

ATLAS Control Room Interface

Prepared by Alex Barriuso Poy Central ATLAS DCS

Purpose

- Advertise Developments
 - Comments welcome
 - Common interest
- Highlight Limitations
 - Missing functionality
 - Limits of current version

Outline

- Introduction. Top Level Interface
- The FSM tool
- Operator Interface. The "fwFsmAtlas" component
- Demonstration
- Conclusions

Introduction Top Level Constituent Parts

- DSS works stand-alone independent of the DCS
- ◆ The top level DCS interfaces to ~160 PCs

Data Viewer

- PVSS II functionality limited. Substantial improvements in next release
- Meanwhile users could use ROOT on demand
- Decision to be made when PVSS II 3.5 available

Real time data plotted in ROOT from the LAr cooldown test (April 05)

Alarm Screen

- Access to any alert in the system from a single Alarm Screen
- Alerts are sent if a value changes from one alert range to another
- Order of lines according to severity then time
- Possibility for limited filtering (button to return to default state)
- Possibility to acknowledge (and comment) when an alarm comes, but it is possible that it goes away without acknowledge
- Automatic functions can be assigned to alerts (sound signal)
- PVSS 3.5 new alert panel
 - June 06
 - Improvements in filtering?

WEB

http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/dcshome.html

- DCS information available directly from your web browser
- Interaction not possible, only for data displaying
- Accessibility dependent on the ATLAS network policy. At present, special proxy setup needed
- Web applications already working in the pit for rack monitoring in USA15 level 1 and level 2
- Improvements in PVSS II 3.5?

Outline

- Introduction. Top Level Interface
- The FSM tool
- Operator Interface. The "fwFsmAtlas" component
- Demonstration
- Conclusions

Operator Interface Finite State Machine (FSM) Architecture

- The FSM (part of the JCOP Framework) is the main tool for the implementation of the full control hierarchy in ATLAS
- It is envisaged that the shift operators will operate DCS ONLY through the Operator Interface (based on the FSM) and the PVSS alarm screen
- Documentation: https://edms.cern.ch/file/691473/1_0/FSM_Integration_Guideline_1_0.pdf

ATLAS DCS

The FSM Tool

Messages via a double Information Path – STATE & STATUS

- STATE defines the operational mode of the system (ON, OFF, etc)
- STATUS defines how well the system is working (OK, WARNING, ALARM, FATAL)
- Two parallel information paths. E.g. HV system is in RAMPING_UP state (which takes several minutes) and an error triggers. The error is propagated through the STATUS while keeping the same STATE

Outline

- Introduction. Top Level Interface
- The FSM tool
- Operator Interface. The "fwFsmAtlas" component
- Demonstration
- Conclusions

Operator Interface Motivation

Motivation:

- In final ATLAS it is envisaged to have around 1000 different control domains which will control ~ 200.000 DCS channels
- How to integrate the different sub-detectors and sub-systems within a single display?

Target:

- Only one window which permits quick fault detection
- Not desired to search for information across windows, all INFORMATION should be available IN PARALLEL

Solution :

- A common user interface layout with NAVIGATION tools which allow moving through all different sub-detectors and sub-systems
- Based on the FSM hierarchy. The FSM provide us with a clear structure of all DCS components
- To be used in GCS, SCS and LCS

Operator Interface Screen Layout - 5 Constituent Parts

- FSM Module: Providing all FSM functionality. The module has a limited size (in case of many FSM children a scroll bar appears)
- Main Module: Dimensions 900x860. The main panel for the selected FSM node, this can be a SCS, a HV system, etc
- Secondary Module: Dimensions 310x410. <u>PURPOSE</u>: to keep a main view of a certain sub-detector while studying more in detail a problem that triggers deeper in the hierarchy
- Message module: important messages with its time stamp
- Alarm module

Navigator within the Main and Secondary module allows the navigation though the different levels of the hierarchy. It 'acts' as a web browser

Widgets for display and navigation

Common Screen Layout How it works

- For easier integration within SCSs and GCS, we use standardized panel sizes
 - Screen resolution 1280x1024
 - Main panel 900x860
 - Secondary panel 310x410
- Both Main and Secondary panel have all FSM functionality.
 - Four dollar parameters are sent
 - \$node, \$obj → FSM functionality is also available within the operators panels
 - \$topObj, \$isMainPanel → References used for navigation
- Main and Secondary Panel work independently
- The sub-detectors must create 2 panels for FSM object
- Additional widgets for displaying and navigation available

Outline

- Introduction. Top Level Interface
- The FSM tool
- Operator Interface. The "fwFsmAtlas" component
- Demonstration
- Conclusions

Common Infrastructure Control

Common Infrastructure Control

Common Infrastructure Control

Conclusions

- The FSM is the main tool to operate the ATLAS DCS
- Frame, with the basic functionality, for building the Operator Interface ready: feedback from sub-detectors needed
- In order to get a consistent Operator Interface a set of rules need to be applied during the integration of the DCS BE
- Documentation:
 - "DCS Integration Guide", see: https://edms.cern.ch/file/685451/1/ATLAS_DCS_Integration_Guidelines.pdf

Thank you!