

CLIC Implementation Studies

Ph. Lebrun & J. Osborne CERN

CLIC Collaboration Meeting addressing the 2012-2016 Work Packages CERN, 3-4 November 2011

CLIC long-term plan

2011-2016 - Project Preparation phase

Goal for 2016: Develop a project implementation plan for a Linear Collider (at CERN):

- \checkmark addressing the key physics goals as emerging from the LHC data
- ✓ with a well-defined scope (i.e. technical implementation and operation model, energy and luminosity), cost and schedule
- \checkmark with a solid technical basis for the key elements of the machine and detector
- ✓ including the necessary preparation for siting the machine at CERN
- \checkmark within a project governance structure as defined with international partners

After 2016 – Project Implementation phase, including an initial period to lay the grounds for full approval Considering the preparation steps foreseen and the resources situation it is clear that several key tasks will need further effort before the project can move into construction:

- -finalization of the CLIC technical design, taking into account:
 - -results of technical studies done in the previous phase
 - -final energy staging scenario based on the LHC Physics results, which should be fully available by the time
- -possible construction of CLIC Zero as first CLIC phase
- -further industrialization and pre-series production of large series components with validation facilities
- -further detector and physics studies, with increased emphasis on technical coordination issues and integration
- revision of the project implementation plan of CLIC, following the energy staging strategy and detailed resource discussion with all partners – providing the basis for a staged or full approval, and subsequent construction start up
- During this initial period we will need to produce the necessary documents to support a proposal for CLIC construction start-up

The next steps 2012-2016

Define the scope, strategy and cost of the project implementation.

Main input:

- The evolution of the physics findings at LHC and other relevant data
- Findings from the CDR and further studies, in particular concerning minimization of the technical risks, cost, power as well as the site implementation.
- A Governance Model as developed with partners.

Define and keep an up-to-date optimized **overall baseline design** that can achieve the scope within a reasonable schedule, budget and risk.

- Beyond beam line design, the energy and luminosity of the machine, key studies will address stability and alignment, timing and phasing, stray fields and dynamic vacuum including collective effects.
- Other studies will address failure modes and operation issues.

Indentify and carry out **system tests** and programs to address the **key performance** and operation goals and mitigate risks associated to the project implementation.

• The priorities are the measurements in: CTF3+, ATF and related to the CLIC Zero Injector addressing the issues of drivebeam stability, RF power generation and two beam acceleration, as we as the beam delivery system.

(other system tests to be specified)

(technical work-packages and studies addressing system performance parameters)

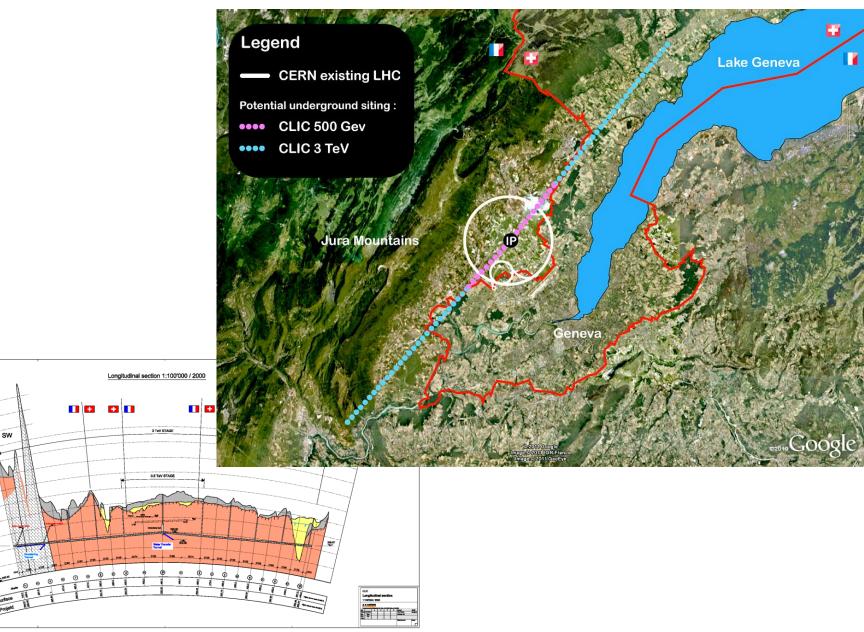
Develop the **technical design basis**. i.e. move toward a technical design for crucial items of the machine and detectors, the MD interface, and the site.

