

Summary of Collaboration "EOI's" for the CLIC technical developments 2012-2016


HS for CTC

CTC-WIG: Damping Rings Superconducting wiggler

WP: CTC-WIG: P.Ferracin	Purpose/0	Objectives/Goa	ls		Deliverable	es	Sch	edule
Task 1: Choice of cooling technique/topology of wiggler winding: ho.r or ver. racetrack		Careful designs of liquid helium bath cooled wiggler or cooled by conduction cooling			Designs		2011	-2012
Task2:Choice of Sc cable (NbTi/Nb3Sn)	-	Higher field from Nb3Sn, more expensive and more difficult to machine Designs 2				d more Designs		-2012
Task3: Production of prototype(s)	wigglers from	n NbTi cable in 2 o through ANKA) ; c	ne ver. Racetrack cryostats (in ne ver. Racetrack co	oil	3 prototype c cryostats	cryostats		complete magnet end 2 for installation in ANKA Isruhe)
Task 4: Experimental program a ANKA		n of simulations, ch nts of heat loads e	noice for task 1 and 2 tc	2,			2012	2-2014
Lead collaborator(s): ANKA/KIT	Novosibirsk				·			
Resources:	2012	2013	2014	20	15	2016		Total
Material (kCHF): (1)	1000	1000	200	20	0	100		2500
Personnel (FTE):	0.2	0.6	2	2		2		8

To be ready for beam in ANKA in the year 2012 this program will need a temporary loan of a PM wiggler for ANKA (CERN charge to find one)

- Well established collaboration with KIT (Karlsruhe, DE) and implicitly through KIT with Novosibirsk.
- Legally binding contract drafted by KIT (k-contract). Needs CERN FC approval in March 2012

CTC-SUR Survey and Alignment

WP: CTC-SUR: H.Mainaud	Purpose/Objectives/Goals	Deliverables	Schedule
Task 1: development of sensors and actuators	Development of calibration benches Validation through inter-comparisons Qualification in accelerator environment, development of low cost versions, preparation of industrialization	Low cost precise and accurate sensors (WPS, inclinometers,) Low cost linear actuators and cam movers	2011-2016
Task 2: tunnel metrology	Development of laser based alternatives Consolidation of stretched wire solution Validation through inter-comparisons	Simulations + experimental validation of laser based and stretched wire solutions.	2011-2016
Task 3: active pre-alignment of TBA modules	Validation on two beam modules in lab and CLEX Adaptation to new designs and new configurations Increasing performance of fiducialisation techniques & strategies	Mock-ups with associated technical reports on experimental tests	2011-2016
Task 4:active pre-alignment & monitoring in MDI	Development & qualification of solutions for: the determination of the position of QD0 w.r.t the 500m last meters, the relative monitoring of QD0 through the detectors, the re-adjustment within 6 DOF	Mock-ups with associated technical reports on experimental tests	2011-2016

Lead collaborator(s): CERN (Helene Mainaud-Durand et al.)- NIKHEF

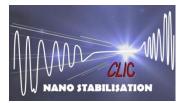
Resources:	2012	2013	2014	2015	2016	Total
Material (kCHF):	1100	1250	1310	1220	1090	5970
Personnel (FTE):	12.3	14.3	12.8	11.8	10.4	61.6

http://indico.cern.ch/materialDisplay.py?contribId=54&materialId=slides&confld=115921

Survey and alignment:

→2 possibilities of collaboration were discussed:

- ✓ with Ciemat (F. Toral) :
 - A Spanish technological centre TEKNIKER, is very interested to participate in the development of the alignment systems for two beam modules.
 - Funding could be by means of a National Program of the Spanish Ministry of science and Innovation, to be confirmed.
 - One possible project: manufacture of cam movers for the two beam modules.
- ✓ With JINR (M. Lyablin):
 - New concepts in the High precision large distance metrology are under investigation
 - Further technical discussion planned in December
- → Technical collaboration with DESY: visit @ DESY planned week 46
- Collaboration with NIKHEF: Franck Linde could not attend this meeting, but will be at CERN week 47 to discuss Nikhef's longer term CLIC involvement.


