Absolute neutrino mass scale and the KATRIN experiment

Otokar Dragoun for the KATRIN Collaboration
Nuclear Physics Institute of the ASCR, Řež
dragoun@ujf.cas.cz

Colloquium -Towards CP Violation in Neutrino Physics
Prague, October 7, 2011
1. Applied methods of m_ν measurements and current results

2. Educational role of previous β-decay experiments

3. Principle and technique of the KATRIN experiment

4. Expected results of KATRIN

A nuclear spectroscopist note on neutrino sources:

Each of you emits about 4000 neutrinos per second into 4π due to β-decay of ^{40}K in your body

140 g of potassium, 0.01 % abundance of ^{40}K, $T_{1/2} = 1.2 \cdot 10^9$ y
1. Applied methods of m_ν measurements and current results

Model independent methods

- $E^2 = p^2 c^2 + m^2 c^4$
- laws of energy and momentum conservation
- $F = -e \left[E + (v \times H) \right]$

Examples

- **two body decay of π^+ at rest:** $\pi^+ \rightarrow \mu^+ + \nu_\mu$

 $\sigma_{rel} = 3 \cdot 10^{-6}$ for m_π, $4 \cdot 10^{-8}$ for m_μ, $4 \cdot 10^{-6}$ for p_μ

 $m(\nu_\mu) \leq 190$ keV at 90% C.L.

Ernst Otten: “A relativistic particle hides away its rest mass!”
• **Time-of-flight method** \[\Delta t_\nu = t_c - t \]

assuming \(m_\nu = 2 \text{ eV} \)

\(\Delta t_\nu \) is too small for terrestrial experiments
 e.g. in the OPERA experiment:
 \[<E_\nu> = 17 \text{ GeV}, \; d = 730 \text{ km}, \; t_c = 2.4 \text{ ms} \]
 \(\Rightarrow \) expected time delay \(\Delta t_\nu = 2 \cdot 10^{-23} \text{ s} \)

Extraterrestrial experiments:
 e.g. for 10 MeV neutrinos from SN1987a
 \(\Rightarrow \) expected time delay \(\Delta t_\nu = 0.1 \text{ s} \)

BUT assumptions about the supernova explosion are needed
• **β-spectrum shape in the endpoint region**
 where (according to Fermi theory, 1934)

\[
dN/dE \sim (E_0 - E)^2 \cdot \left[1 - m^2_v/(E_0 - E)^2 \right]^{1/2}
\]

\(E_0\) is the endpoint for \(m_v = 0\)

Since neutrinos oscillate \(|\nu_\alpha> = \Sigma U_{\alpha i} \cdot |\nu_i>\)
and \(|m_i - m_k| \ll \Delta E_{\text{instr}}\)

β-spectrum analysis yields the effective mass

\[m^2(\nu_e) = m^2_\beta = \Sigma |U_{ei}|^2 \cdot m^2_i\]

*this is a weighted average, no phases
thus no possible cancellations*
More sensitive but model dependent methods

• search for $0\nu\beta\beta$ - nuclear matrix elements, alternative modes of decay

• supernova explosion - time distribution of emitted neutrinos

• cosmology
 - mainly from cosmic microwave background and large scale structures of galaxies
 - up to 10 fitted parameters
 - dark matter and dark energy (95% of the total) are not yet explained
Current results

Particle Data Group
Effective ν mass from kinematic experiments:

\[
\begin{align*}
&m(\nu_e) < 2 \text{ eV} \\
&m(\nu_\mu) < 0.19 \text{ MeV} \\
&m(\nu_\tau) < 18.2 \text{ MeV}
\end{align*}
\]

- β-decay
- π^+ decay
- τ^- decay

Other methods:

- $T_{1/2} (0\nu\beta\beta)$: $\langle m_\nu \rangle_{\beta\beta} < 0.1 - 0.9 \text{ eV}$, one claim for 0.4 eV
- TOF (SN1987a): $m(\nu_e) < 5.7 \text{ eV}$
- Cosmology: $\Sigma m_i < 0.6 - 1.7 \text{ eV}$
- ν oscillations: $m_i \geq 0.05 \text{ eV}$ at least for the heaviest mass state
2. Educational role of previous β-decay experiments

