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Motivation

Multi-jet final states play an important role for the experiments at the LHC.

Jet observables can be easily modelled at leading order (LO).

To improve the accuracy we include higher order corrections in perturbative
theory.

Next-to-leading order (NLO) corrections contain two parts: real corrections and
the virtual corrections.

The virtual corrections involve a one-loop integral.

The past years have seen a significant progress in calculating virtual corrections
with many external legs.

This was achieved mainly thru perfection of the traditional Feynman graph
approach or algorithms based on unitary methods.
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Introduction

In this talk we present...

... an algorithm for the numerical calculation of one-loop amplitudes.

... the subtraction method of the virtual sector.

... the local subtraction terms for the infrared singularities of an one loop
amplitude.

... the guiding principles for constructing local subtraction terms for the
ultraviolet singularities of an one-loop amplitude.

...a method for contour deformation.

... results for the process e+e− → n jets.
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The subtraction method

The contributions of an infrared observable at next-to-leading order (NLO) with
n final state particles can be written as

〈O〉NLO =

Z
n+1

On+1dσ
R +

Z
n

Ondσ
V .

dσR : real emission contribution.
dσV : virtual contribution.

Usually one introduces subtraction terms to perform the phase space integrations
by Monte Carlo methods.

We extend this subtraction method to the virtual sector.

The renormalised one-loop amplitude is related to the bare amplitude by

A(1) = A(1)
bare +A(1)

CT ,

where A(1)
CT denotes the ultraviolet counterterm from renormalisation.

The bare amplitude involves the loop integration

A(1)
bare =

Z
dDk

(2π)D
G(1)

bare .
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The subtraction method II

We can write the NLO contribution as a sum of three finite pieces.

〈O〉NLO = 〈O〉NLO
real + 〈O〉NLO

virtual + 〈O〉NLO
insertion

For the real part we have

〈O〉NLO
real =

Z
n+1

“
On+1dσ

R − Ondσ
A
”
.

For the virtual part we have

〈O〉NLO
virtual = 2

Z
dφn Re

Z
d4k

(2π)4

h
A(0)∗

“
G(1)

bare − G
(1)
IR − G

(1)
UV

”i
On,

where G(1)
IR and G(1)

UV are the local subtraction terms for the IR and UV
divergences of the bare one-loop amplitude.

For the insertion part we have

〈O〉NLO
insertion =

Z
n

On (I + L)⊗ dσB ,

The notation ⊗ includes colour correlation due to soft gluons.

The sum of the insertion operators I and L is finite.

L⊗ dσB = 2 Re
h
A(0)∗

“
A(1)

CT +A(1)
IR +A(1)

UV

”i
dφn, I⊗ dσB =

Z
1

dσA.
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Colour decomposition

Amplitudes in QCD may be decomposed into group-theoretical factors (carrying
the colour structures) multiplied by kinematic factors called partial amplitudes.

At one-loop level partial amplitudes can be further decomposed into primitive
amplitudes.

A(1) =
X

j

CjA
(1)
j

The colour structures are denoted by Cj , while the primitive amplitudes are

denoted by A
(1)
j .

Primitive amplitudes are gauge invariant.
Primitive amplitudes have a fixed cyclic ordering of the external legs and a definite
routing of the of the external fermion lines.
This ensures that the type of each loop propagator is uniquely defined, being either a
quark or a gluon/ghost propagator.

Reconstructing the full amplitude out of primitive amplitudes is a purely
combinatorial problem.

Therefore we will focus in the remaining talk on the calculation of primitive
amplitudes.
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In the leading colour approximation of the process e+e− → n − jets, only one
primitive amplitude occur.

q

g
1

g
n−2

q−

e−

e+

.

.

.

*

Remark: A primitive amplitude can be constructed via Berends-Giele type
recurrence relations.
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Kinematics

In a bare primitive amplitude with n external legs, A
(1)
bare , only n different

propagators occur in the loop integral.

We define the kinematics as follows:

kj = k − qj ,

qj =

jX
l=1

pl .