• Priorities are the modulators/klystrons, module/structure development including testing facilities, and site studies. (technical work-packages providing input and interacting with all points above)

CLIC activities & work packages 2012-2016

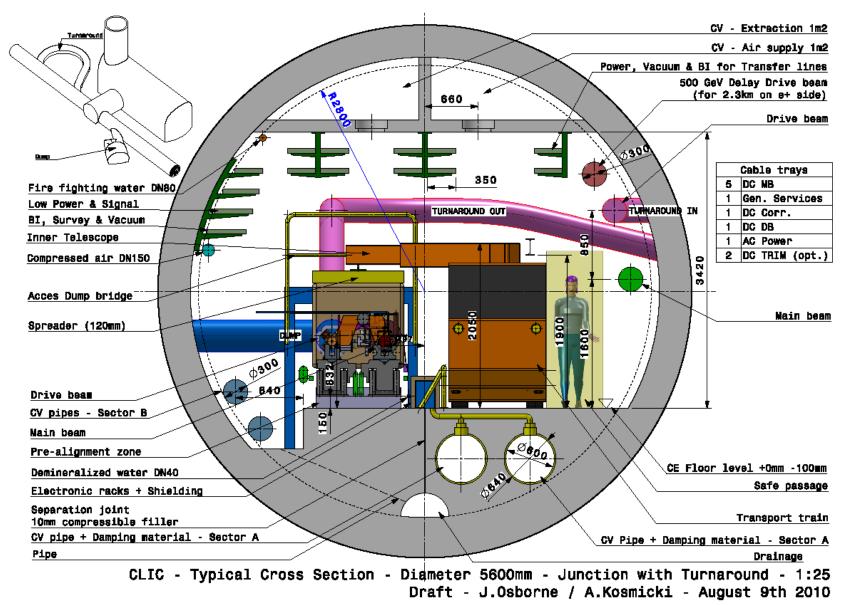
	Old Name	New Name	Name	WP Holder
General	CLIC-001		CLIC General	S. Stapnes
General	CLIC-001			5. Staphes
Parameters and design	BPH-BASE	CD-BASE	Integrated Baseline Design and Parameters	D. Schulte
Daniel Schulte	BPH-SIM	CD-SIM	Integrated Modelling and Performance Studies	A. Latina
	BPH-FEED	CD-LUMI	Feedback Design	D. Schulte (interim)
	BPH-MP	CD-OP	Machine Protection & Operational Scenarios	M. Jonker
	BPH-BCKG	CD-BCKG	Background	D. Schulte (interim)
	BPH-POL	CD-POL	Polarization	-
	BPH-SRC E	CD-ESRC	Main beam electron source	S. Doebert
	BPH-SRC P	CD-PSRC	Main beam positrion source	
	BPH-DR	CD-DR	Damping Rings	Y. Papaphilippou
	BPH-RTML	CD-RTML	Ring-To-Main-Linac	A. Latina
	BPH-ML	CD-ML	Main Linac - Two-Beam Acceleration	D. Schulte (placeholder)
	BPH-BDS	CD-BDS	Beam Delivery System	R. Tomas
	BHP-MDI	CD-MDI	Machine-Detector Interface (MDI) activities	L.Gatignon
	BPH-DRV	CD-DRV	Drive Beam Complex	B. Jeanneret
xperimental verification	CTF3-001		CTF3 Consolidation & Upgrades	F. Tecker
Roberto Corsini	CTF3-002		Drive Beam phase feed-forward and feedbacks	P. Skowronski
	CTF3-003		TBL+, X-band high power RF production & structure testing	S. Doebert
	CTF3-004		Two-Beam module string, test with beam	-
	CLICO-001		CLIC 0 drive-beam front end facility (including Photoinjector option)	S. Doebert
	CLICO-002		Drive Beam Photo Injector	S. Doebert
	BTS-001		Accelerator Beam System Tests (ATF, Damping Rings, FACET,)	R. Tomas
	BTS-002		Sources Beam System Tests	-
Technical Developments	CTC-001	CTC-WIG	Damping Rings Superconducting Wiggler	P. Ferracin
Hermann Schmickler	CTC-002	CTC-SUR	Survey & Alignment	H. Mainaud
	CTC-003	CTC-QUA	Quadrupole Stability	K. Artoos
	CTC-004	CTC-TBM	Two-Beam module development	G. Riddone
	CTC-005	CTC-WMP	Warm Magnet Prototypes	M. Modena
	CTC-006	CTC-BDI	BeamInstrumentation	T. Lefevre
	CTC-008	CTC-PCLD	Post Collision Lines and Dumps	E. Gschwendtner
	CTC-011	стс-со	Controls	M.Draper
	CTC-012	CTC-RF	RF Systems (1 GHz klystrons & DB cavities, DR RF)	E. Jensen (placeholder)
	CTC-013	CTC-EPC	Powering (Modulators, magnet converters)	S. Pittet
	CTC-013	CTC-VAC	Vacuum Systems	C. Garion
	CTC-014	CTC-MM	Magnetic stray Fields Measurements	S. Russenschuck
	CTC-015	CTC-BT	Beam Transport Equipment	M. Barnes
	CTC-010	CTC-MME	Creation of an "In-House" TBA Production Facility	F.Bertinelli (placeholder)
	010-017			r.bertinelli (placelloider)
X-band Technologies	RF-DESIGN	RF-DESIGN	X-band Rf structure Design	A.Grudiev, I. Syratchev
Walter Wuensch	RF-XPROD	PRODUCTION	X-band Rf structure Production	G.Riddone
	RF-XTESTING	TESTING	X-band Rf structure High Power Testing	S.Doebert
	RF-XTESTFAC	TEST AREAS	Creation and Operation of x-band High power Testing Facilities	E.Jensen (placeholder)
	RF-R&D	HIGH-GRADIENT	Basic High Gradient R&D	S.Calatroni
Implementation studies		IS-CES	Civil Engineering & Services	J. Osborne
Philippe Lebrun		IS-PIP	Project Implementation Studies	P.Lebrun

