Oxford contributions to CTF3-002

Philip Burrows

John Adams Institute
Oxford University

Work programme

Design drive-beam phase FF system for CLIC

CLIC Drive Beam Requirements

Schulte

Phase feed-forward concept

A Preliminary System Concept

- +- 375 urad kick at each bend
- 0.5% energy spread, 1m dispersion -> 5mm rms
- beam pipe diameter >> 50mm
- 4 kickers at each bend
- > 400kW peak power amplifier to each kicker

A rough estimate

16 amplifiers & kickers / drive beam

- → 768 amplifiers total
- → 300MW total peak power

assume: £100K per 400kW amplifier

→ £75M for the whole system

This is all very very approximate

- it makes no allowance for technological progress
- lot of details to be worked out
- very dependent on high-volume costs: no sound basis for these
- depends on system design: kick dynamic range

Work programme

- Design drive-beam phase FF system for CLIC
- Investigating amplifier component technologies:

```
HV silicon MOSFETs
```

Silicon LDMOS FETs

Silicon carbide FETs

(vacuum tubes)

FONT3 amplifier module

A 2kW peak output 10ns amplifier module

✓ typical fast, high voltage MOSFETs
 ✓ Typical fast, high voltage

Work programme

- Design drive-beam phase FF system for CLIC
- Investigating amplifier component technologies:

HV silicon MOSFETs

Silicon LDMOS FETs

Silicon carbide FETs

(vacuum tubes)

Design and tests of prototype phase FF system at CTF3

CTF3 phase FF prototype

CTF3 FF loop layout

FONT5 digital FB board

Xilinx Virtex5 FPGA

9 ADC input channels (TI ADS5474)

4 DAC output channels (AD9744)

Clocked at 357 MHz phase-locked to beam

Strategy for correction

Consider separate corrections for 'slow' + 'fast' components:

Either:

Combine drives before sending to kicker or

Use dipole corrector for slow correction – preferred?

Amplifier strategy for CTF3

- 1. deliver a minimal spec system to CTF3 at an early date
- 2. upgrade this to a performance level approximating CLIC requirements
- 3. develop & prototype a design for CLIC capable of being costed
- There are four main problem areas:
- the power amplifier modules (solid state systems contain many output modules)
- broadband transformers (and other magnetics)
- combining scheme for power module outputs
- system protection, packaging, control etc.

Will concentrate on each of these areas in turn

Proposed CTF3 amp design

First Stage:

- drive kickers as single-turn coils with one end grounded
- magnetic deflection only: needs double the drive current
- low drive voltage, so no (potentially difficult) broadband transformers
- sufficient to correct broad phase variations over 140ns will not correct eg. the observed phase 'ripples' at ~20MHz

Second Stage:

- fix and/or improve the amplifier design (!)
- build more amplifiers (otherwise unchanged)
- drive the kickers from 2 and then all 4 ports
- drive principle remains the same
- with same voltage from each amplifier, total kicker drive V is x 2 or x4 this increases speed sufficiently to correct the 20MHz phase 'ripples'

Proposed CTF3 amp design

Third Stage:

- need to combine and transform the outputs to match the kicker
- system response should be flat to at least 30MHz; target is 60MHz
- system then will be close to CLIC requirements in all but power level

Resources

- CLIC-UK agreement: 1/4/11 31/3/14
 1.6 FTE/year (faculty, engineer, postdoc)
 250 kChF (materials + travel)
- Continue this activity 2014-2016
- Providing additional resources from JAI/Oxford + CERN:
 - PhD student until end 2012 could add another PhD student > 2012