We define the bare one-loop integrand G
(1)
bare via:

A
(1)
bare =

Z
dDk

(2π)D
G

(1)
bare , G

(1)
bare = P(k)

nY
j=1

1

k2
j −m2

j + iδ
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The infrared subtraction terms

For massless QCD the soft and collinear subtraction terms are given by

G(1)
soft = 4ı

X
j∈Ig

pj · pj+1

k2
j−1k

2
j k2

j+1

A(0)
j

G(1)
coll = −2ı

X
j∈Ig

24SjgUV

“
k2
j−1, k

2
j

”
k2
j−1k

2
j

+
Sj+1gUV

“
k2
j , k

2
j+1

”
k2
j k2

j+1

35A(0)
j

j ∈ Ig denotes all gluon propagators in the loop.

Sj are symmetry factors:

Sj =


1 quark

1/2 gluon

gUV ensures the UV finiteness of the collinear subtraction term.

lim
kj−1||kj

gUV

“
k2
j−1, k

2
j

”
= 1, lim

k→∞
gUV

“
k2
j−1, k

2
j

”
= O

„
1

|k|

«
,

The IR subtraction terms are formulated at amplitude level and can be easily
integrated analytically over the loop momentum.
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The ultraviolet subtraction terms I

Only propagator and vertex corrections are UV divergent.

We expand the relevant propagators around a new UV propagator:

1

(k − p)2
=

1

k̄2 − µ2
UV

+
2k̄ · (p − Q)`
k̄2 − µ2

UV

´2
−

(p − Q)2 + µ2
UV`

k̄2 − µ2
UV

´2

+

`
2k̄ · (p − Q)

´2`
k̄2 − µ2

UV

´3
+O

„
1

|k̄|5

«

where k̄ = k − Q.

Applying this expansion to a vertex or propagator correction, we get:

Fn(k) =
N(k)

(k̄2 − µ2
UV )n

0@1 +
lX

j=1

Xj (k̄)

(k̄2 − µ2
UV )j

1A+O
„

1

|k̄|5

«

where Xj (k̄) is a polynomial of degree j in k̄.
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The ultraviolet subtraction terms II

Integration yieldsZ
dDk

(2π)D
Fn(k) = C

„
1

ε
− ln

µ2
uv

µ2

«
+ R +O(ε).

Add finite pieces to get rid of R.

SUV (k) =
N(k)

(k̄2 − µ2
UV )n

0@1 +
lX

j=1

Xj (k̄)

(k̄2 − µ2
UV )n

1A− −2µ2
UV R

(k̄2 − µ2
UV )3

+O
„

1

|k̄|5

«

The integrated subtraction term is:Z
dDk

(2π)D
SUV (k) = C

„
1

ε
− ln

µ2
uv

µ2

«
+O(ε)

The unintegrated total UV subtraction term G
(1)
UV can be constructed efficiently

via Berends-Giele type recurrence relations.

The complete integrated subtraction term is proportional to a Born amplitude.
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Consistency check of the UV subtraction

The plot shows |2 Re(A(0)G
(1)
bare)| and |2 Re(A(0)(G

(1)
bare − G

(1)
UV ))| over the UV

scaling parameter λ for the process e+e− → 4jets.

The bare Amplitude decrease like 1/k2 and is therefore quadratic divergent.

The (bare − UV ) Amplitude decrease like 1/k5 and is therefore UV-safe.
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λ

NLO contribution to the ew amplitude with 6 external particles.
 Scaling of the Integrand with increasing -k = k - Q, where -k = λ-kfixed and Q stays fixed.

Wed Mar 02 15:31:19 2011

bare - uv
slope = -5.132206

bare
slope = -1.999211
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Off-shell recurrence relations(born)

We use Berends-Giele type recurrence relations for primitive amplitudes.

Example for the n−gluon tree-level amplitude.

...

1n

n + 1

=

n−1X
j=1

1jj + 1n

+

n−2X
j=1

n−1X
k=j+1

1jj + 1kk + 1n



LoopFest
XI

Multi-
parton

NLO cal-
culations.

Sebastian
Becker

Outline

Introduction

General
setup

The
subtraction
terms

Recurrence
relations

Contour
deforma-
tion

Improving
the
efficiency

Recent
results

Summary

Off-shell recurrence relations(one-loop)

We use similar recurrence relations for the computation of the one-loop
amplitude.

...

1n

n + 1

=

n−1X
j=1

1jj + 1n

+

n−1X
j=1

1jj + 1n

+

...

1n

+ diagrams with four gluon vertices
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Off-shell recurrence relations(UV)

UV-subtraction terms are also constructed recursively.

...

