarrow u$ transitions, NP-sensitive) e.g, $\Lambda_c \rightarrow p\pi^+\pi^-$, $BR \sim 0.35\%$, ($(V_{cc}/V_{cs})^2 \sim 0.05$))

Dynamics of hadronic Λ_c decays

- quark diagrams (SU(3)_{fl}, isospin, U-spin selection rules)
- hadronic matrix elements not accessible in QCD/ eff. theories: charm too light for QCDF/SCET, final state pions too energetic for ChPT

- no factorization
 (internal W- exchanges ⊕ hadronization ⊕ FSI)
- $\Lambda_c \rightarrow p\phi$, factorizable SCS mode (*BR* ~ 8 × 10⁻³) naive factorization fails \Rightarrow large FSI
- on the theory side: constituent quark models with baryon wave functions, pole diagram approximations ,...
 ["BESS-3 physics book" [0809.169]]

Direct CPV asymmetry

(no major differences with D-decays)

- SCS modes are more promising than CF 's
- "Richness" of strong interactions ⇒ large FSI phases, good for direct CPV,
- in SM the CKM phase effect is tiny ($O(\lambda^4) \sim 3 \times 10^{-3})$
- direct asymmetry in $\Lambda_c \rightarrow f$ (two-body, quasi-two body)

$$\mathcal{A}^{CP}(\Lambda_c \to f) = \frac{\Gamma(\Lambda_c \to f^+) - \Gamma(\bar{\Lambda}_c \to f^-)}{\Gamma(\Lambda_c \to f^+) + \Gamma(\bar{\Lambda}_c \to f^-)} \sim |r| Sin(\Delta_S) Sin(\Theta)$$

 $\Delta_S (\Theta)$ - difference between strong (CPV) phases of the SM and NP contribuitons to the decay amplitude, |r| the ratio of magnitudes

- even if $A^{CP}(\Lambda_c \to f) \neq 0$, very difficult to quantify the NP
- no special reasons to expect enhancement/suppression in $A^{CP}(\Lambda_c \to f)/SM$ vs $A^{CP}(D \to f')/SM$

Dalitz-plot analysis

worked out for three-body D-decays

[I.Bigi et al,. 0905.4223]

- CPV bin-asymmetries, use of resonance phases
- possibilities to use $\Lambda_c \to p\pi^+\pi^-$ and $\bar{\Lambda}_c \to \bar{p}\pi^-\pi^+$ for a Dalitz-plot analysis

(a) baryon resonances in the two $p\pi$ channels:

$$\Lambda_{c}
ightarrow p \pi^{+} \pi^{-}
ightarrow \Delta^{++} \pi^{-}$$

$$\Lambda_c
ightarrow p \pi^+ \pi^-
ightarrow \Delta^0 \pi^+$$

 \oplus excited $\Delta's$ and N'

(b) meson resonances in 2π channel:

 $\Lambda_{c} \rightarrow p \pi^{+} \pi^{-} \rightarrow p \rho \ (p f_{0}, p \sigma, ...)$

baryon resonances are well established (PDG)

- additional angular measurements
 - \rightarrow polarization of baryons

Triple correlations

- demand many-body meson decays, in case of polarized baryons accessible in two-body decays
- the idea: (for a pedagogical explanation see I.Bigi, A.Sanda, "CP-violation") $A(\Lambda_c \rightarrow BP) = \bar{u}_B(A_s e^{i\delta_S} + A_P e^{i\delta_P} \gamma_5) u_{\Lambda_c}$

rest frame of polarized Λ_c , the decay width contains a term: $|A(\Lambda_c \rightarrow BP)|^2 = \dots + Im[e^{i(\delta_S - \delta_P)}(A_S A_P^*)]\vec{p}_B \cdot (\vec{s}_B \times \vec{s}_{\Lambda_c})$

CPV can induce a complex relative phase between A_S and A_P , in principle measurable if $(\delta_S - \delta_P)$ is precisely known, FSI not needed if forming asymmetry (adding !) the same term for $\bar{\Lambda}_c$

- effect proportional to $Cos[\delta_S \delta_P]$
- recently investigated in detail for $\Lambda_c \rightarrow BP$, $\Lambda_c \rightarrow BV$ in X. -W. Kang, H. -B. Li, G. -R. Lu, A. Datta, [arXiv:1003.5494 [hep-ph]].

