Spectrometer Solenoid Update

MICE Collaboration Meeting #31 University of Mississippi

Steve Virostek

Lawrence Berkeley National Lab

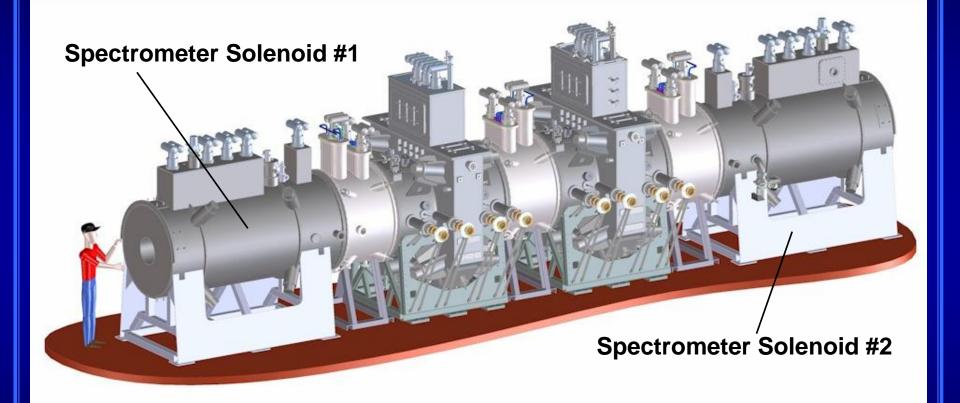
Roy Preece

Rutherford Appleton Lab

October 28, 2011

Topics

- Magnet design assessment
- Summary of design modification plan
- Quench system plan
- Fabrication and assembly progress
- Project schedule



Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 2

MICE Cooling Channel Layout

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 3

Magnet Design Assessment

- Key requirements: train coils to 275 amps, maintain LHe in cold mass w/coolers - Not yet achieved for either magnet
- Prompted by previous testing and review committee recommendations, LBNL has carried out a series of analyses
- A variety of design improvements are being implemented based on the results of the analyses
- The focus of the analyses included:
 - Quench protection system design
 - Heat leaks to the 4.2K cold mass
 - Thermal/mechanical performance of the radiation shield
 - Overall shield and cold mass cooling power available

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Design Modification Plan

- Reduction of cold mass heat leaks:
 - Improve MLI application and QC
 - Improve vacuum insulation and measurement
 - Eliminate radiation shine in vent/fill lines
 - Implement provisions to damp thermo-acoustic oscillations
 - Reduce cold mass support intercept temperatures
- Addition of two 2-stage cryocoolers to the system
- Stabilize the cold leads w/extra copper to prevent burnout
- Improve the radiation shield performance:
 - Reconstruct the majority of the shield with pure aluminum
 Improve the thermal connection from the coolers to the shield

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Quench System Plan

• Passive quench protection system:

- Extensive analyses indicate the existing passive system will work
- Will be implementing strict controls: temperature limits on HTS leads, automatic PS shut-off based on quench voltage signals

• Bypass resistor cooling scheme

- Conductively cool the quench resistors to prevent overheating
- Demonstrated reduction in peak temperature and no electrical shorts under cycling through an off line test
- Design and fabrication is complete

Active protection of HTS leads

- Divert current from quenched HTS leads with an active, external circuit
- Current is forced from leads and into the quench resistors, initiating a magnet quench

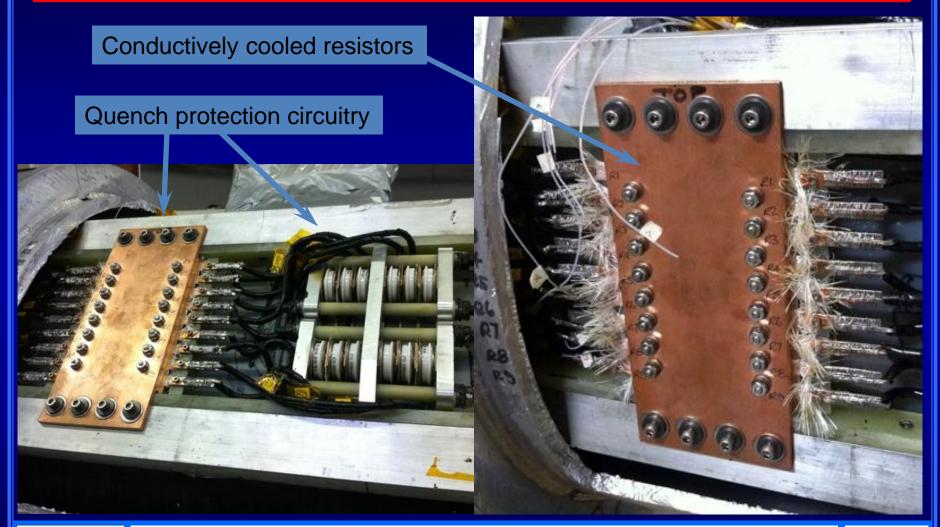
Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Recent Progress (administrative)

- The completed modification plan was presented to and approved by the MAP Tech Board (9/13/11)
 - Minor recommendations by the committee have and are being addressed
- A contract modification was added to the Wang NMR purchase order for the completion of detailed design work for the system modifications (now complete)
- A 2nd contract modification was added to the PO for completing all of the physical magnet modifications (work is now under way)