Requirements for a β-ray spectrometer:

Simultaneously:
- high energy resolution ΔE_{instr}
- large solid angle Ω_{input}
- low background
Neutrino mass from the β-spectrum shape

$m_\nu < 5$ keV
- β-spectrum of 35S ($E_0=167$ keV)
- magnetic spectrometer

$m_\nu < 1$ keV
- β-spectrum of gaseous tritium ($E_0=18.6$ keV)
- proportional counter

$m_\nu < 60$ eV
- β-spectrum of implanted tritium
- magnetic spectrometer with $100 \times$ increased source area
- part of Q_β goes into excited states of daughter 3He$^+$ ion
 ⇒ measured spectrum is a sum of partial β-spectra with various $E_{0,i}$
\(m_\nu \approx 30 \text{ eV} \)
8 eV relic neutrinos would create all dark matter
- excellent toroidal magnetic spectrometer
- but tritium in complicated organic compound
- underestimated energy losses of \(\beta \)-particles
- wrong fitted \(E_0 \) supported by wrong \(Q_\beta \) from mass spectrometry

\(m^2_\nu < 0 \)
- 7 laboratories, 3 types of magnetic spectrometers
- various solid and gaseous tritium sources
- none of them \(m^2_\nu \) positive, two of them 6\(\sigma \) negative
- wrong theoretical spectrum of final states? NO
 but mostly underestimated energy losses of \(\beta \)-particles

\(m_\nu \approx 0 + \text{ up to } 3\% \text{ of } m_\nu = 17 \text{ keV} \)
- from \(\beta \)-spectra of several radionuclides
- observed only with semiconductor detectors
 not found by magnetic spectrometers
- caused by electron scattering in radioactive sources
 and on spectrometer slits
$m_\nu < 2.3 \text{ eV}$ Mainz neutrino mass experiment 2005

- electrostatic retardation spectrometer with adiabatic magnetic collimation
- condensed tritium source
- detailed analysis of systematic errors
- $m^2_\nu = (-0.6 \pm 2.2_{\text{stat}} \pm 2.1_{\text{syst}}) \text{ eV}^2$

Similar results reported the Troitsk neutrino mass experiment in 2003
- spectrometer of the same type
- gaseous tritium source
- $m^2_\nu = (-2.3 \pm 2.5_{\text{stat}} \pm 2.0_{\text{syst}}) \text{ eV}^2$
 but only after artificial correction of β-spectrum with two additional fitting parameters

Final Troitsk result in 2011
- enlarged data set
- removed runs with unstable tritium density
- $m^2_\nu = (-0.67 \pm 1.89_{\text{stat}} \pm 1.68_{\text{syst}}) \text{ eV}^2$
 without any artificial correction
During 63 years, β-ray spectroscopists improved the model independent limit of experimentally observable m^2_ν by 6 orders of magnitude.

weighted average of Mainz (2005) and Troitsk (2011)

$m^2_\nu = -0.6 \pm 1.9 \text{ eV}^2$

$\Rightarrow m_\nu < 2.0 \text{ eV at 95\% C.L. using the conservative approach}$

Next improvement by 2 orders of magnitude is expected from KATRIN
Electrostatic retardation spectrometer with adiabatic magnetic collimation of electrons (MAC-E-filter)

Advantages:
- Large Ω_{input} and narrow line width ΔE_{instr} simultaneously
- No scattering on slits defining electron beam
- No high energy tail of the response function

Disadvantage:
- Danger of magnetic traps for charged particles

Developed independently at Mainz and Troitsk

$(\Delta E / E)_{\text{instr}} = B_{\text{min}} / B_{\text{max}}$

$\sin \theta_{\text{max}} = (B_s / B_{\text{max}})^{1/2}$

Ω_{input} up to 50% of 4π

Advantages:
- Large Ω_{input} and narrow line width ΔE_{instr} simultaneously
- No scattering on slits defining electron beam
- No high energy tail of the response function

Disadvantage:
- Danger of magnetic traps for charged particles

Radioactive sources for β-spectroscopy

$\lambda_{\text{inel}} (\text{Al}) = 30 \text{ nm for } E_e = 20 \text{ keV}$

\Rightarrow large source area S

large luminosity $L = S \cdot \Omega_{\text{input}}$

large spectrometer dimensions
3. Principle and technique of the KATRIN experiment

at the Karlsruhe Institute of Technology (KIT = FZK + Tech. Uni.)