CTC-QUA Quadrupole stability

WP: CTC-QUA: K.Artoos	Purpose/Objectives/Goals	Deliverables	Schedule
Task 1:	Technology development	Rad hard sensors+actuators, vibration measurements and studies	2011-2016
Task 2:	Application to MB Quads	Prototypes for TBA module program, reports on experiments	2011-2016
Task 3:	Application to FF Quads	Prototypes for FF mock-ups program, reports on experiments	2011-2016
Task 4:	Integration	Controler designs, contribution to ATF2 experiments for feed- forward on ground motion.	2011-2016
Load collaborator(s): LAPP	avista SYMME ASL infu CEA saclay		

Lead collaborator(s): LAPP - Lavista, SYMME, ASL, irfu CEA saclay

Resources:	2012	2013	2014	2015	2016	Total
Material (kCHF):	980	980	925	839	839	4565
Personnel (FTE):	11	9	8.9	8	8	44.9

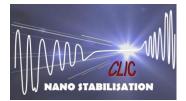
CTC3 Quadrupole Stabilisation

Université Libre de Bruxelles (ULB), Belgium

lrfu CCCC

saclay

CEA/ IRFU, Saclay, France



LAPP, SYMME, Annecy, France

WP: CTC-QUA: K.Artoos	Purpose/Objectives/Goals	Deliverables	Schedule	
Task 1:	Technology development	Rad hard sensors+actuators, vibration measurements and studies	2011-2016	
Task 2:	Application to MB Quads	Prototypes for TBA module program, reports on experiments	2011-2016	
Task 3:	Application to FF Quads	Prototypes for FF mock- ups program, reports on experiments	2011-2016	action with CD-MDI
Task 4:	Integration	Controler designs, contribution to ATF2 experiments for feed- forward on ground motion.	2011-2016	ion with CD-SIM/ LUMI

K. Artoos, Geneva 3 November, 2011

	2012-201	6 MoU	2012-2016 Possible			
	P (FTE) M (kCHF)		P(FTE)	M (kCHF)		
ASL/ ULB			5			
CEA/IRFU			1.5	~260		
LAPP	8.4	~195		~195		
SYMME	3	~13				

(In alphabetical order)

 \sim : Euro

K. Artoos, Geneva 3 November, 2011

clc c

CTC-TBM: two-beam module development

CLIC Linkperson: G. Riddone

WP: CTC-TBM	Purpose/Objectives/Goals	Deliverables	Schedule
Task 1: Prototype design and fabrication	Engineering design of the two-beam modules, including eng. design of fully integrated components. Fabrication and assembly of components Girder R&D, integration of all module technologies	4 two-beam modules to be mechanically tested in a lab (generation 1) 36 two-beam modules to be mechanically tested in a lab (future generations) 3 two-beam modules to be tested with RF and beam in CLEX (generation 1) 3 two-beam modules to be tested with RF and beam in CLEX (future generations)	2011-2016
Task 2: Finite element simulations	Thermo-mechanical simulation of two-beam module behavior under different load conditions: estimation of resulting forces, deformations and stresses. Application of results to engineering design	Technical report with results of simulations; feedback to taks 1	2011 - 2016
Task 3: Experimental comparison of predicted and modeled performance	Experimental tests of technical system performance (vacuum, cooling, alignment,) Experimental of overall module behavior under different load conditions Comparison measured with expected results Review of results and application to the engineering design	Realization of tests Analysis of results	2011-2016

WP: CTC-TBM: G.Riddone	Purpose/Obj	ectives/Goals		Deli	iverables	Schedule			
Task 4: Alternative designs	 Longer girders different materia Longer RF stru Permanent DB 	ictures	girders,		New engineering design for the different options			2012-2016	
Task 5: Industrialization	 reduction of int reduction of co 	wards cost optimization: eduction of interconnections eduction of components and module types eduction of machining and assembly steps			New module layout		2013-20)16	
http://indico.cern.ch/cate	goryDisplay.py?	categId=1794							
Lead collaborator(s): CERI collaborators (HIP-K. Oster	· · · ·	azis, CIEMAT-F. To	oral, NCP-A.N	lawaz,					
Resources:	2012	2013	2014		2015	2016		Total	
Material (kCHF):	2600	2850	2850		2850	2850		14000	
Personnel (FTE):	16.5	16.5	17		17	17		84	

Other comments: total modules considered for construction: 13-16 (see task 1);

All deliverables for modules (Alignment, Stabilization, BI, vacuum, RF structures etc) paid by TBA module budget.