1n

n + 1

=

n−1X
j=1

1jj + 1n

+

n−1X
j=1

1jj + 1n

+

n−1X
j=1

1jj + 1n

+

n−1X
j=1

1jj + 1n

+ diagrams with four gluon vertices
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Overview of the contour deformation

Again the one loop integrandZ
d4k

(2π)4
G

(1)
bare =

Z
d4k

(2π)4
P(k)

nY
j=1

1

k2
j + iδ

We deform the integration contour into the complex plane to match Feynman’s
+iδ rule.

Use direct deformation of the loop momenta

k → k̃ = k + iκ(k).

After the deformation the integral reads

=

Z
d4k

(2π)4

˛̨̨̨
˛∂k̃

∂k

˛̨̨̨
˛P(k̃(k))

nY
j=1

1

k2
j − κ2 + 2ikj · κ

We have to construct the deformation vector κ such

k2
j = 0 → kj · κ ≥ 0.

The numeric stability of the Monte Carlo integration depends strongly on the
definition of the deformation vector κ.

At the moment we use a slightly modified algorithm by W. Gong, Z. Nagy and
D. Soper to construct the deformation vector.
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Overview of the contour deformation

Illustrating the kinematics of a primitive amplitude with n = 8 legs in the loop
momenta space.

1

2

3

4

5

6

7

8

k0

k3

The dots correspond to the kinematic variables qi =
Pi

j=1 pi .

The line segments correspond to the external momenta pi = qi − qi−1.

(k − qi )
2 = 0 defines a light cone.

The deformation must direct inside the cone.

Alongside the line segments this is not possible.
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Improving the efficiency

Efficiency is crucial to apply the method to high multiplicity processes.

Holomorphic division into sub channels:
Different contour deformation in each channel;

Non-holomorphic division into sub channels:
Different coordinate system in each channel;

Sampling in the loop momenta space:
Importance sampling;

Antithetic variates:
Reduce oscillations significant.

Improvement of the UV subtraction terms:
Better UV behavior;

For the details please see our most recent publication.
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Recent results - e+e− → jets

The cross section for n jets normalised to the LO cross section for
e+e− → hadrons.

σn−jet

σ0
=

„
αs(µ)

2π

«n−2

An(µ) +

„
αs(µ)

2π

«n−1

Bn(µ) +O(αn
s ).

We expand the NLO perturbative coefficient Bn in 1/Nc .

Bn = Nc

„
Nc

2

«n−1 »
Bn,lc +O

„
1

Nc

«–
We calculate the NLO coefficient in leading colour up to n = 7 i.e. up to
eight-point functions.
We plot Nc (Nc/2)n−1Bn,lc over the resolution parameter ycut in the Durham jet
algorithm.

numerical
analytical

Durham 2-jet

ycut

1 2
N

2 c
B

2,
lc

10.10.010.001

5

0

-5

-10

-15

-20

-25

-30

-35

-40

-45
numerical
analytical

Durham 3-jet

ycut

1 4
N

3 c
B

3,
lc

10.10.010.001

400

300

200

100

0

-100

-200
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Recent results - e+e− → jets

numerical
analytical

Durham 4-jet

ycut

1 8
N

4 c
B

4,
lc

0.10.010.001

40000

35000

30000

25000

20000

15000

10000

5000

0

ycut
N4

c
8

A5,lc
N5

c
16

B5,lc

0.002 (5.0529± 0.0004) · 103 (4.275± 0.006) · 105

0.001 (1.3291± 0.0001) · 104 (1.050± 0.026) · 106

0.0006 (2.4764± 0.0002) · 104 (1.84± 0.15) · 106

ycut
N5

c
16

A6,lc
N6

c
32

B6,lc

0.001 (1.1470± 0.0002) · 105 (1.46± 0.04) · 107

0.0006 (2.874± 0.002) · 105 (3.88± 0.18) · 107

ycut
N6

c
32

A7,lc
N7

c
64

B7,lc

0.0006 (2.49± 0.08) · 106 (5.4± 0.3) · 108
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Computational performance

We plot the CPU time required for one evaluation of the Born contribution, the
insertion term and the virtual term as a function of the number of external final
state partons n.
The insertion term is almost as cheap as the Born contribution.
The virtual part has the same scaling behaviour as the Born contribution.
All three contributions scale asymptotically as n4.
The practical limit of our method arise from the fact that the number of
evaluations required to reach a certain accuracy increases with n.
The calculation of the seven-jet rate takes a few days on a cluster with 200 cores.