CLIC Implementation Studies WP Civil Engineering and Services

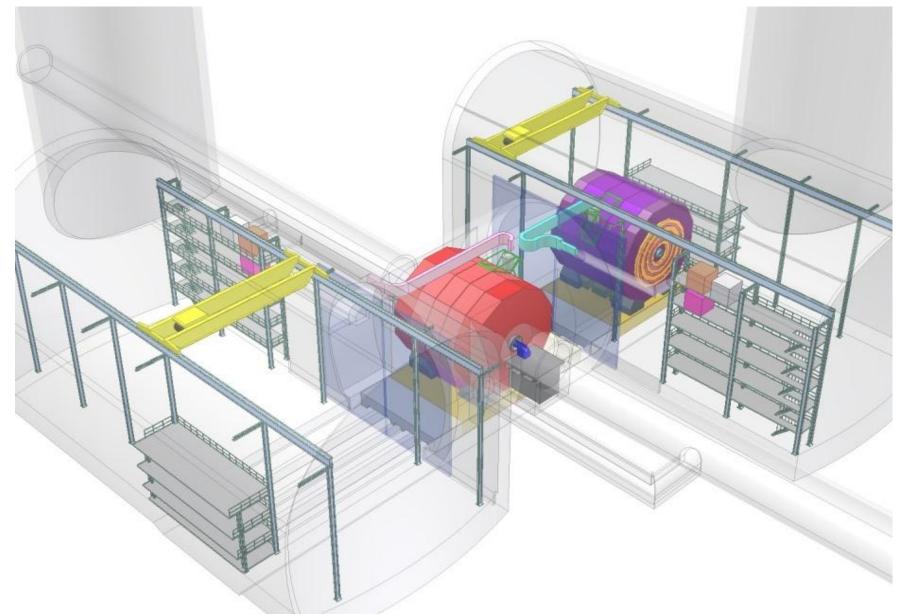


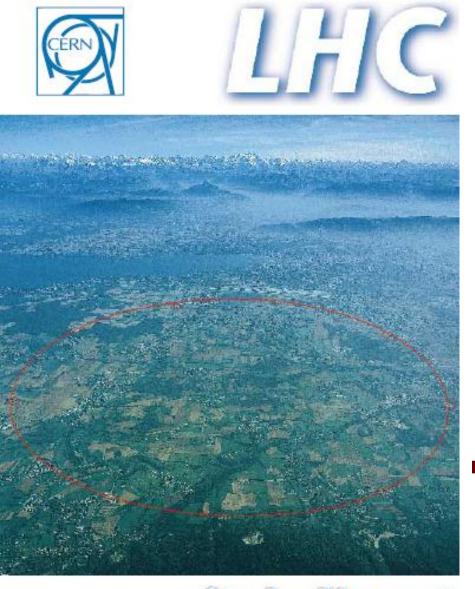
WP: IS-CES Workpackage leader: J. Osborne	Purpose/Objectives/Goals	Deliverables (incl. approx resource estimate)	^{k.} Schedule
Task 1: Site studies	Develop site criteria, conduct geological investigations, optimize site layout & shaft position	 Establish site selection ma Produce internal Siting Studies report, 3. Issue Siting Studies report to external authorities 	dies deliverable 2
Task 2: Environmental Impact	Prepare Environmental Impact Study	1. Outline of Environmental Impact document, 2. Issue Environmental Impact docum	hent Deliverable 1 mid 2012; deliverable 2 end 2016
Task 3: Services	Update technical definition of services	1. Electrical distribution 2. Co & ventilation 3. Handling & transport 4. Survey and align	All deliverables