- DUBNA-JINR
 - Engineering design and integration, QA: mechanical engineers at CERN
 - Next: extend the collaboration with the production of module components (dedicated meeting with top management on 14-15.11
- Greece several universities
 - engineering design, databases, labview programming, alignment/supporting system studies, radiation tests
 - **Next**: organize a dedicated meeting to understand better the contribution
- CIEMAT
 - PETS for the two-beam modules in CLEX
 - Next: extend the collaboration to RF components and definition of quantities until 2016
- RRCAT
 - Next: PETS and RF components production definition of the "addendum"

- ACAS
 - Module assembly and alignment
 - Next: dedicated meeting to finalize task and ressources
- HIP/NorduCLIC
 - FEA , cost study and industrialisation, test results analysis
 - **Next**: team will grow and new people will come to CERN
- NCP
 - Engineering design of module components and fabrication of vacuum components
 - Next: extend the collaboration to the production of the RF structures for the module (prototype parts already made at NCP) – Organization of a meeting to discuss details and results from prototype measurements

WP: CTC-WMP Warm Magnet Prototypes

WP: CTC-WMP: M.Modena	Purpose/Obj	ectives/Goals	Deliverables			Sched	lule	
Task 1: Normal conducting Magnet Design Catalogue	First optimizatio designs for size consumption, co production.	, weight, power	"Catalogue") for CLIC.	Release a detailed study (the "Catalogue") for all magnet sub-systems in CLIC. Follow sub-systems design evolution			016	
Task2:Prototypes and small magnets series for CLIC Module Test programs (LAB and CLEX)	-	r 4 + 3 Modules to ab and CLEX test		BQ Type1 and 1 of (EM version) neede	2011-20	016		
Task3:Hybrid Permanent magnet high gradient Quadrupole design and short prototyope	Design of QD0 solenoid system Experiments for studies in MDI (CTC-007)	integration	eventually full si	construction and ze prototype constr alidation if possible	2011-20	016		
Task4: Drive Beam Quadrupole Tunable PM prototypes	Design and proo prototypes mag based on altern (Tunable Perma	nets for DBQ ative design	Gradient range) prototypes will b	2 prototypes (High Gradient and Low Gradient range). The Low Gradient prototypes will be compatible with CLIC Modules layout for eventual test inCLEX Program				
Lead collaborator(s): CERN-(M. Modena et al.); UK collaboratio			on					
Resources:	2012	2013	2014 2015 2016 To				Total	
Material (kCHF):	320	320	320					

Personnel (FTE):

• None, but well established collaboration within the CERN-UK collaboration package.

clc

CTC-BDI: Beam Instrumentation

WP: CTC-BDI: T.Lefevre	Purpose/Objectives/Goals	Deliverables	Schedule
Task 1: Refinement of specifications	 From parameter to Functional specifications R&D on intensity, polarization and luminosity measurements Development of Damping ring instrumentation in collaboration with B-factories and light sources 	-Functional specifications - Prototype of each monitor	- End of 2016 - End of 2016
Task 2: BPM development	 Demonstrate the high resolution of CLIC cavity BPM prototype (linac and BDS) and its read-out electronic - lab and beam test Build and test DB decelerator strip line BPM and its read-out electronic – lab and beam test – Iteration for Cost optimization Develop of narrow-band high frequency (1-2GHz) combiner diagnostic for Damping ring delay loop and test on CTF3 RF simulations for estimation of wakefield effects and interference due to the presence of high field in PETS and Acc. Cav. 	 Prototype of 14GHz cavity BPM Prototype of a DB decelerator BPM Prototype of a combiner BPM 	- End of 2015 - End of 2014 - End of 2015 - End of 2013
Task 3a: Emittance measurements	 -Design and integration of Laser Wire Scanner in BDS and Drive Beam complex -Technology development for high power fibre laser -Study alternative option for high spatial resolution non- destructive profile monitors (UV Diffraction radiation) -Develop and test imaging techniques for the high energy spread beam at the end of the DB decelerator 	 Experimental validation of a CLIC Laser Wire Scanner on ATF2 with BPM Experimental validation of a CLIC UV DR monitor on CESRTA Experimental validation of a DB decelerator imaging sytem on CTF3 	- End of 2016 - End of 2013 -End of 2014