Born
Insertion

Virtual

CPU time

n

C
PU

ti
m

e
[m

s]

765432

10

1

0.1

0.01
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Summary and outlook

Summary

In this talk the extension of the subtraction method to the virtual corrections was
presented.

The major ingredients...
... the subtraction terms,
... the recurrence relations,
... and a suitable contour deformation

was presented.

We demonstrated the functionality of the algorithm on the process e+e− → jets.

Outlook

LHC physics.
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Thank you for your attention!

ltr: Daniel Götz, Sebastian Becker, Stefan Weinzierl, Christopher Schwan, Christian
Reuschle.
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Definition of the soft singularity

Propagator j is soft and

propagator j corresponds to a gluon and

the external particles j and j + 1 are on-shell.

kj → 0 and p2
j = 0 and p2

j+1 = 0 ⇒ k2
j−1 = k2

j = k2
j+1 = 0
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Derivation of the soft subtraction term

For each gluon in the loop we define the soft subtraction function

Sj,soft(G) =

lim
kj→0

n
k2
j−1k

2
j k2

j+1F (G, k)
o

k2
j−1k

2
j k2

j+1

The sum of the soft subtraction function over all one-loop diagrams is

proportional to the tree-level amplitude A
(0)
j .

To get the full soft subtraction term we have to sum over all gluons in the loop,

G
(1)
soft = i

X
j∈Ig

4pj · pj+1

k2
j−1k

2
j k2

j+1

A
(0)
j

The integrated soft subtraction term yields the expected pole-structure.

S−1
ε µ2ε

Z
dDk

(2π)D
G

(1)
soft = −

1

(4π)2

eεγE

Γ(1− ε)
X
j∈Ig

2

ε2

„−2pj · pj+1

µ2

«−ε
A

(0)
j +O(ε).
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Derivation of the soft subtraction term

In the soft limit we replace the metric tensor gµν of propagator j by a
polarisation sum and gauge terms.

gµν =
X
λ

εµλ(kj , n)εν−λ(kj , n)− 2
kµj nν − kνj nµ

2kj · n

where nµ is a light like reference vector.

lim
kj→0

P
G

= lim
kj→0

P
G

The terms proportional to kµj nν and kνj nµ vanish due gauge invariance.

The two “inserted” gluons lead in the soft limit to a tree-level amplitude, where
these gluons are absent, times a eikonal factor 4pj · pj+1.
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Definition of the collinear singularity

Propagator j − 1 is collinear to propagator j and

propagator j or propagator j − 1 corresponds to a gluon and

the external particle j is massless and on-shell.

kj−1||kj and mj = 0 and p2
j = 0 ⇒ k2

j−1 = k2
j = 0
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Derivation of the collinear subtraction term

For each gluon in the loop we define the collinear subtraction function

Sj,coll (G) =

lim
kj−1‖kj

n
k2
j−1k

2
j F (G, k)

o
k2
j−1k

2
j

− soft double counting

The sum of the collinear subtraction function over all one-loop diagrams is

proportional to the tree level amplitude A
(0)
j .

We have to sum over all gluons in the loop,

G
(1)
coll = i

X
j∈Ig

(−2)

 
SjgUV (k2

j−1, k
2
j )

k2
j−1k

2
j

+
Sj+1gUV (k2

j , k
2
j+1)

k2
j k2

j+1

!
A

(0)
j .

Sq = 1, Sg =
1

2
, lim

kj−1||kj

gUV (k2
j−1, k

2
j ) = 1, lim

k→∞
gUV (k2

j−1, k
2
j ) = O

„
1

k

«
.

The integrated collinear subtraction terms yields the expected pole structure:

S−1
ε µ2ε

Z
dDk

(2π)D
G

(1)
coll = −

1

(4π)2

eεγE

Γ(1− ε)
X
j∈Ig

(Sj +Sj+1)

 
µ2

UV

µ2

!−ε
2

ε
A

(0)
j +O(ε).
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Derivation of the collinear subtraction term

Only diagrams with collinear q → qg or g → gg splitting lead to a divergence
after integration.

As an example, the q → qg splitting.

lim
kj−1‖kj

P
G

= − lim
kj−1‖kj

P̃
G

The sum of the left side is almost gauge invariant, only the self energies of
external legs are missing.

