

### LHCb Experiment Control System

Scope, Status & Worries

Clara Gaspar, April 2006

## HCb ECS Scope



## Rep Project Organization



## Hick Central team

### Responsibilities:

- Provide guidelines & tools for sub-detectors:
  - I JCOP + LHCb specific
- Provide complete central applications:
  - I Central DAQ/TFC/HLT control, RunControl, etc.
- Provide central services
  - I Infrastructure (PCs, network, Databases, etc.)
- Provide support to Sub-systems
  - I During development, installation and commissioning
- Coordination & Integration

## Kick Sub-detector/Sub-systems

### Responsibilities:

- Integrate their own devices
  - Mostly from FW (JCOP + LHCb)
- Build their control hierarchy
  - I According to Guidelines (using templates)
- Test, install and commission their subsystems
  - I With the help of the central team

### Tools: The Framework

- JCOP + LHCb Framework (Based on PVSS II)
  - A set of tools to help sub-systems create their control systems:
    - Complete, configurable components:
      - High Voltages, Low Voltages, Temperatures (ex.: CAEN, WIENER, ELMB(ATLAS), etc.)
    - I Tools for defining User Components:
      - | Electronics boards (SPECS/ CC-PC)
      - I Other home made equipment (DIM protocol)
    - I Other Tools, for example:
      - I FSM for Building Hierarchies
      - I Configuration DB
      - Interface to Conditions DB
      - I Archiving, Alarm handling, etc.

### Tools: Electronics Interfaces

### Interfaces proposed:

- SPECS/ELMB for electronics in radiation areas
- CC-PC for electronics in counting rooms
- Status
  - I HW & Low-level software ready
  - I PVSS interface ready (allows access to any board)
  - I A Tool to model/describe electronics boards
  - I TELL1 control being developed
  - I Tools are started to be used by sub-systems



### Tools: Databases

I Three Logical Databases in the Online System Conf.



### Tools: Databases

#### Configuration DB (Oracle) contains:

- I All data needed to configure the HW or SW for the various running modes (ex.: HV settings, Pedestals, trigger settings, etc.)
- Status: First versions exist
  - | LHCb part: connectivity & queries (partitioning)
  - I JCOP part: device settings (running modes and versions)

#### PVSS Archive (Oracle) contains:

- I All monitoring data read from HW for monitoring and debugging of the Online System (ex.: HV readings, temperatures, etc.)
- > Status: Delivered with PVSS (Still worrying)

#### Conditions DB (COOL/Oracle) contains:

- A subset of the monitoring data read from HW if it is needed for Offline processing
- I Some configuration data once it has been used (ex.: trigger settings)
- Status: COOL tools provided by LCG, PVSS interface being developed

## Tools: Integration (FSM)



### Guidelines: FSM Domains

- Standard "domains" per sub-detector:
  - **DCS** 
    - DCS Infrastructure (Cooling, Gas, Temperatures, pressures, etc) normally stable throughout a running period
  - I HV
    - I High Voltages or in general components that depend on the status of the LHC machine (fill related)
  - DAQ
    - All Electronics and components necessary to take data (run related)
  - DAI
    - Infrastructure necessary for the DAQ to work (computers, networks, electrical power, etc.) in general also stable throughout a running period.
- And standard states & transitions per domain.
  - I Templates available as FW Component
- Doc available in EDMS: <a href="https://edms.cern.ch/document/655828/1">https://edms.cern.ch/document/655828/1</a>

### Guidelines: FSM States

State Diagram for Trigger and DAQ Domains:



Possible intermediate "CONFIGURING" and "STARTING" states if operations slow...

## High LHCb Hierarchy



## Application: Infrastructure

### Integration of Infrastructure Services:

- Power Distribution and Rack/Crate Control (CMS)
- Cooling and Ventilation Control
- Magnet Control (Monitoring)
- I Gas Control
- Detector Safety System
- → Status: All advancing in parallel (mostly JCOP)

#### And interface to:

- LHC machine
- I Access Control System
- I CERN Safety System
- Status: Tools exist (DIP protocol)

### Sub-detectors can use these components:

- For defining logic rules (using their states)
- For high-level operation (when applicable)

## Application: TFC Control

- Integrates: CC-PC, FSM, ConfDB, etc.
  - Being used by several Sub-detectors



## Application: CPU Control

- For All Control PCs and Farm nodes:
  - Very Complete Monitoring of:
    - I Processes running, CPU usage, Memory usage, etc.
    - | Network traffic
    - I Temperature, Fan speeds, etc.
  - I Control of Processes:
    - I Job description DB (Configuration DB)
    - I Start/Stop any job (type) on any group of nodes
  - I Control of the PC
    - I Switch on/off/reboot any group of nodes
  - FSM Automated Monitoring (& Control):
    - I Set CPU in "ERROR" when monitored data bad
    - I Can/will take automatic actions