The next generation tritium β-decay experiment measuring m_ν in sub-eV region in a model independent way

Founded in 2001 by physicists from Germany, Russia, USA and Czech Republic

Our NPI ASCR has a long tradition in nuclear electron spectroscopy

the best resolution in the field (at expense of a low transmission)
Tritium Laboratory Karlsruhe
KATRIN main components

source and transport section | spectrometer section

- source parameter
- stable tritium column density
- electron transport tritium retention
- reflection of low energy electrons
- high precision energy analysis of electrons
- position sensitive electron counter

source (WGTS) | diff. pumping | pre-spectrometer | main spectrometer | detector

- β-decay: e^-
- 3×10^{-3} mbar ±1 kV
- 10^{10} e$^-$/s
- 10^{10} e$^-$/s
- 10^3 e$^-$/s
- 10^{-11} mbar -18,4 kV
- 10^{-11} mbar -18,574 kV
- 1 e$^-$/s

~70 m
Technical challenges of KATRIN

• Long term recirculation and purification of tritium on the kCi scale isotopic composition (95% of T_2, TH, TD) checked by Raman laser spectroscopy

• ± 30 mK temperature stability of tritium in gaseous source at 27 K achieved by liquid/gaseous phase transition on Ne

• vacuum $< 10^{-11}$ mbar in volume of 1400 m3
 TMP and non-evaporable getters, but cold traps to avoid spots of Rn

• background of the position sensitive electron detector < 0.01/s
 contribution from tritium in the main spectrometer < 0.001/s
 no walls in the electron beam line: strong differential pumping + cryosorption

• ± 60 mV long-term stability of high voltage at 18.6 kV
 unrecognized shift by 50 mV $\Rightarrow 0.04$ eV error in fitted m_ν
Windowless Gaseous Tritium Source

WGTS tube: stainless steel, 10 m length, 90 mm diameter

Magnetic field:
3.6 Tesla (± 2%)

Source tube temperature:
27 K (± 0.1% stable)

T₂ injection rate:
1.8 cm³/s (± 0.1%)

at pressure of 3.4 · 10⁻³ mbar

Isotopic purity:
>95%

Total pumping speed:
12000 l/s

Probably the most complex cryostat ever built
Aim: only the uppermost part of β-spectrum into the main spectrometer

$10^{10} \ \beta/s \rightarrow 10^3 \ \beta/s$

- **Vacuum chamber:**
 - 1.7 m in diameter,
 - 3.4 m in length

- **Superconducting magnets**

- **Turbomolecular pumps + getter strips (Zr+V+Fe alloy)**

10^{-11} mbar achieved
Vacuum chamber of the main spectrometer

- Diameter: 10 m
- Length: 23 m
- Weight: 200 t

9000 km on sea around Europe

The last 7 km to the KIT
Wire electrodes of the main KATRIN spectrometer

- **Reduce background** due to secondary electrons from the wall
- **Secure precise form** of the retarding electrostatic field
 - *no magnetic traps for e⁻ and ions*

240 modules
23 000 wires

Mounting wire electrodes into a clean spectrometer interior
Two ways of monitoring the KATRIN energy scale stability

The NPI tasks for KATRIN: radioactive sources of monoenergetic electrons for long-term monitoring and calibration

\(^{83}\text{mRb}/^{83}\text{mKr}\) source of 17.8 keV electrons

- implanted \(^{83}\text{mRb}\) sources
 - 90% retention of \(^{83}\text{mKr}\)
 - electron energy drift \(<\ 3 \text{ ppm/month}\)

