The NOvA Experiment

Mark Messier
Indiana University / Caltech

October 7, 2011

Towards CP Violation in Neutrino Physics
Institute of Physics Academy of Sciences of the Czech Republic Prague

See-saw mechanism

$\mathcal{L}_{\text {mass }}=\left[\begin{array}{ll}\nu_{L} & \nu_{R}\end{array}\right]\left[\begin{array}{cc}0 & m \\ m & M\end{array}\right]\left[\begin{array}{l}\nu_{L} \\ \nu_{R}\end{array}\right]$

$$
\lambda \simeq \frac{m^{2}}{M} \simeq \frac{(100 \mathrm{GeV})^{2}}{10^{16} \mathrm{GeV}}=10^{-3} \mathrm{eV}
$$

Neutrino masses and mixing are a window on physics at the GUT scale

Neutrino Mass

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta m^{2}\left[\mathrm{eV}^{2}\right] \frac{L[\mathrm{~km}]}{E[\mathrm{GeV}]}\right)
$$

Where to go from here?

$$
\begin{aligned}
& \left|\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right\rangle=\left(\begin{array}{ccc}
1 & & \\
& c_{23} & s_{23} \\
-s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} e^{-i \delta} \\
& 1 & \\
-s_{13} e^{i \delta} & & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & 1
\end{array}\right)\left|\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right\rangle \\
& \mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\mathrm{T}} \\
& \text { SK, K2K, and MINOS } \\
& \mathrm{V}_{\mathrm{e}} \rightarrow \mathrm{~V}_{\mu}+\mathrm{V}_{\mathrm{T}} \\
& \text { Solar neutrinos + KamLAND } \\
& \mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\mathrm{e}}
\end{aligned}
$$

Not observed. If this occurs opens possibility

 of CP violation in neutrino sector- What is θ_{13} ?
- What is the pattern of masses? Is m_{3} the heaviest or lightest state?
- Is the neutrino a Dirac or Majorana particle?
- Is CP violated?
- Is θ_{23} really maximal? μ-т symmetry?
- Does the PMNS framework hold together or is there more going on?

Normal hierarchy

Inverted hierarchy

NOvA Far Detector Location

Ash River, MN 810 km from Fermilab

Neutrino oscillations

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

In vacuum:

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|2 U_{\mu 3}^{*} U_{e 3} \sin \Delta_{31} e^{-i \Delta_{32}}+2 U_{\mu 2}^{*} U_{e 2} \sin \Delta_{21}\right|^{2} \\
& \Delta_{32} \equiv \frac{1.27 \Delta m_{32}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]}=\frac{1.27 \cdot 2.32 \times 10^{-3} \cdot 810}{2.1} \simeq 1.1 \\
& \text { For NOvA: } \Delta_{31} \equiv \frac{1.27 \Delta m_{31}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]} \simeq \Delta_{32} \\
& \Delta_{21} \equiv \frac{1.27 \Delta m_{21}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]}=\frac{1.27 \cdot 7.58 \times 10^{-5} \cdot 810}{2.1} \simeq 0.04
\end{aligned}
$$

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq\left|\sqrt{P_{\mathrm{atm}}} e^{-i\left(\Delta_{32}+\delta\right)}+\sqrt{P_{\mathrm{sol}}}\right|^{2} \\
& =P_{\mathrm{atm}}+P_{\mathrm{sol}}+2 \sqrt{P_{\mathrm{atm}} P_{\mathrm{sol}}}\left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta\right)
\end{aligned}
$$

$$
P_{\mathrm{atm}} \equiv \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{31}
$$

$$
P_{\mathrm{sol}} \equiv \cos ^{2} \theta_{23} \cos ^{2} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}
$$

Neutrino oscillations

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

In vacuum:

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|2 U_{\mu 3}^{*} U_{e 3} \sin \Delta_{31} e^{-i \Delta_{32}}+2 U_{\mu 2}^{*} U_{e 2} \sin \Delta_{21}\right|^{2} \\
& \Delta_{32} \equiv \frac{1.27 \Delta m_{32}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]}=\frac{1.27 \cdot 2.32 \times 10^{-3} \cdot 810}{2.1} \simeq 1.1 \\
& \text { For NOvA: } \Delta_{31} \equiv \frac{1.27 \Delta m_{31}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]} \simeq \Delta_{32} \\
& \Delta_{21} \equiv \frac{1.27 \Delta m_{21}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]}=\frac{1.27 \cdot 7.58 \times 10^{-5} \cdot 810}{2.1} \simeq 0.04
\end{aligned}
$$

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq\left|\sqrt{P_{\mathrm{atm}}} e^{-i\left(\Delta_{32}+\delta\right)}+\sqrt{P_{\mathrm{sol}}}\right|^{2} \\
& =P_{\mathrm{atm}}+P_{\mathrm{sol}}+2 \sqrt{P_{\mathrm{atm}} P_{\mathrm{sol}}}\left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta\right)
\end{aligned}
$$

$P_{\mathrm{atm}}=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{31} \begin{aligned} & \text { long baseline experiments } \\ & \text { measure this combination }\end{aligned}$
$P_{\mathrm{sol}} \equiv \cos ^{2} \theta_{23} \cos ^{2} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}$

Neutrino oscillations

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

In vacuum:

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left|2 U_{\mu 3}^{*} U_{e 3} \sin \Delta_{31} e^{-i \Delta_{32}}+2 U_{\mu 2}^{*} U_{e 2} \sin \Delta_{21}\right|^{2} \\
& \Delta_{32} \equiv \frac{1.27 \Delta m_{32}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]}=\frac{1.27 \cdot 2.32 \times 10^{-3} \cdot 810}{2.1} \simeq 1.1 \\
& \text { For NOvA: } \quad \Delta_{31} \equiv \frac{1.27 \Delta m_{31}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]} \simeq \Delta_{32} \\
& \Delta_{21} \equiv \frac{1.27 \Delta m_{21}^{2}\left[\mathrm{eV}^{2}\right] L[\mathrm{~km}]}{E[\mathrm{GeV}]}=\frac{1.27 \cdot 7.58 \times 10^{-5} \cdot 810}{2.1} \simeq 0.04
\end{aligned}
$$

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq\left|\sqrt{P_{\mathrm{atm}}} e^{-i\left(\Delta_{32}+\delta\right)}+\sqrt{P_{\mathrm{sol}}}\right|^{2} \\
& =P_{\mathrm{atm}}+P_{\mathrm{sol}}+2 \sqrt{P_{\mathrm{atm}} P_{\mathrm{sol}}}\left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta\right) \\
P_{\mathrm{atm}} \equiv \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{31} \text { long baseline experiments } & \text { measure this combination }
\end{aligned}
$$

Neutrino oscillations

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

In matter:

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq\left|\sqrt{P_{\mathrm{atm}}} e^{-i\left(\Delta_{32}+\delta\right)}+\sqrt{P_{\mathrm{sol}}}\right|^{2} \\
& =P_{\mathrm{atm}}+P_{\mathrm{sol}}+2 \sqrt{P_{\mathrm{atm}} P_{\mathrm{sol}}}\left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta\right)
\end{aligned}
$$

$$
\sqrt{P_{\mathrm{atm}}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31}-a L\right)}{\Delta_{31}-a L} \Delta_{31}
$$

$$
\sqrt{P_{\mathrm{sol}}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$$
a=G_{F} N_{e} / \sqrt{2} \simeq \frac{1}{3500 \mathrm{~km}}
$$

$$
a L=0.08 \text { for } L=295 \mathrm{~km}
$$

$$
a L=0.23 \text { for } L=810 \mathrm{~km}
$$

Neutrino oscillations

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

In matter:

$$
\begin{aligned}
& \begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq\left|\sqrt{P_{\mathrm{atm}}} e^{-i\left(\Delta_{32}+\delta\right)}+\sqrt{P_{\mathrm{sol}}}\right|^{2} \\
& =P_{\mathrm{atm}}+P_{\mathrm{sol}}+2 \sqrt{P_{\mathrm{atm}} P_{\mathrm{sol}}}\left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta\right)
\end{aligned} \\
& \begin{aligned}
\sqrt{P_{\mathrm{atm}}}=\sin \theta_{23} \sin 2 \theta_{13}\left(\frac{\sin \left(\Delta_{31}-a L\right.}{\Delta_{31}-a L}\right) \\
\begin{array}{l}
\text { digendence on relative }
\end{array} \\
\sqrt{\Delta_{31}} \Delta_{31} \text { and } \text { a }
\end{aligned} \\
& a=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
\end{aligned} \quad \begin{aligned}
& a L=0.08 \text { for } L=295 \mathrm{~km} \\
& a=G_{F} / \sqrt{2} \simeq \frac{1}{3500 \mathrm{~km}} \quad \begin{array}{l}
a L=0.23 \text { for } L=810 \mathrm{~km}
\end{array}
\end{aligned}
$$

Neutrino oscillations

Following presentation by Nunokawa, Parke, Valle, in "CP Violation and Neutrino Oscillations", Prog.Part.Nucl.Phys. 60 (2008) 338-402. arXiv:0710.0554 [hep-ph]

In matter:

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \simeq\left|\sqrt{P_{\mathrm{atm}}} e^{-i\left(\Delta_{32}+\delta\right)}+\sqrt{P_{\mathrm{sol}}}\right|^{2} \\
& =P_{\mathrm{atm}}+P_{\mathrm{sol}}+2 \sqrt{P_{\mathrm{atm}} P_{\mathrm{sol}}}\left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta\right) \\
& \sqrt{P_{\mathrm{atm}}}=\sin \theta_{23} \sin 2 \theta_{13}\binom{\sin \left(\Delta_{31} \Theta a L\right.}{\Delta_{31} \Theta a L} \quad \begin{array}{l}
\text { dependence on relative } \\
\text { sign of } \Delta_{31} \text { and } a
\end{array} \\
& \sqrt{P_{\mathrm{sol}}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
& \text { "fake" CP violation as a changes sign } \\
& a=G_{F} N_{e} / \sqrt{2} \simeq \frac{1}{3500 \mathrm{~km}} \quad \begin{array}{l}
a L=0.08 \text { for } L=295 \mathrm{~km} \\
a L=0.23 \text { for } L=810 \mathrm{~km}
\end{array}
\end{aligned}
$$

Principle of the NOvA Experiment

Using a muon neutrino beam, we have two basic observables
1.P $\left(V_{\mu} \rightarrow V_{e}\right)$ for neutrinos
2. $P\left(v_{\mu} \rightarrow v_{e}\right)$ for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns $\theta_{13}, \delta_{c p}$, and mass hierarchy.
$\theta_{13}=15^{\circ}, 10^{\circ}, 5^{\circ}$
$\Delta m^{2}{ }_{31}>0$ ("Normal hierarchy") $\Delta m^{2}{ }_{31}<0$ ("Inverted hierarchy") $\delta_{C P}=0, \boldsymbol{\nabla} \pi / 2, \bullet \pi, \Delta 3 \pi / 2,2 \pi$

Perfect measurements of the two oscillation probabilities answer all remaining questions if θ_{13} is large enough.

For small θ_{13} there are inherent
Principle of the NOvA Experiment
ambiguities between hierarchy choice and $\delta_{c r}$. However, even in these cases we learn something about $\delta_{c p}$.

Is the Neutrino a Majorana or Dirac Particle?

Neutrino-less double beta decay

1 and 2σ Contours for Starred Point for NOvA

Possible NOvA measurements

1 and 2σ Contours for Starred Point for NOvA

Combining NOvA with T2K in worst case

1 and 2σ Contours for Starred Point for T2K

As NOvA runs both neutrinos and antineutrinos its contours are relatively straight. T2K's contours trace an " S " which intersects NOvA's contours in the lower part of the plot.