			!
http://indico.cern.ch/categoryDisp	lay.py?categld=1882		
ERN support required from BE-	ABP, EN-CV, EN-EL, EN-HE, EN-MEF, GS-SE		
ead collaborator(s): CERN (J.Os	sborne et al); FNAL (V.Kuchler); KEK (A.Enomoto),	DESY (W.Bialowons), JINR (G.	Shirkov)
Estimated resources (needed):	2012 2013 20 ⁷		2016 Tot
<i>I</i> aterial (kCHF) Personnel (FTE)	100 100 10 2.5 3	00 100 3 3	100 50 3 14
	lget for external consultancy services (e.g. geologis		

Civil engineering: tunnel profile & footprint



Integration: tunnel cross-section





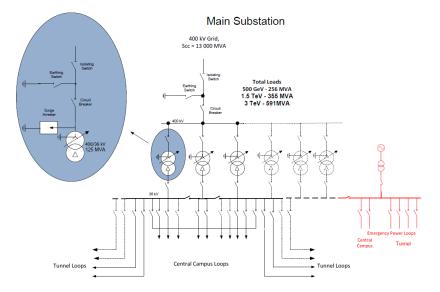
Integration: experimental area

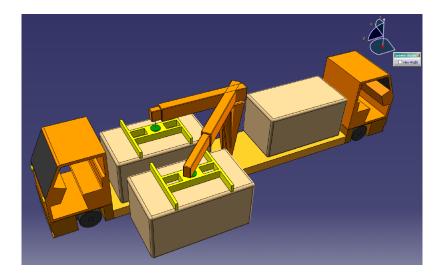
ionquille shuis inemennoilvuell suz

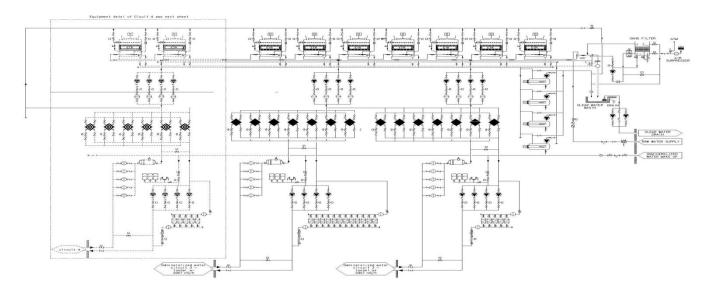
Environmental impact study

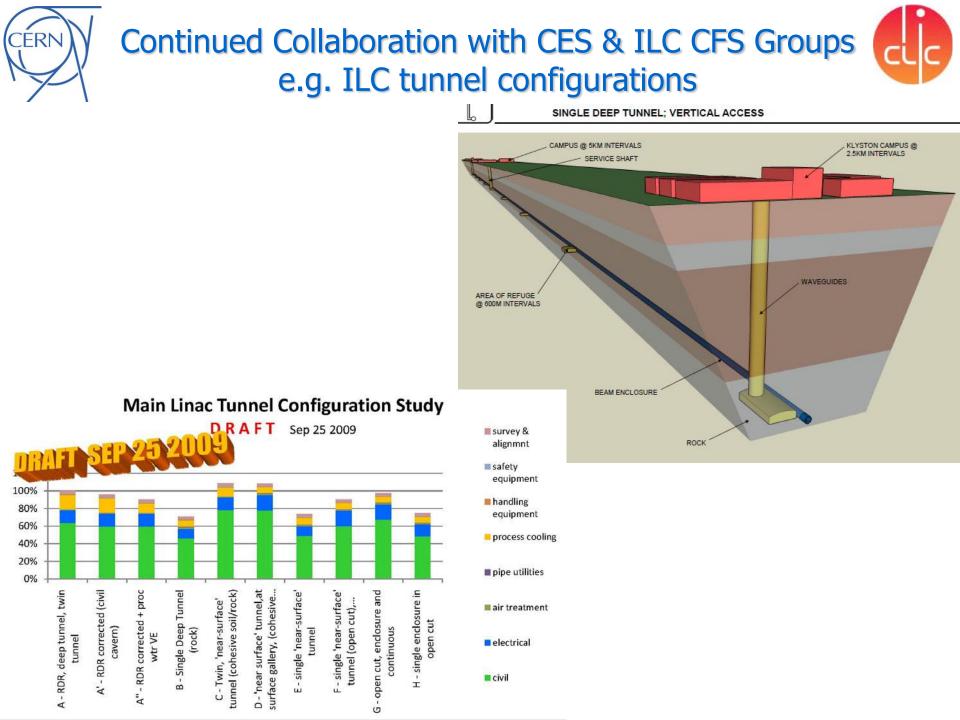
encompasses complete lifecycle, from construction to D&D