The self-energy insertions on the external lines introduce a spurious
1/p2

j -singularity. We define pj = kj−1 − kj slightly off shell by introducing the
Sudakov parametrisation.

kj−1 = xp + k⊥ −
k2
⊥
x

n

(2p · n)
, −kj = (1− x)p − k⊥ −

k2
⊥

(1− x)

n

(2p · n)
.

The singular parts of the self-energies are proportional to

P long
q→qg = −

2

2kj−1 · kj

„
−

2

1− x
+ 2

«
6p

The terms with 2/(1− x) correspond to the soft singularities.
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Contour deformation for massive QCD

We define the massive propagator

Di = (k − qi )
2 −m2

i

and deform the loop-momenta into the complex plane

k̃ = k + iκ(k).

We make the Ansatz for the deformation vector

κ = −
X
i≤j

cij (k − v(k, qi , qj ))

with the vectors v ∈ R4 and the coefficient cij ∈ [0, 1].

The imaginary part of the propagator reads with this Ansatz:

Im
“
D̃l

”
= −2

X
i≤j

cij (k − ql ) · (k − v)

To avoid a wrong sign of the imaginary part the coefficients cij have to fulfil the
condition

{Dl = 0 and− (k − ql ) · (k − v) < 0} ⇒ cij = 0
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Contour deformation for massive QCD

We define

cij =
nY

l=1

max
˘
hδ(k − ql ,m

2
l ), hθ(k − ql , k − v)

¯
with the smooth functions hδ and hθ:

Dl = 0 ⇒ hδ(k − ql ,m
2
l ) = 0

−(k − ql ) · (k − v) < 0 ⇒ hθ(k − ql , k − v) = 0

In detail

hδ(u,m2) =

8>>>><>>>>:

“
|u0|−

√
~u2+m2

”2“
|u0|−

√
~u2+m2

”2
+M2

1

: m2 > 0

“√
(u0)2−m2−|~u|

”2“√
(u0)2−m2−|~u|

”2
+M2

1

: m2 < 0

With M1 a parameter depending on the typical energy scale of the process.
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The second function is given by

hθ(u, v) = hδ

„
u + v

2
,

(u − v)2

4

«
θ (−u · v)

To understand this function we rewrite the scalar product.

(k − qj ) · (k − v) =

„
k −

v + qj

2

«2

−
„

v − qj

2

«2

This looks again like a massive propagator.

The forbidden region is the interior of the mass shells.

k0

k3

q
j

v

Figure: Region in the loop momenta space were −(k − v) · (k − qi ) < 0;
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The deformation vector κ is a smooth function in the loop momenta and never
yields to a wrong imaginary part.

One have to ensure that for every singular surface a vector v(k, qi , qj ) exists such
we deform correctly.

The vector −(k − v) deforms correctly if the vector v lies inside the surface.

q
j

q
i

v
i j

(k−q
j
)2−m

j
2

(k−q
i
)2−m

i
2

k0

k3



LoopFest
XI

Multi-
parton

NLO cal-
culations.

Sebastian
Becker

Outline

Introduction

General
setup

The
subtraction
terms

Recurrence
relations

Contour
deforma-
tion

Improving
the
efficiency

Recent
results

Summary

Mapping of the variables for Iint

The variables (ρ, ζ, θ, φ) we generate as follows:

ρ = ln

„
1 +

µ0

|p|
tan

π

2
u0

«
ζ = πu1

θ =

8<: arccos
h
(1 + ε)

`
1+ε
ε

´−2u2 − ε
i

0 ≤ u2 <
1
2
,

arccos
h
ε− (1 + ε)

`
1+ε
ε

´−2(1−u2)
i

1
2
≤ u2 ≤ 1,

φ = 2πu3

with (u0, u1, u2, u3) ∈ [0, 1] random numbers and

ε = sinh ρ sin ζ.
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Contour deformation and mapping for Iext

In Iext only the UV propagator, k̄ − µ2
UV appear.

The contour deformation is rather simple.

k = k̃ + ıκ, κµ = gµν
“
k̃ν − Qν

”
.

