## LoopFest XI

Multi-
parton
NLO calculations.

Sebastian
Becker

# Multi-parton NLO calculations. 

Sebastian Becker<br>in collaboration with:<br>Daniel Goetz, Christian Reuschle, Christopher Schwan and Stefan Weinzierl<br>Johannes Gutenberg Universität Mainz<br>Institut für Physik, THEP

11 May Pittsburgh 2012
LoopFest

    XI
    1 Introduction

2 General setup

3 The subtraction terms

4 Recurrence relations

5 Contour deformation

6 Improving the efficiency

7 Recent results

8 Summary

## Motivation

- Multi-jet final states play an important role for the experiments at the LHC.
- Jet observables can be easily modelled at leading order (LO).
- To improve the accuracy we include higher order corrections in perturbative theory.
- Next-to-leading order (NLO) corrections contain two parts: real corrections and the virtual corrections.
- The virtual corrections involve a one-loop integral.
- The past years have seen a significant progress in calculating virtual corrections with many external legs.
- This was achieved mainly thru perfection of the traditional Feynman graph approach or algorithms based on unitary methods.


## Introduction

In this talk we present...
■ ... an algorithm for the numerical calculation of one-loop amplitudes.

- ... the subtraction method of the virtual sector.
- ... the local subtraction terms for the infrared singularities of an one loop amplitude.
- ... the guiding principles for constructing local subtraction terms for the ultraviolet singularities of an one-loop amplitude.
- ...a method for contour deformation.

■ ... results for the process $e^{+} e^{-} \rightarrow n$ jets.

## The subtraction method

- The contributions of an infrared observable at next-to-leading order (NLO) with $n$ final state particles can be written as

$$
\langle O\rangle^{N L O}=\int_{n+1} O_{n+1} d \sigma^{R}+\int_{n} O_{n} d \sigma^{V} .
$$

- $d \sigma^{R}$ : real emission contribution.
- $d \sigma^{V}$ : virtual contribution.

■ Usually one introduces subtraction terms to perform the phase space integrations by Monte Carlo methods.

- We extend this subtraction method to the virtual sector.
- The renormalised one-loop amplitude is related to the bare amplitude by

$$
\mathcal{A}^{(1)}=\mathcal{A}_{\text {bare }}^{(1)}+\mathcal{A}_{C T}^{(1)},
$$

where $\mathcal{A}_{C T}^{(1)}$ denotes the ultraviolet counterterm from renormalisation.

- The bare amplitude involves the loop integration

$$
\mathcal{A}_{\text {bare }}^{(1)}=\int \frac{d^{D} k}{(2 \pi)^{D}} \mathcal{G}_{\text {bare }}^{(1)} .
$$

## The subtraction method II

- We can write the NLO contribution as a sum of three finite pieces.

$$
\langle O\rangle^{N L O}=\langle O\rangle_{\text {real }}^{N L O}+\langle O\rangle_{\text {virtual }}^{N L O}+\langle O\rangle_{\text {insertion }}^{N L O}
$$

- For the real part we have

$$
\langle O\rangle_{\text {real }}^{N L O}=\int_{n+1}\left(O_{n+1} d \sigma^{R}-O_{n} d \sigma^{A}\right)
$$

- For the virtual part we have

$$
\langle O\rangle_{\text {virtual }}^{N L O}=2 \int d \phi_{n} \operatorname{Re} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[\mathcal{A}^{(0)^{*}}\left(\mathcal{G}_{\text {bare }}^{(1)}-\mathcal{G}_{I R}^{(1)}-\mathcal{G}_{U V}^{(1)}\right)\right] O_{n}
$$

where $\mathcal{G}_{I R}^{(1)}$ and $\mathcal{G}_{U V}^{(1)}$ are the local subtraction terms for the IR and UV divergences of the bare one-loop amplitude.

- For the insertion part we have

$$
\langle O\rangle_{i \text { insertion }}^{N L O}=\int_{n} O_{n}(\mathbf{I}+\mathbf{L}) \otimes d \sigma^{B},
$$

- The notation $\otimes$ includes colour correlation due to soft gluons.
- The sum of the insertion operators $\mathbf{I}$ and $\mathbf{L}$ is finite.
$\mathbf{L} \otimes d \sigma^{B}=2 \operatorname{Re}\left[\mathcal{A}^{(0)^{*}}\left(\mathcal{A}_{C T}^{(1)}+\mathcal{A}_{I R}^{(1)}+\mathcal{A}_{U V}^{(1)}\right)\right] d \phi_{n}, \quad \mathbf{I} \otimes d \sigma^{B}=\int_{1} d \sigma^{A}$.