Le Conseil du CERN a décidé à l'unanimité, le 16 décembre 1994, de construire le grand collisionneur de hadrons (LHC), qui donne aux physiciens des particules européens et du monde un instrument exceptionnel pour la poursuite de leurs travaux.

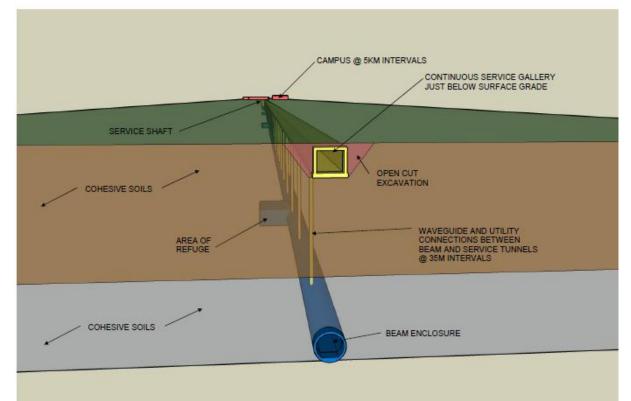

Cet instrument sera réalisé sur le domaine que la Suisse et la France, Etats-hôtes de l'Organisation, ont mis à la disposition de celle-ci.


Comme il l'a fait pour ses grands accélérateurs antérieurs, en particulier le SPS et le LEP, le CERN réalisera le LHC en concertation avec les autorités nationales et les élus locaux.


> Hubert Curien Président du Conseil du CERN lors de l'approbation du projet LHC Ancien Ministre de la Recherche du Gouvernement français



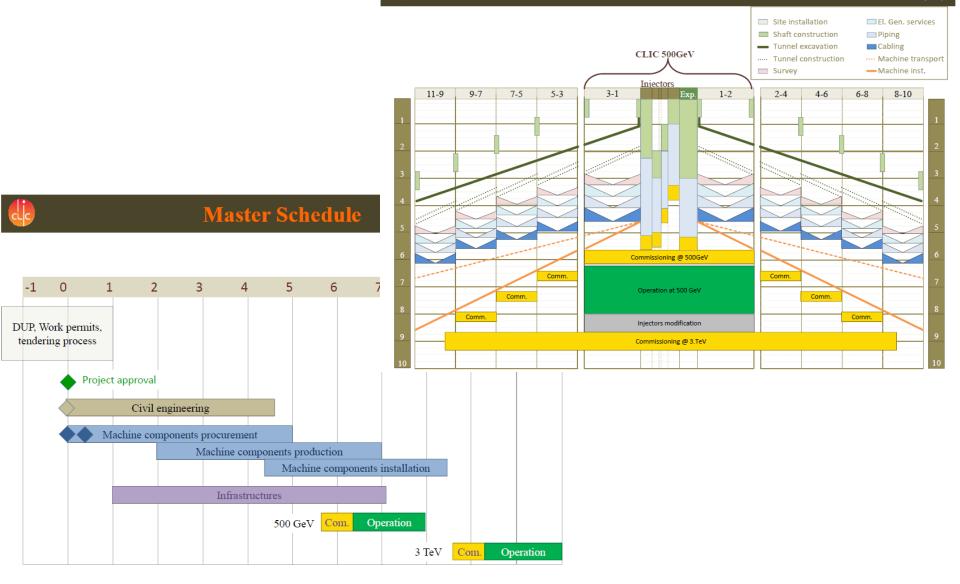
Services Electrical distribution, Cooling & ventilation, Installation, Alignment