CTC-BDI: Beam Instrumentation

WP: CTC-BDI: T. Levefre	Purpose/Obj	ectives/Goals		Deli	verables		Sched	ule				
Task 3b: Longitudinal Emittance measurements	Iongitudinal profi techniques - Development a resolution bunch	 Development of 20fs time resolution longitudinal profile monitor using EO techniques Development and test of cheap high resolution bunch length monitor based on Coherent Diffraction Radiation 			nitor using EO st of cheap high h monitor based on				- Prototype of each monitor		itor - End of 2014 - End of 2016	
Task 4: BLM development	particle for the D	I only sensitive to o amping rings ualify a cost effection					- End of - End of -End of	2014				
Lead collaborator(s): CERN	I (L. Soby, S. Smit	h et al) – RHUL (S	. Boogert et al) – Fer	milab (M. Wendt)							
Resources:	2012	2013	2014		2015	2016		Total				
Material (kCHF):	1280	1265	1400		1430	1370		6745				
Personnel (FTE):	16.3	3 16.5 17.65 17.4				16.4		84.25				

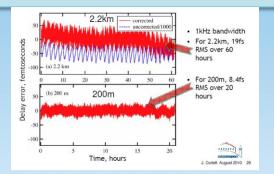
Discussion on CLIC Beam instrumentation – 3/11/2011

- North-Western University of Illinois: no more funding for CLIC but can provide Students
- *LBNL*: Providing devices for imaging system for photons in the keV range: Table received
 Devices to be tested as X-ray beam size monitors for Damping ring on existing light source and/or CESRTA
- *RHUL/Oxford*: Existing k-contract for several developments : Cavity BPM / OTR / LWS and testing on ATF2
- University of Dundee / ASTeC-Daresbury: Existing k-contract on Bunch length measurements using E-O techniques
- *LAPP/Annecy*: Drive Beam BPM electronic, also part of the CLIC control workpackages **Table received**
- *U. Barcelona*: Interest to continue working on the CLIC Beam Position Monitor electronic . 1FTE
- *IFIC*: Involve in the design of CTF3 / Drive Beam Beam Position Monitor also part of the CLIC0 instrumentation workpackages: **Table received**

WP: CTC-PCLD Beams disposal (post collision line and dumps)

WP: CTC-PCLD: E.Gschwendtner	Purpose/Objectives/Goals	Deliverables	Schedule				
Task 1:Post Collision Line Design	Detailed designs by simulations/calculations	Feasibility Report of MB water dump by end 2012 Feedback from simulations on experiments background to dump line design. Integration study with BDS. Designs end 2014	2011-2014				
Task2: Luminosity instrumentation	Choice of luminosity instrumentation; Evaluation of expected performance	Report on choice; simulations; signal quality of Luminosity signals. Feedback to beam dynamics.					
Task3: Water dump designs: -studies /design of MB dump -studies/design of DB dump - preparation of CLIC0	Detailed designs by simulations/calculations. Collaboration with ILC	Specifications for DB dumps (full DB power?) Designs, engineering for CLIC0 dump	2011-2016				
Lead collaborator(s): Minsk (SOSNY institute)							

Resources:	2012	2013	2014	2015	2016	Total
Material (kCHF):	200	200	200	200	200	1000
Personnel (FTE):	1.2	2.2	2.2	2.2	2.2	10


- Meeting with top management from Minsk (SOSNY institute) was planned during 3./4.-11. Meeting.
 → delayed by 2-3 weeks due to small accident of lab-director.
- Expect MoU for simulation work on beam dumps and potential prototype fabrications signed this year and project associates working at CERN from january 2012.

WP: CTC-CO Controls

WP: CTC-CO: M.Draper	Purpose/Obje	ctives/Goals	Deliverables	Deliverables				
Task1: Timing reference , timing distribution and 10 fs synchronization	Review of speci of fine-timing sy practical realization		Specifications, Designs, Lab set-up of master-clock and distribution system, Timing reference for CTF3? Provide models for integrated studies			2011-2014		
Task2 : Module read-out	Design of a gen system for all TE systems: low po compact.	3A module	Prototypes tested ir	Prototypes tested in CTF3			2014-2016	
Task3: Design of complete control system	Design of system estimate, interfat for equipment	n, better cost ce specifications	Designs, interface specifications			2014-2016		
Lead collaborator(s):								
Resources:	2012	2013	2014	2014 2015 2016			Total	
Material (kCHF):	120	500	1000	500	120		2240	
Personnel (FTE):	1.5	3	5	3	1.5			
Callaborations (some planned) university of ANKARA DESVINDL DSLIADD								