1 and 2 o Contours for Starred Point for NOvA + T2K
1 and 2σ Contours for Starred Point for NOvA + T2K

On the left we assume nominal T2K and NOvA runs. This constrains the CP phase to the lower half plane (1 sigma), but leaves the hierarchy unresolved. Increasing the statistics to each experiment by $3 x$ resolves the hierarchy.

$\mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\mu}$ and $\overline{\mathrm{V}}_{\mu} \rightarrow \overline{\mathrm{V}}_{\mu}$ Channel
 Precision θ_{23} and $\Delta m^{2}{ }_{32}$ measurements

Oscillations applied using $\Delta \mathrm{m}^{2}{ }_{32}=2.35 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{23}=1.0$

$\mathrm{V}_{\mu} \rightarrow \mathrm{V}_{\mu}$ and $\overline{\mathrm{V}}_{\mu} \rightarrow \overline{\mathrm{V}}_{\mu}$ Channel Precision θ_{23} and $\Delta m^{2}{ }_{32}$ measurements

- Energy resolution (determined from simulations) is 4% for v_{μ}-CC quasi-elastic events
- 10% absolute energy scale uncertainty fitted as nuisance parameter; constrained by narrow-band beam
- ~0 backgrounds due to detector performance and narrow-band beam

$\nu_{\mu} \rightarrow \nu_{\mu}$ and $\bar{v}_{\mu} \rightarrow \bar{v}_{\mu}$ Channel

Precision θ_{23} and $\Delta m^{2}{ }_{32}$ measurements

θ_{23} Quadrant: NOvA + Reactor

$\mathrm{V}_{3}=$?

$$
\theta_{23}=50^{\circ}
$$

$\theta_{23}=40^{\circ}$
$\mathbf{9 5 \%}$ CL Resolution of the θ_{23} Ambiguity

- Long baseline experiments measure $\sin ^{2} 2 \theta_{23}$ using the $v_{\mu} \rightarrow v_{\mu}$ channel and $2 \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}$ using $v_{\mu} \rightarrow v_{e}$
- Reactor experiments measure $\sin ^{2} 2 \theta_{13}$ using $v_{\mathrm{e}} \rightarrow \mathrm{v}_{\mathrm{e}}$
- The combination allows measurement of $\sin ^{2} \theta_{23}$ and $\sin ^{2} 2 \theta_{23}$ separately resolving the octant of the angle θ_{23} answering the question of whether v_{3} has more muon or tau content

The NOvA Experiment

- NOvA is a second generation experiment on the NuMI beamline which is optimized for the detection of $v_{\mu} \rightarrow v_{e}$ and $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillations
- NOvA is:
- An upgrade of the NuMI beam intensity from 400 kW to 700 kW
- A 15 kt "totally active" tracking liquid scintillator calorimeter sited 14 mrad off the NuMI beam axis at a distance of 810 km
- A 220 ton near detector identical to the far detector sited 14 mrad off the NuMI beam axis at a distance of 1 km

Event quality

Topologies of basic interaction channels shown at right. Each "pixel" is a single $4 \mathrm{~cm} \times 6 \mathrm{~cm} \times 15 \mathrm{~m}$ cell of liquid scintillator Top: v_{μ} charged-current Center: ve charged-current Bottom: neutral-current Need >100:1 rejection against background

Detector challenge: Achieve large target mass (10's+ kilotons) while maintaining high granularity to avoid confusing the detection channels

NOvA achieves 35\% efficiency for ve CC while limiting $N C \rightarrow v_{e} C C$ fake rate to 0.1\%

v_{e} charged-current

-

neutral-current

Event quality

Topologies of basic interaction channels shown at right. Each "pixel" is a single $4 \mathrm{~cm} \times 6 \mathrm{~cm} \times 15 \mathrm{~m}$ cell of liquid scintillator Top: $\quad v_{\mu}$ charged-current Center: ve charged-current Bottom: neutral-current Need >100:1 rejection against background

Detector challenge: Achieve large target mass (10's+ kilotons) while maintaining high granularity to avoid confusing the detection channels