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Fabrication/Assembly Progress (cold mass)


- The Magnet 2 cold mass was previously opened in the quench system area to allow modification
- The conductively cooled quench resistor assembly has been fabricated and installed in the magnet
- Electrical checks of the coils, quench diodes and resistors, and voltage taps have been performed
- New penetrations for the five 2-stage cryocoolers are complete
- Vent line modifications and parts fabrication is under way
- New lead feedthroughs to the cold mass using a welded flange (instead of a Conflat) have been assembled and soon installed

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Quench Protection

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 9

Cold Mass Modifications

New holes added for 5 cryocooler connections to the cold mass

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 10

Fabrication/Assembly Progress (cold mass)

- Heaters have been initially placed on the cold mass and fill line final installation soon
- Cernox temperature sensors calibrated by FNAL are now at the vendor and being installed
- Custom cut MLI blankets for the cold mass have been procured, installation of MLI support brackets will be complete next week
- All cryocooler connection tubes and flanges are nearly complete and ready for welding/brazing/installation
- A new cover for the helium vessel in the quench system area is complete, and welding will take place this week
- Magnet 2 cold mass to be ready for leak check in ~1 week

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Cold Mass Heaters

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 12

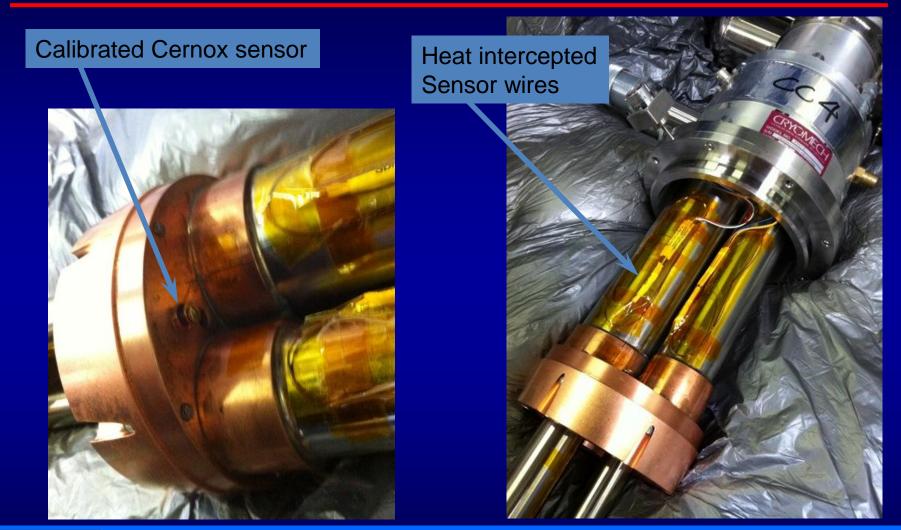
MLI Support Brackets

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 13

Fabrication/Assembly Progress (other)

- The outer portions and ends of the radiation shields have been remade with 1100 aluminum
- Modifications to the magnet vacuum vessels for added cryocoolers and new vacuum ports have been completed
- Custom cut MLI blankets for the radiation shields have arrived
- Machining of the tower steel and copper 1st stage plates will be done at LBNL
- All cryocoolers have been instrumented and tested for room temperature operation


Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Shield and Cryostat

Cryocooler Instrumentation

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 16

Magnet Completion Schedule

Spectrometer Solenoid FY12 Schedule

ID	Task Name	3rd C	3rd Quarter			4th Quarter			Juarte		2nd Quarter			3rd Quarter		
		Jul	Aug	Sep	Oct	Nov	/ Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	Magnet 2 Fabriction and Assembly		÷—					1					Ψ			
2	Fabrication Tasks	_	÷—					-	—					-		
3	Cold Mass Mod	_						1								
4	Radiation Shields				-			1								
5	Cooler Tower							-								
6	Current Leads				1			÷						-		
7	Fill and Vent Towers				1			Ē						-		
8	MLI Wrapping				1									-		
9	Instrumentation				i 🧰			-						1		
10	Cooler Mounts													1		
11	Assembly Tasks				1			-		-				1		
12	Cold Mass and Shield Installed							1								
13	Vacuum Vessel Closed				1			-						-		
14	Prepare for Training				1			Ē			-			-		
15	Cooldown and Training				1			Ē		ļ	÷			1		
16	Cooldown							-			-					
17	Training							=			<u> </u>			-		
18	Packaging and Shipping							1								
19	Magnet 1 Fabriction and Assembly				1			-							-	
20	Fabrication Tasks				1	<u> </u>		-			÷	2		-		
21	Cold Mass Mod				1			<u> </u>						-		
22	Cooler Tower				1			-						1		
23	Current Leads							-								
24	Fill and Vent Towers				1			-						-		
25	MLI W rapping							-			÷			1		
26	Instrumentation				1						ŧ.			-		
27	Cooler Mounts							-			<u> </u>					
28	Assembly Tasks				1) -			-			-		
29	Cold Mass and Shield Installed				1			1 📻			-			-		
30	Vacuum Vessel Closed							-			<u> </u>					
31	Prepare for Training							Ē			-			-		
32	Cooldown and Training							=				—	_			
33	Cooldown							-						-		
34	Training							-								
35	Packaging and Shipping				1			1			-			-		

Steve Virostek -- Lawrence Berkeley National Laboratory -- October 28, 2011

Page 17