

CTF3 consolidation & upgrades Workpackage CTF3-001

Frank Tecker - BE/OP for the CTF3 Team

- Introduction
- Consolidation, stability, operation
- Energy upgrade
- Repetition rate upgrade
- Beam-loading effect on breakdown rate

- Goal: fully exploit potential of CTF3
- Consolidate performance in view of CLIC requirements (we have been mainly pushing for current and power)
- improve operational experience
- phase feed-back / feed-forward
- BDR with beam loading
- high-power RF testing: demonstrate operation of a drive-beam driven power source
- CLIC module tests with beam as close as nominal as reasonable

- Certainly need consolidation for aging equipments
- energy upgrade will ease the operation, required for full TBL
- repetition rate upgrade will decrease conditioning times required for TBL+ RF testing
- continue efforts on further stabilizing the machine feedbacks on current and energy
- finalize the feasibility demonstration in terms of
 - stability
 - emittance
 - pulse shape
 - routine operation

- 1.5 GHz RF bunching system, 40 kW TWT
 - need spares and replacement
- 3 GHz RF system
 - needs regular klystron maintenance and replacement
 - control system upgrade to PLC system (replace CAMAC)
- Beam stability
 - manpower for studies and implementation of feed-backs
- Operation
 - manpower for beam studies and running
 - manpower for programming support software (had collaborator from RRCAT, India in the past)
 - control system maintenance and improvements
 - diagnostics & instrumentation support and developments

- will ease the operation, required for full TBL
 - upgrades to 45 MW klystron tubes and girder 14 planned
 - RF pulse compressor cavities (1 LIPS / 1 BOC) available
 - 4 accelerating structures available
 - need 2 additional modulators/klystrons (MKS)

(final beam energy 50 MeV)

- required for RF structure conditioning and BDR statistics
- presently limited to 5 Hz by two klystrons (MKS11/MKS15)
 => need additional charging power supplies
- test with 4x combined beam up to TL2 done already last year
- practically limited by radiation losses
- Identify shielding / zone classification as a function of rep rate and operation mode (4x/8x)
 => manpower for the studies needed
- Identify hardware changes as function of rep rate

Frank Tecker

- Beam loading reduces field => BDR lower?
- CLEX probe beam current limited => use CTF3 drive beam and klystron-driven X-band structure in the old '30 GHz PETS' line
- 30 GHz waveguide network has to be converted to X-band
- Interface to regular structure test area and switchable connection to klystron
- RF instrumentation from stand-alone power source
- need manpower for the software and analysis

Other items for CTF3 studies/upgrade

- various items can be studied at CTF3 to improve the performance and test concepts and hardware for CLIC
- some interesting topics for collaborations...
 - optimize RF deflector bump configuration
 - decoupling the CR septa
 - test algorithms for CLIC machine commissioning (safe beam)
 - machine protection concepts
 - loss monitors
 - test alignment in the accelerator environment
 - CLIC specific beam instrumentation
 - any tests in view of CLIC0 (injector)
 - sextupoles in the CR deflector bump

CTF3-001 Summary

WP: CTF3-001 CTF3 consolidation & upgrades		Purpose/Objectives/Goals: Enable CTF3 continued operation until 2016 with performances compatible with the experimental program (system performance)				Deliverables			Schedule		
Energy upgrade		Required for long string of modules. Useful for TBL deceleration demonstration, TBL+ high power testing, drive beam transport in modules, beam tests.				2 new modulators/klystrons (3GHz, 45 MW) and associated infrastructure. M budget: 2.5 MCHF			1 st MDK: 2012 – 4Q 2 nd MDK: 2013 – 3Q		
Repetition rate upgrade		Required for TBL+ high power testing. Useful for operation and breakdown rate studies.				Additional shielding, pulsed charge power supplies for MKS, interlocks. M budget: 3.5 MCHF			Interlocks: 2011 – 3Q MKS PS: 2012 – 2Q Shielding 2013 – 1Q		
Consolidation, stability, operation		Required for continued CTF3 operation 2012-2016.				Consumables (klystrons), spares (TWTs), feed-backs, diagnostics and control system maintenance and improvements, operating support. M budget: 9 MCHF			Distributed 2012-2016		
Effect of beam-loading on breakdown		Assess the breakdown rate behaviour in beam-loaded X-band structures				Re-furbish CTF3 dog-leg, RF network Experiment report. M budget: 0.5 MCHF			2012 – 1Q 2013 – 1Q		
Link to other WPs/activities: This WP is integrated to WPs CTF3-002, CTF3-003 and CTF3-004 (see above)											
Lead collaborator(s): CERN: BE/RF, BE/BI, BE/ABP, BE/OP											
Resources:	2011		2012	2013	2014		2015	2016	Т	Total	
Material (kCHF):			3750	3750			3000	2000		15500	
Personnel (FTE):			20	20	15		15 15		85		
Most resources will necessarily come from CERN. Basically uncompressible if any CTF3 program is to be preserved.											

• Thank you very much for your attention!

• Thanks to everyone for the input to this talk.