NOvA achieves 35\% efficiency for ve CC while limiting $N C \rightarrow v_{e} C C$ fake rate to 0.1\%

v_{e} charged-current

neutral-current

Event quality

Topologies of basic interaction channels shown at right. Each "pixel" is a single $4 \mathrm{~cm} \times 6 \mathrm{~cm} \times 15 \mathrm{~m}$ cell of liquid scintillator Top: $\quad \mathrm{v}_{\mu}$ charged-current Center: ve charged-current Bottom: neutral-current Need >100:1 rejection against background

Detector challenge: Achieve large target mass (10's+ kilotons) while maintaining high granularity to avoid confusing the detection channels

NOvA achieves 35\% efficiency for $v_{\mathrm{e}} \mathrm{CC}$ while limiting $N C \rightarrow v_{e}$ CC fake rate to 0.1\%

V_{e} charged-current

- weak second photon

neutral-current

Near Detector On Surface (NDOS)

- Designed to prototype all detector systems prior to installation at Ash River as a full end-to-end test of systems integration and installation
- 2 modules wide by 3 modules high by 6 blocks long. Far detector is $12 \times 12 \times 30$. NDOS mocks up upper corner of far detector ~exactly.
- Installation completed May 9, 2011.
- Commissioning and data collection on going 11/2010 present

NOvA Collaboration

24 Institutions
110 physicists

NDOS location

- Located in two neutrino beams providing an early look at data and a chance to tune up DAQ, calibration, reconstruction, and analysis prior to first data from Ash River
- NDOS is located directly above the NuMl neutrino beam line and is oriented parallel to the NuMI beamline. It sees neutrinos at an off-axis angle of 110 mrad.
- NDOS is located ~on the Booster Neutrino Beam (BNB) line, but the detector axis is rotated 23° with respect to the BNB beamline

NuMl events

Booster Neutrino Beam

- Recorded 2.7×10^{19} protons on target. First event recorded on 12/24/2010. Last event in this sample recorded on 5/22/2010.
- 222 events on a background of 92 cosmic ray backgrounds. 5 v's / 10^{18} POT.

NOvA - FNAL E929

Run: 10893/8
Event: 314724
UTC Tue Dec 21, 2010
11:48:18.997623872

NOvA NDOS NuMI Data

NOvA - FNAL E929

Run: 11956/6
Event: 273516
UTC Mon Apr 11, 2011 00:35:22.853571392

NOvA NDOS NuMI Data
$v_{\mu}+N \rightarrow N^{\prime}+v_{\mu}+\pi^{0}+\pi^{0}$

candidate

NOvA - FNAL E929
Run: 11945/6 Event: 309631 UTC Sat Apr 9, 2011 04:35:37.133364000

Cosmic rays in NDOS

Using cosmic rays:
 Cell-by-cell calibration

Using cosmic rays: Michel electrons from muon decay

These are clusters that are matched to muons recorded 20
seconds prior to event

Experiment progress:
Far detector laboratory complete

After many years of looking at this. We can now look at this...

Experiment progress:
Far detector laboratory complete

Beneficial occupancy of Ash
River laboratory on April 13, 2011

Experiment progress: Far detector laboratory complete

Inside the detector enclosure looking south

Block Pivoter

Block Pivoter Prototype

Block pivoter assembly at Far Detector

First pieces in place on their rails

Beam off Mar 2012 - Feb 2013
Beam returns Feb 2013 ($\mathrm{kW} \sim$ Aug 2013

Each section above is $\sim 5 \mathrm{kt}$ of detector mass Beam is off to upgrade Main Injector and NuMl to 700 kW

Summary

- NOvA addresses 7 of 8 "compelling issues" in neutrino physics
- Far detector construction is underway.
- Far detector laboratory complete
- NuMI upgrades begin in March of 2012
- Plan to have first far detector block in place by then
- Commissioning of 700 kW beam begins in 2013 with ~ 5 kt of far detector in place
- 15 kt complete by end of 2013
- Prototype near detector operational on surface at Fermilab
- Extremely valuable preparation for construction at Ash River
- Early look at real cosmic rays and neutrinos