Channels useful for direct CPV

- two- and three-body (quasi-two body) hadronic decays of Λ_c and other weakly decaying charmed baryons
- CF modes: $\Lambda_c \rightarrow p\bar{K}^0, \Lambda \pi^+, ...$ $\Lambda_c \rightarrow pK^-\pi^+, ...$ (BR ~ 1 – 5%),
- NP not expected, still useful to understand the dynamics of hadronic weak decays (amplitude relations, hierarchy of quark diags, resonances)
- SCS modes $\Lambda_c \rightarrow \Lambda K^+, ...$ $\Lambda_c \rightarrow p \pi^+ \pi^-, p K^+ K^-, \Sigma^+ K^+ \pi^- (BR \simeq 10^{-3})$
- direct CP asymmetries and Dalitz plots studies, similar to D decays, triple correlations may turn out more interesting for charmed baryons
- task for phenomenology: models with resonances and relative phases to be developed and MC-ed

Rare decays in charm sector

• $c \rightarrow u$ transitions, e.g., $D \rightarrow \pi \ell^+ \ell^-$

Figure 27.3: Predicted dilepton mass distributions for $D^+ \rightarrow \pi^+ e^+ e^-$. The dashed (solid) line is the short-distance (total) SM contribution. The dot-dashed line is the *R*-parity violating SUSY contribution.

[from Burdman, Golovich, Hewett, Pakvasa PRD(2002)]

 at small *q*² NP contribution predicted larger than SM (in SM dominated by long-distance contributions: D → πV, V → ℓ⁺ℓ⁻)

Alexander Khodjamirian

$\Lambda_c \rightarrow \rho \ell^+ \ell^-$

- in SM dominated by long-distance contributions, modelled by Λ_c → pV, V → ℓ⁺ℓ⁻ (V = ρ, ω, φ) (plus excited V' resonances)
- short-distance contributions due to NP , $\bar{u}c\bar{\ell}\ell$ operators , factorized with $\Lambda_c \rightarrow p$ form factors
- need a reliable model of LD contributions (dispersion relation in $q^2 = (p_{\ell}^+ + p_{\ell}^-)^2$) in $B \to K^{(*)}\ell^+\ell^-$ applied in [AK, Th.Mannel,A.Pivovarov, YM.Wang, (2010)
- input: data on Λ_c → pV amplitudes from hadronic Λ_c decays
- need accurate $\Lambda_c \rightarrow p$ form factors

$\Lambda_c \rightarrow p, \Lambda$ form factors

definition of the form factors

$$egin{aligned} &\langle p(P) | ar{u} \, \gamma_\mu \, c | \Lambda_c(P+q)
angle &= ar{u}_p(P) iggl\{ f_1(q^2) \, \gamma_\mu + i rac{f_2(q^2)}{m_{\Lambda_c}} \, \sigma_{\mu
u} q^
u \ &+ rac{f_3(q^2)}{m_{\Lambda_c}} \, q_\mu iggr\} u_{\Lambda_c}(P+q) \,, \end{aligned}$$

(\oplus 3 axial-vector form factors , $\gamma_{\mu} \rightarrow \gamma_{\mu} \gamma_5 \Rightarrow g_{1,2,3}(q^2)$)

- Λ_c → Λ, related via SU(3)_{fl} to Λ_c → p, accessible in semileptonic Λ_c → Λℓν_ℓ
- needed for modelling factorizable approximation for hadronic decays, e.g. $\Lambda_c \rightarrow p\phi$
- no lattice QCD calculations of these form factors yet so far spectroscopy of charmed baryons on the lattice
- alternative method: QCD light-cone sum rules successful for D → π, K form factors recently used to calculate the Λ_c → p form factors

LCSR calculation $\Lambda_c \rightarrow p$ form factors

[AK, Ch.Klein, Th. Mannel, Y.-M. Wang, (2011)]

- method: employing light-cone DA's of nucleon [V.Braun, A.Lenz et al....]
- byproduct of $\Lambda_b \rightarrow p$ form factor calculation, finite heavy quark mass
- still large uncertainties, also from the choice of interpolating current for the charmed baryon, no radiative corrections,...
- $\Lambda_c \rightarrow \rho \ell^+ \ell^-$ can be investigated in more details

interpol. current for Λ_c	axial	pseudoscalar
<i>f</i> ₁ (0)	$0.46\substack{+0.15\\-0.11}$	$0.59\substack{+0.15\\-0.16}$
<i>f</i> ₂ (0)	$-0.32\substack{+0.08\\-0.07}$	$-0.43\substack{+0.13\\-0.12}$
<i>g</i> ₁ (0)	$0.49\substack{+0.14 \\ -0.11}$	$0.55_{-0.15}^{+0.14}$
$g_2(0)$	$-0.20\substack{+0.09\\-0.06}$	$-0.16\substack{+0.08\\-0.05}$

Conclusion

• Charmed baryon weak decays offer additional possibilities to study CPV and $c \rightarrow u$ FCNC at LHCb

spin structure of decay amplitudes via angular distributions
 additional techniques/observables/asymmetries

theory/phenomenology not sufficiently developed, deserve dedicated efforts