### Application: HLT Control

### Integrated for Real Time Trigger Challenge:

- Monitoring & Control of:
  - I Farm Infrastructure
  - I Trigger Jobs (Gaudi)
  - I Event Builder
  - I (MEP Producer)
  - I Run Control
- → The RTTC was one of the pioneers of the integration of ECS components
- Being upgraded for 1MHz readout



# RTTC Run-Control



# Web Next "Challenges"

- VELO "ACDC" Now and in June
  - (Alignment Challenge and Detector Commissioning)
    - Complete Read-out chain (1/4 of VELO):
      - I Front-end boards, Tell1 boards, TFC System, Readout Network, Small Farm
  - Several DCS Components:
    - I Few ELMBs (Temp. and LV monitoring), CAEN Easy (LV), ISEG (HV)
  - Run Control
- This setup will evolve into a combined TestBeam in September with other Sub-detectors

## Challenges"

### Configuration DB Tests

- Installing Oracle RAC in our private network (With help/expertise from Bologna)
- → Simulate load -> Test Performance
  - > Test with more than 1 DB servers

### HLT Farm @ 1 MHz scheme (RTTC II)

- I Full Sub-farm with final number of processes in each node
- → Test performance and functionality of Monitoring & Control System

# Hick Manpower

### Our Team (Online people participating in control):

| Task                                    | CERN     | External effort          |
|-----------------------------------------|----------|--------------------------|
| Coordination                            | 0.5      |                          |
| DIM & FSM (SMI++) tools:                | 0.5      | 1 (Rutherford)           |
| Electronics HW (SPECS, CC-PC):          |          | 1.5 + 0.5 (Orsay/Genova) |
| Electronics SW Tools (SPECS, CC-CP):    | 2        |                          |
| DCS + Infrastructure:                   | 1        |                          |
| Configuration DB:                       | 1        |                          |
| Run-Control & Sub-detector integration: | 1        | 0.5 (Marseille)          |
| Farm Control & Gaudi Monitoring:        | 2        | 1.5 (Bologna)            |
| Central DAQ & TFC Control:              | 1        |                          |
| Conditions DB interface:                | 1 (soon) |                          |

If it doesn't decrease and with JCOP's help
-> seems adequate

# KKC Coordination

#### Main aims:

- Promote commonality
  - To allow reuse of software & ease maintenance
    - I Standard electronics interfaces
    - I Central purchasing of PCs, network, etc.
- Provide centrally as much as possible:
  - I To avoid sub-detector developments and try to optimize performance.
    - Integrate the access to electronics boards
    - I FSM Guidelines with template implementation
    - I Integrate the Conf. DB access ("Configurator" Object)
- Obtain a coherent and homogeneous system

# KKCK Coordination

#### Communication channels:

- ECS Web page
  - Info, guidelines, software
- 1st ECS Tutorial organized recently
  - I Very successful (71 participants!?)
- I ECS section in the LHCb week Online meeting
- Many individual discussions per Sub-detector (case-by-case basis)

### The Integration & Commissioning

- Sub-system commissioning
  - Done by each team within their schedule (for ex. after there are cables and power)With our help
- Central ECS & Infrast. Commissioning (PCs, Network, DBs, and central applications)
  - Done centrally in parallel
- Integration of Sub-systems (into ECS)
  - Done centrally one-by-one after each readyWith their help

# HCD Worries

#### Technical worries

- Performance
  - I PVSS (for complex electronics and farm jobs)
    - I Assumed 1 PC for ~50 boards/~50 farm nodes
    - But then:
      - Our system is highly parallel (could buy more PCs)
      - Will try disabling "Last Value Archive"...
  - I Database Access (Conf.DB, Archive, Cond. DB)
    - But then:
      - I Will have an Oracle RAC with several DB servers...
  - I FSM hierarchies (in other experiments)
    - Too many nodes -> needs coordination effort (>1000 nodes for HV before the real channels)

# HCb Worries

#### Non-Technical worries

- Support:
  - I FwDIM and FwFSM are widely used (FwFarmMon)
    - I Need more (better) help from JCOP/Central DCS teams
  - I To the Sub-detectors
    - I Try to make sure they respect the rules...
- Schedule:
  - I Sub-detectors are late (just starting)
    - I But then: More and better tools are available!
- Commissioning:
  - I All the problems we don't know yet...
    - I For example: Error Detection and Recovery