- 1 GBq \(^{83}\text{mKr}\) source for testing the whole KATRIN setup with monoenergetic electrons
 - \(^{83}\text{Rb}\) production at the NPI cyclotron
 - deposition in zeolite: no escape of \(^{83}\text{Rb} (T_{1/2}=86\text{d})\)
 - high release of \(^{83}\text{mKr} (T_{1/2}=1.8\text{h})\)

High-voltage divider metrology precision
Analysis of measured β–spectrum: final $(THe)^+$ states

dN/d$E = K \times F(E,Z) \times p \times E_{tot} \times \sum P_i (E_0 - V_i - E_e) \times \left[(E_0 - V_i - E_e)^2 - m_v^2 \right]^{1/2}$

- Rotational-vibrational excitations of electronic ground state
- Electronic excited states

$(THe)^+, (HHe)^+$ from gaseous T_2, HT

(Saenz et al., PRL 2000)
4. Expected results of KATRIN

1) **The effective neutrino mass**

If no neutrino mass is observed:

- $m_\nu < 1$ eV soon after the start of KATRIN (2013/14)
- $m_\nu < 0.2$ eV at 90% C.L. after 1000 days of measurement (in 5 years)

Discovery potential $m_\nu = 0.35$ eV (5σ effect)

In a model independent way

Regardless neutrino type (Dirac or Majorana)

Possible unaccounted **right-handed couplings**
will change the fitted m_ν by less than 10%
2) **Distinguishing between the two neutrino mass scenarios**

- e.g. $m_1 \approx 0.30$ eV, $m_2 \approx 0.31$ eV, $m_3 \approx 0.35$ eV

- e.g. $m_1 \approx 0$, $m_2 \approx 0.01$ eV, $m_3 \approx 0.05$ eV

Both in accord with oscillation experiments

KATRIN:
- will explore the whole quasi-degenerate region
- the hierarchical region is below its sensitivity
3) **Contribution of relic neutrinos to the hot dark matter**

\[0.001 < \Omega_\nu < 0.15 \]

- From neutrino oscillation experiments assuming hierarchical neutrino masses with only one mass eigenstate contributing to \(\Omega_\nu \).
- From current tritium \(\beta \)-decay experiments assuming quasi-degenerate neutrino masses.

KATRIN

- Will be **sensitive to** \(\Omega_\nu = 0.01 \).
- It will either significantly constrain or fix the role of neutrino hot dark matter.
4) **Sterile neutrinos with masses in the eV range**
A possibility indicated by cosmology and several reactor and accelerator oscillation experiments

Riis & Hannestad
arXiv:1008.1495v2

KATRIN would see sterile neutrinos
with
\[\Delta m^2_{s1} = 6.49 \text{ eV}^2 \]
\[|U_{e4}|^2 = 0.12 \]
\[\Delta m^2_{s2} = 0.89 \text{ eV}^2 \]
\[|U_{e5}|^2 = 0.11 \]
and similar cases.

Well separated from signal of all three light active neutrinos

from Giunti and Kim:
Fundamentals of neutrino physics and astrophysics (2011)
5) *Local density of relic neutrinos*

KATRIN tritium gaseous source as a target for \(\nu_e + T \rightarrow ^3\text{He}^+ + e^- \) with relic neutrinos

KATRIN sensitivity \(\rho(\nu_e)_{\text{local}} / \rho(\nu_e)_{\text{average}} \geq 2 \cdot 10^9 \)

Non observation will rule out certain hypotheses about local neutrino gravitation clustering.

\[E_\nu = 2 \cdot 10^{-4} \text{eV}, \quad \rho(\nu_e)_{\text{average}} = 56 \text{ cm}^{-3}, \quad \sigma = 8 \cdot 10^{-45} \text{ cm}^2 \]

5.3 \cdot 10^{19} \text{ tritium atoms, mass of 0.26 g, monoenergetic}
KATRIN Collaboration will do its best to fulfill these tasks