Collaborations (some planned) university of ANKARA, DESY, LNBL, PSI, LAPP

Controls WP

- <u>Task 1</u>: ft second timing: no support from external collaborators so this task has been dropped.
- <u>Task 2</u>: Module read-out:
 - Agreed to formalize collaboration between LAPP (S. Vilalte) and BE-CO (M. Vanden Eynden & J. Serrano).
 - Will collaborate on specifying and prototyping the Acquition Control Module (ACM) for all equipment classes (BI, Vacuum, RF, Power Converters, CV).
 - Propose the platform (microTCA, PCIe, ..), read-out electronic cards, the communications between the ACM and the front-end processing equipment (e.g. GBT in collaboration with PH), and the controls s/w needed.
 - LAPP will provide 2.5 FTE or electronics engineers + 0.5 FTE front-end s/w + 10-20kEuros/year.
 - BE-CO can provide 1 FTE (fellow from 1Q2012) + up to 1 FTE (across many people).
 - Start-up meeting between CERN and LAPP (10/11/2011) where technical issues/choices will be documented. Plan how work will be split between LAPP and CERN.
 - Define successive phases (iterative approach with functional prototype systems) to be installed on CTF3 and other Cern accelerators
- <u>Task3</u>: Design of control system: Will not start before 2014. Depends on Task 2.

WP: CTC- RF systems

WP: CTC-RF E.Jensen	Purpose/Obje	ctives/Goals	Deliverables	Deliverables			
Task1: Prototypes of 15 MW 1 GHZ klystrons for DB generation	partners for the	er) working 15 MW	nent of more units ng 15 MW			2011-2016	
Task2 : Designs of DB accelerator/cavities	Overall DB designower plant	gn as a large	Designs			2011-2016	
Task3: DB LLRF design	Design of LLRF with optimization amplitude stabil	n for phase and	Designs, measurements at other plants, modelization tools			2011-2016	
Task 4: Further designs on DR RF system and feasibility review	Further study or options	n 3 present design	Design studies, review, decision			2012-2013	
Lead collaborator(s):							
Resources:	2012	2013	2014 2015 2016				Total
Material (kCHF):	100	1000	1000 1500 1500			5100	
Personnel (FTE):	5	5	5 5 5 25			25	
Activity not started, needs people from BE-RF, needs dedicated WG with people from TE-EPC and EN-EG							

Proposal by INFN to work on combiner ring RF deflectors (task2)

WP: CTC-EPC powering

WP: CTC-EPC: S.Pittet	Purpose/Objectives/Goals			Deliverables			Schedule	
Task1:Modulators for DB generation	Revision of specifications, design for highest efficiency for various pulse lengths, prototyping			Modelization tools Measurements at existing plants, development of high precision measurement systems 2 working modulators for DB klystrons			2011-2016	
Task2 : Contribution to Designs of whole DB complex	Overall DB design as a large power plant (building, energy supply, cooling, interface to French power plants). Main electricity consumer: modulators for klystrons.			Designs of modulators/racks/controls/infrastruct ure		2011-2016		
Task3: Powering schemes for CLIC complex	Follow up of CLIC design changes, designs for powering systems, space reservation, cost estimate			Designs and updated cost estimate		2011-2016		
Task4: Module Magnets Powering Schemes	Alternatives electromagnets/permanent magnets with trims; optimization of total energy consumption; machine protection optimization			Designs		2011-2016		
Task5:Rad Hard trimmers for strength	Design of trimmers for magnets in main tunnel (powered in series). Rad hard design and qualification			Design and qualification		2011-2016		
Resources:	2012	2013	2014		2015	2016		Total
Material (kCHF):	505	860	1350		630 45			3800
Personnel (FTE):	8.1	10.1 12.1			10.1 6.6			47
Just starting activity, needs dedicated WG with people from BE-RF and EN-EL								

- Expression of Interest by RRCAT (India) to build a prototype of the modulator for the high power 1 GHz klystron (Dr. P. Shrivastava)
 → will be followed up
- "we have several new collaborations close to be finalized" = quote S.Pittet (subjects not treated during this event).

Summary

- Not mentioned CTC workpackages have not been treated during this event, but collaborations exist.
- Large interest in collaborations with a high match of proposed activities to the real needs of the project.
- General tendency: Solid proposals or commitments for the next 2 years; Reluctance to go beyond.
- Sparse proposals for financial contributions; dominant EOI's are for manpower; this will need good organisation for follow-up and communication.