

DESY and Uni HH: Survey

CLIC Collaboration working meeting addressing the 2012-16 workpackages

- Positron Source Simulations
 - Polarized e+ using helical Undulator
 - e+ target and collimation issues
 - Spin tracking, rotation and flipping
- e+ polarimetry at and near the source
- BDS related issues: see Jenny's talk at 2.40 pm

We are part of the ILC/CLIC positron source group

- Hamburg (Uni, DESY):
 - Gudrid Moortgat-Pick, Olufemi Adeyemi, TonyHartin, Valentin Kovalenko, Larisa Malysheva, Andriy Ushakov
- DESY Zeuthen:
 - Sabine Riemann, Friedrich Staufenbiel
- Goal: polarized positrons for best LC performance

Generation of (polarized) positrons

Conventional source:

Circularly polarized photons produce longitudinally polarized positrons and electrons

- Methods to produce polarized photons
 - Radiation from helical undulator (Balakhin, Mikhailichenko, BINP 79-85 (1979))
 Baseline for ILC
 - Compton backscattering of laser light off an electron beam currently preferred update option for polarized e+ @CLIC

ILC Positron Source Layout

- Superconducting helical undulator → Electron beam is used to produce positrons
 - Polarized positron beam (~22% 35%) from beginning
 - e+ polarization (60%) is upgrade option ⇔ photon collimator to remove photons with lower polarization
 - Compton backscattering is considered as alternative option to produce polarized e+
- Target
 - Ti alloy wheel, radius 1m, thickness 1.4cm
 - Rotating speed 100m/s (1000rpm)
 - Design, prototype: LLNL, UK
- Capture
 - Flux concentrator (design and prototype: LLNL)

CLIC Sources Layout

- Baseline design with unpolarized e+ source
- e+ polarization is upgrade option
 - preferred design is Laser-Compton (see Rinolfi et al., PAC09)
 - Electron ring and optical laser cavity
 - ERL (Energy recovering linac) + laser cavities
 - Electron linac and CO₂ laser cavities ⇔ no stacking
 - Alternative is undulator based e+ source (see also L. Zang et al., PAC09, W. Liu et al. IPAC10)

Positron flux at LC

Positron target, collection optics are 'similar' for ILC and CLIC

→ Very close collaboration of ILC and CLIC positron source groups

	CLIC 500	CLIC 3000	ILC (RDR)	ILC (SB2009)
e/bunch	0.68x10 ¹⁰	0.37x10 ¹⁰	2x10 ¹⁰	1-2x10 ¹⁰
#Bunches/pulse	354	312	2525	1312
Pulse rep rate	50	50	5	5
Pulse duration (ns)	177	156	10 ⁶	10 ⁶
Bunch separation(ns)	0.5	0.5	350	740
e+/sec	1x10 ¹⁴	0.54x10 ¹⁴	2.7x10 ¹⁴	1.3-2.7x10 ¹⁴

ILC yield: ~0.02 polarized e+ / γ

- → huge heat load on
 - e+ production target
 - Photon collimator of undulator based source

Positron Source Modelling

- Polarized Positron Source Simulation (PPS-Sim)
 - Optimization of yield and polarization of e+ source
 - Different possibilities of e+ production are implemented and can be easily chosen by the user
 - Particle and spin tracking up to capture section
 - Based on Geant4 with polarized electromagnetic processes,
 Qt4 und ROOT (developed in DESY Zeuthen)

Web page:

http://pps-sim.desy.de

Schaelicke, Ushakov

Problems: Target and collimator material

- high peak energy deposition density in materials
 - Thermal stress, high pressure (even shock waves)
 - Energy deposition along the beam path
 - instantaneous temperature rise
 - instantaneous pressure rise

beam

High pressure,

Liquid (or plasma)

- → damage or lifetime reduction of material
- So far, SLC target is ,benchmark' to trust simulations for LC materials, codes should be validated by experiments
- Radiation aspects
 - activation
 - Material damage (displacement per atom)
 - · remote handling

Material stress studies

- PhD student (Olufemi) develops hydrodynamical model to simulate shock wave creation and propagation
- ANSYS simulations are ongoing to study stress in materials due to intense beams (Andriy, Friedrich)

Deformation (left) and equivalent stress in target (Ushakov)

- Plan to use DESY facilities to test material stress and to benchmark the simulation tools (Friedrich, Andriy)
 - e- beams (FLASH, 1.2 GeV), PITZ (25MeV)
- Results are also interesting for machine protection
- Experience and collaboration is welcome

Spin tracking

- Goal: perform spin tracking from start to end
- ILC e+ source
 - Lattice needed
 - Spin tracking and e+ source: spin rotation
 - Equipment for rapid helicity reversal under work (helical undulator yields only <u>one</u> polarity)
 - ILC e+ source lattice/ spin rotation work started (Larisa, Valentyn)

Polarimetry at the e+ source

- Polarisation measurement downstream the capture section; E > 125 MeV
 - Large size of positron beam ($\sigma \sim 0.5...1$ cm)
 - High intensity of positron beam
 - Do not need very precise measurement

Proposal (see Alexander et al., EUROTeV-Report-2008-91):

- Bhabha polarimeter operated at
 - 400 MeV (ILC)
 - 200 MeV (CLIC)
- Downstream the damping rings: Compton polarimeter, but spin orientation is transverse (details: Alexander, Starovoitov, LC-M-2007-014, 2007)

Summary

- ILC/CLIC collaboration for e+ source exists since years
- Contributions to ILC from DESY/U Hamburg group
 - Source design optimization
 - Lattice, spin rotator and spin-flip design
 - Tolerance and misalignment studies
 - Realistic spin tracking from start to end
 - Target and collimator material stress simulations
 - Material test / shock wave experiment (?)
 - Low energy e+ polarimetry
 - Our manpower is limited but save until summer 2012 (HH) and 2013 (Zeuthen)
- Tools for ILC source can be applied for CLIC
 - Support for polarized source is possible
 - Source optimization, spin tracking, low energy polarimetry

Backup

ILC: e+ Polarization

Drive e- beam: 250 GeV (6T AMD assumed)

Yield and Polarization vs Radius of **Virtual** Collimator

- → 60% e+ polarization requires R_{col} ≤1mm
- Higher intensity of γ beam to produce enough positrons
 heat load density on target increased, but within acceptable limits

Velocity Interferometer System for Any Reflector

1 GeV e

- VISAR (Laser Doppler Vibrometer, LDV)
 - Commercial systems available
 - Sensitivity: 0.02m/s [0.002m/s] with 50ns [500ns] resolution time
 - http://www.mfaoptics.com/FiberDVI.htm)
 - → measurement of shockwaves possible