## Colour decomposition

- Amplitudes in QCD may be decomposed into group-theoretical factors (carrying the colour structures) multiplied by kinematic factors called partial amplitudes.
- At one-loop level partial amplitudes can be further decomposed into primitive amplitudes.

$$
\mathcal{A}^{(1)}=\sum_{j} C_{j} A_{j}^{(1)}
$$

The colour structures are denoted by $C_{j}$, while the primitive amplitudes are denoted by $A_{j}^{(1)}$.

- Primitive amplitudes are gauge invariant.
- Primitive amplitudes have a fixed cyclic ordering of the external legs and a definite routing of the of the external fermion lines.
- This ensures that the type of each loop propagator is uniquely defined, being either a quark or a gluon/ghost propagator.
- Reconstructing the full amplitude out of primitive amplitudes is a purely combinatorial problem.
- Therefore we will focus in the remaining talk on the calculation of primitive amplitudes.
- In the leading colour approximation of the process $e^{+} e^{-} \rightarrow n-j e t s$, only one primitive amplitude occur.
- Remark: A primitive amplitude can be constructed via Berends-Giele type recurrence relations.


## Kinematics

## The infrared subtraction terms

- For massless QCD the soft and collinear subtraction terms are given by

$$
\mathcal{G}_{\text {soft }}^{(1)}=4 \imath \sum_{j \in I_{g}} \frac{p_{j} \cdot p_{j+1}}{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2}} \mathcal{A}_{j}^{(0)}
$$

$$
\mathcal{G}_{\text {coll }}^{(1)}=-2 \imath \sum_{j \in I_{g}}\left[\frac{S_{j} g_{u v}\left(k_{j-1}^{2}, k_{j}^{2}\right)}{k_{j-1}^{2} k_{j}^{2}}+\frac{S_{j+1} g_{u v}\left(k_{j}^{2}, k_{j+1}^{2}\right)}{k_{j}^{2} k_{j+1}^{2}}\right] \mathcal{A}_{j}^{(0)}
$$

■ $j \in I_{g}$ denotes all gluon propagators in the loop.

- $S_{j}$ are symmetry factors:

$$
S_{j}=\left\{\begin{array}{cl}
1 & \text { quark } \\
1 / 2 & \text { gluon }
\end{array}\right.
$$

■ gUV ensures the UV finiteness of the collinear subtraction term.

$$
\lim _{k_{j-1}| | k_{j}} g_{u V}\left(k_{j-1}^{2}, k_{j}^{2}\right)=1, \quad \lim _{k \rightarrow \infty} g_{u V}\left(k_{j-1}^{2}, k_{j}^{2}\right)=\mathcal{O}\left(\frac{1}{|k|}\right)
$$

- The IR subtraction terms are formulated at amplitude level and can be easily integrated analytically over the loop momentum.

The ultraviolet subtraction terms I

The ultraviolet subtraction terms II

## Consistency check of the UV subtraction

- The plot shows $\left|2 \operatorname{Re}\left(A^{(0)} G_{\text {bare }}^{(1)}\right)\right|$ and $\left|2 \operatorname{Re}\left(A^{(0)}\left(G_{\text {bare }}^{(1)}-G_{U V}^{(1)}\right)\right)\right|$ over the UV scaling parameter $\lambda$ for the process $e^{+} e^{-} \rightarrow 4 j e t s$.
- The bare Amplitude decrease like $1 / k^{2}$ and is therefore quadratic divergent.
- The (bare - UV) Amplitude decrease like $1 / k^{5}$ and is therefore UV-safe.

NLO contribution to the ew amplitude with 6 external particles.


## Off-shell recurrence relations(born)

- We use Berends-Giele type recurrence relations for primitive amplitudes.
- Example for the $n$-gluon tree-level amplitude.



## Off-shell recurrence relations(one-loop)

LoopFest
XI
Multi-
parton
NLO cal-
culations.
Sebastian
Becker Outline

- We use similar recurrence relations for the computation of the one-loop amplitude.