We have

k̄2 − µ2
UV = 2ı(k̃ − Q) ◦ (k̃ − Q)− µ2

UV

The sampling for k̄real = k̃ − Q is

k̄real = kE

0BB@
cos ζ

sin ζ sin θ sinφ
sin ζ sin θ cosφ

sin ζ cos θ

1CCA ,

kE = µ1

q
tan π

2
u0

ζ = arccos(1− 2u1)
θ = arccos(1− 2u2)
φ = 2πu3

with u0, u1, u2, u3 ∈ [0, 1] random numbers.
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Off-shell recurrence relations(one-loop)

We cut a gluon line by using
P3

l=0 ε
µ
l ε
ν
l = gµν .

...

1n

=
3X

l=0

...

1n

l l

...

1n

l
n + 1

=

n−1X
j=0

1jj + 1n

l

+ diagrams with four gluon vertices

The recursion starts with n = 0 i.e. no external gluon is left at the r.h.s and is

given by − ıενl
k2
n+1

.

Ghost loops are calculated similarly and closed fermion loops do not appear in
the leading colour approximation.
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Splitting in Iext and Iint

We define the function

fUV (k) =
nY

j=1

k2
j −m2

j

k̄2 − µ2
UV

.

We spilt the integration into an exterior and an interior region, I = Iext + Iint , with

Iext =

Z
d4k

(2π)4
fUV (k)

N(k)
nQ

j=1

“
k2
j −m2

j

”
Iint =

Z
d4k

(2π)4
(1− fUV (k))

N(k)
nQ

j=1

“
k2
j −m2

j

”
The pole structure of Iext is very simple.

We can choose Q in k̄ = k − Q such that (1− fUV (k)) drops off with an extra
power of 1/|k| for k →∞.

Because fUV is a meromorphic1 function we can choose different integration
contours for Iext and Iint .

1Wikipedia:In complex analysis, a meromorphic function on an open subset D of the complex plane is a
function that is holomorphic on all D except a set of isolated points, which are poles for the function.
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The mapping of Iint

The collinear regions are defined by the line segments k = qi + xpi+1 and are
important for the numerics.

We split the original integral into several channels, such that for each line
segment corresponds to a separate channel.

wi not a holomorphic function; We have to use the same contour in each channel.

I =
nX

i=1

Z
d4k

(2π)4
wi (k)f (k), wi ≥ 0,

nX
i=1

wi = 1.

The weights wi defined by

wi =

“
1

|(k−qi )
2||(k−qi+1)2|

”2

nP
j=1

“
1

|(k−qj )2||(k−qj+1)2|

”2

The weights have the properties that

wi = 1 if k = qi + xpi+1

wi = 0 if k = qj + xpj+1 if i 6= j
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The mapping of Iint

By choose the mapping for a given channel wisely one can improve the numerical
performance of the Monte Carlo.

First we write an external momenta in spherical coordinates.

pi = ||pi ||eucR
(i)
3 · R

(i)
2 · R

(i)
1 · ê0, ê0 = (1, 0, 0, 0).

The mapping for the ith channel is given by

k = qi +
||pi+1||euc

2
R

(i+1)
3 · R(i+1)

2 · R(i+1)
1 ·

0BB@
cosh ρ cos ζ + 1
sinh ρ sin ζ cos θ

sinh ρ sin ζ sin θ cosφ
sinh ρ sin ζ sin θ sinφ

1CCA
with

ρ ∈ [0,∞), ζ ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π].
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The mapping of Iint

Here we introduced elliptic coordinates.(Picture from Wikipedia)

r =

„
x
y

«
= C

„
cosh u cos v
sinh u sin v

«

For ρ = 0 the loop momentum is on the critical line segment,

k = qi +
1

2
(1 + cos ζ)| {z }
∈[0,1]

pi+1

This improves the Monte Carlo, because the VEGAS algorithm can offer
significant improvements only as far as the integrand’s characteristic regions are
aligned with the coordinate axes.

We evaluate the integrand at φ and (φ+ π) mod (2π), and at θ and π − θ to
average out periodic behaviour of the integrand.
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Improved UV-subtraction

We observed large oscillations in the UV region whenever an external invariant
approaches the jet resolution parameter.

The leading contribution in the UV limit is of the order 1/|k|5.

To improve the situation we subtracting out the order 1/|k|5 and 1/|k|6 terms in
the propagator- and three-particle vertex corrections.

We also modify the IR subtraction terms such that they fall off like 1/|k|7.

We evaluate the integrand always at the point k̄ and −k̄ together. Terms which
scale with an odd power of |k| in the UV region drop out.
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