CM31: Step V. 0

Timothy Carlisle
University of Oxford

Life after Step IV...

STEP V

No Coupling Coil...?

STEP V. 0

Step V. 0 Operating Modes

- FCs share the same power supply (| $\mathrm{J}_{\mathrm{FC}} \mid$)
- Can flip sign
\rightarrow different running modes for Step V.O?
- Match Coils also tuneable (M1,2)

Flip Mode

Other possibilities:

Matching Step V. 0

- Want operating currents for FC \& M1,2
- Evolve Beta Fn. through MICE with:

$$
2 \beta \beta^{\prime \prime}-\left(\beta^{\prime}\right)^{2}+4 \beta^{2} \kappa^{2}-4=0
$$

- Minimize: $\quad F=\frac{1}{2}\left(\beta_{0} \gamma-2 \alpha_{0} \alpha+\beta \gamma_{0}\right)$

1. Match beam between FCs \rightarrow Find $\beta_{0}, J_{F C}$
2. Match beam from solenoid \rightarrow Find $J_{M 1}, J_{M 2}$

- Tune MICE optics for all modes.
- Ignore current limits for now.
$1^{\text {st }}$ FC centre
$2^{\text {nd }}$ FC centre

Flip Mode

- Use Minuit to search parameter space
- Minima in two distinct regions.

Solutions

Mode	$J_{\text {FC }}$	$\mathrm{J}_{\mathrm{M} 2}$	$\mathrm{J}_{\text {M1 }}$	$\beta_{0}[\mathrm{~cm}]$	$\mathrm{p}_{\mathrm{z}}[\mathrm{MeV} / \mathrm{c}]$
Flip	241.90	168.64	229.32	10.41	200
+-- +	124.00	233.99	211.80	76.00	200
Battery	270.99	62.84	241.04	7.03	200
+ - +	116.00	254.18	231.11	82.00	200
Solenoid ++++ Seesaw	no fit				

(J in units of A / mm^{2})

- Battery Mode not discussed any further
\rightarrow Flip Mode better.

Flip Mode - 4T

- High \& low β sols.

Scaled Solutions

- However: $\left|\mathrm{J}_{\mathrm{FC}}\right|<140$ \& $\left|\mathrm{J}_{\mathrm{M} 1,2}\right|<160$
- Options:

1) Scale down all coil currents
-3 T in SS, reduce $\mathrm{p}_{\mathrm{z}} \rightarrow \beta_{\text {in }}=33.3 \mathrm{~cm}$
Matching Condition

2) Scale down FC \& M1, M2.

- Run at 4T in SS, reduce $p_{z} \rightarrow \beta_{\text {in }}$ reduced.

$\beta_{0}[\mathrm{~cm}]$	J_{FC}	$\mathrm{J}_{\mathrm{M} 2}$	$\mathrm{~J}_{\mathrm{M} 1}$	$\mathrm{p}_{\mathrm{Z}}[\mathrm{MeV} / \mathrm{c}]$
10	137	96	130	113
76	85	160	144	136

1) Scale down all coil currents

Flip 3T
$\beta_{0}=76 \mathrm{~cm}$ solution

$p_{z}=136 \mathrm{MeV} / \mathrm{c}$ no material

2) Scale down only FC \& M1,2

 $p_{z}=123 \mathrm{MeV} / \mathrm{c}$ no material

$$
\begin{aligned}
& \beta_{0} \sim 76 \mathrm{~cm} \\
& \mathrm{~J}_{\mathrm{FC}}=76.284 \\
& \mathrm{~J}_{\mathrm{M} 1}=125.66 \\
& \mathrm{~J}_{\mathrm{M} 2}=149.80
\end{aligned}
$$

Step V.O: Modes (scaled)

Mode	JFC		J4 (M2)		J5 (M1)		β_{0}	$\mathrm{p}_{2}[\mathrm{MeV} / \mathrm{c}]$	
Flip	241.90	137.00	168.64	95.51	229.32	129.87	10.41	200	113.27
+ - +	124.00	84.79	233.99	160	211.80	144.82	76.00	200	136.76
Battery	270.99	137.00	62.84	31.77	241.04	121.86	7.03	200	101.11
+ - + -	116.00	73.02	254.18	160	231.11	145.48	82.00	200	125.90
Solenoid ++++ nofit Seesaw ++--									
			Max. J $\mathrm{JCC}^{\text {c }}$	137					
			Max. J ${ }_{\text {MC }}$	160					

Limiting parameter underlined

Step V. 0 in G4MICE

Flip $3 T$
$\beta_{0}=76 \mathrm{~cm} \mathrm{sol}$.

emittance $[m m]$

Z [m]
$\beta_{\text {[cm] }}$

$p_{z}=136 \mathrm{MeV} / \mathrm{c}$
no material

Step V. 0 in G4MICE

Flip 4T
$\beta_{0}=10 \mathrm{~cm}$ sol.
emittance $[m m]$
β [cm]
$\varepsilon=3 \mathrm{~mm}$
$\sigma_{\mathrm{pz}}=1 \mathrm{MeV} / \mathrm{c}$

$p_{z}=113 \mathrm{MeV} / \mathrm{c}$
no material

Step V. 0 in G4MICE

Flip 4T
$\beta_{0}=76 \mathrm{~cm} \mathrm{sol}$.
emittance $[m m]$
$\beta_{\text {[cm }]}$

$p_{z}=136 \mathrm{MeV} / \mathrm{c}$
no material

Summary

- Step V. 0 - RF without the Coupling Coil.
- Matched solutions found for Step V. 0 in Flip Mode.
- Evolve beam envelope eqns (on axis beams)
- Require $p_{z}<140 \mathrm{MeV} / \mathrm{c}$
- Too low?
- Not matched with "real" beams in G4MICE
- Non-linear effects wreck matching
- Alternative matching techniques?
> Step V. 0 a non-starter at present