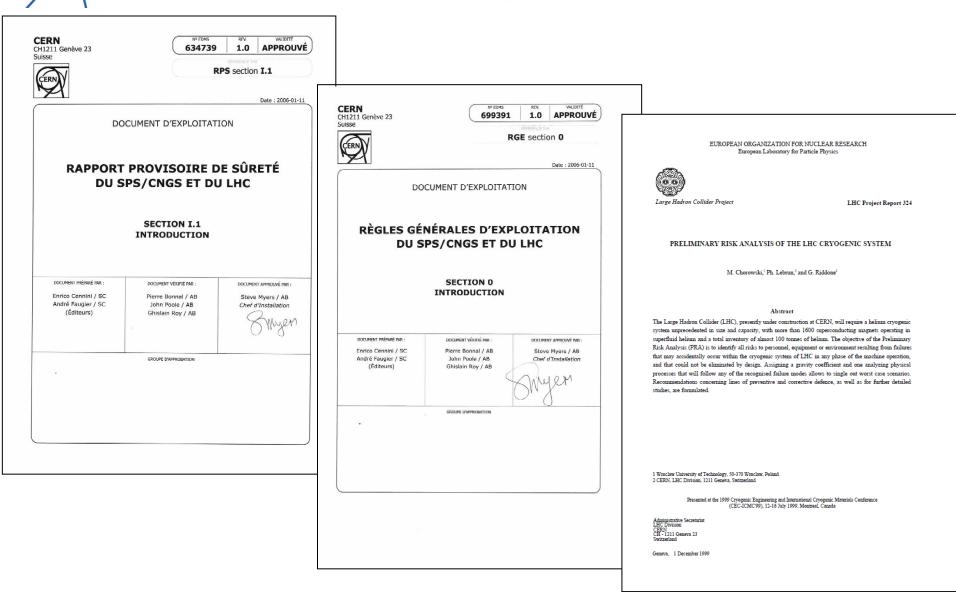
ILC-HiGrade WP5 : ILC Siting in Europe

- The purpose of this Work Package is the preparation and the investigation of possible European sites for the construction of the International Linear Collider. The work concentrates on the investigation of potential sites in Europe and the adaption and optimization of the tunnel design to the different sites in the framework of the GDE activities.
- For example the single tunnel with surface gallery "Dubna" solution :

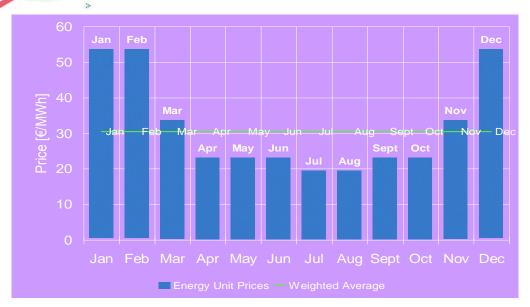
CLIC Implementation Studies WP Project Implementation Plan


I maintain project PBS/ d parameters and config e estimates compatible and configuration in Pl eering of critical cost d	iguration in PP	1. First update of PBS/WBS for value estimate, 2. Final update of PBS/WBS for project submission	Deliverable 1 end 2013, deliverable 2
and configuration in Pl			end 2013,
	-	Revised value estimates	End 2016
l maintain general sche	dule	1. Updated general schedule, 2. Updated detailed schedules for system/component production	Deliverable 1 end 2013, deliverable 2 end 2016
eliminary safety assess	sment of project	 Preliminary safety document; 2. Conduct safety hearings of critical systems, 3. Final safety document 	
rgy and power consum develop actions toward iency (e.g. load sheddir	ds energy and	 Definition of operating modes influencing power consumption, 2. Updated power & energy consumption estimates 	Deliverables 1 end 2013, deliverable 2 end 2016
', EN-EL, EN-HE, EN-M	/EF, GS-SE, HSE		
			То
			2
	50 50	50 50 50	

General construction & installation schedules



General Construction and installation schedule 🛛 💬



Safety assessment Analyses, Hearings, Documents

Energy and power studies CER Energy efficiency, load shedding, peak shaving, heat recovery

- Implementation studies are to be conducted in the Project Preparation Phase (2012-2016) in order to get ready for the Project Implementation Phase (>2016)
- Two work-packages defined, each with a variety of tasks, concerning Civil Engineering & Services, and Project Implementation Plan
- Some of these tasks are strongly site-specific, and therefore to be handled preferentially by the (potential) host laboratory
- Others of more general nature can be handled through collaborative work with institutes having the specific competencies and interests
- The CLIC study team is seeking partners for such collaborations in the domains of mutual interest