## Off-shell recurrence relations(UV)

- UV-subtraction terms are also constructed recursively.



## Overview of the contour deformation

- Again the one loop integrand

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} G_{\text {bare }}^{(1)}=\int \frac{d^{4} k}{(2 \pi)^{4}} P(k) \prod_{j=1}^{n} \frac{1}{k_{j}^{2}+i \delta}
$$

- We deform the integration contour into the complex plane to match Feynman's $+i \delta$ rule.
- Use direct deformation of the loop momenta

$$
k \rightarrow \tilde{k}=k+i \kappa(k)
$$

- After the deformation the integral reads

$$
=\int \frac{d^{4} k}{(2 \pi)^{4}}\left|\frac{\partial \tilde{k}}{\partial k}\right| P(\tilde{k}(k)) \prod_{j=1}^{n} \frac{1}{k_{j}^{2}-\kappa^{2}+2 i k_{j} \cdot \kappa}
$$

- We have to construct the deformation vector $\kappa$ such

$$
k_{j}^{2}=0 \quad \rightarrow \quad k_{j} \cdot \kappa \geq 0
$$

- The numeric stability of the Monte Carlo integration depends strongly on the definition of the deformation vector $\kappa$.
- At the moment we use a slightly modified algorithm by W. Gong, Z. Nagy and D. Soper to construct the deformation vector.


## Overview of the contour deformation

■ Illustrating the kinematics of a primitive amplitude with $n=8$ legs in the loop momenta space.

- The dots correspond to the kinematic variables $q_{i}=\sum_{j=1}^{i} p_{i}$.
- The line segments correspond to the external momenta $p_{i}=q_{i}-q_{i-1}$.
- $\left(k-q_{i}\right)^{2}=0$ defines a light cone.
- The deformation must direct inside the cone.
- Alongside the line segments this is not possible.


## Improving the efficiency

■ Efficiency is crucial to apply the method to high multiplicity processes.

- Holomorphic division into sub channels:

Different contour deformation in each channel;

- Non-holomorphic division into sub channels:

Different coordinate system in each channel;

- Sampling in the loop momenta space:

Importance sampling;

- Antithetic variates:

Reduce oscillations significant.

- Improvement of the UV subtraction terms:

Better UV behavior;

- For the details please see our most recent publication.


## Recent results - $e^{+} e^{-} \rightarrow$ jets

- The cross section for $n$ jets normalised to the $L O$ cross section for $e^{+} e^{-} \rightarrow$ hadrons.

$$
\frac{\sigma_{n-j e t}}{\sigma_{0}}=\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n-2} A_{n}(\mu)+\left(\frac{\alpha_{s}(\mu)}{2 \pi}\right)^{n-1} B_{n}(\mu)+\mathcal{O}\left(\alpha_{s}^{n}\right) .
$$

- We expand the NLO perturbative coefficient $B_{n}$ in $1 / N_{c}$.

$$
B_{n}=N_{c}\left(\frac{N_{c}}{2}\right)^{n-1}\left[B_{n, l c}+\mathcal{O}\left(\frac{1}{N_{c}}\right)\right]
$$

- We calculate the NLO coefficient in leading colour up to $n=7$ i.e. up to eight-point functions.
- We plot $N_{c}\left(N_{c} / 2\right)^{n-1} B_{n, l c}$ over the resolution parameter $y_{c u t}$ in the Durham jet algorithm.



Recent results - $e^{+} e^{-} \rightarrow$ jets

| LoopFest <br> XI |
| :--- |
| Multi- <br> parton |
| NLO cal- <br> culations. |
| Sebastian <br> Becker |

## Computational performance

- We plot the CPU time required for one evaluation of the Born contribution, the insertion term and the virtual term as a function of the number of external final state partons $n$.
- The insertion term is almost as cheap as the Born contribution.
- The virtual part has the same scaling behaviour as the Born contribution.
- All three contributions scale asymptotically as $n^{4}$.
- The practical limit of our method arise from the fact that the number of evaluations required to reach a certain accuracy increases with $n$.
- The calculation of the seven-jet rate takes a few days on a cluster with 200 cores.



## Summary and outlook

## Summary

■ In this talk the extension of the subtraction method to the virtual corrections was presented.

- The major ingredients...
- ... the subtraction terms,
- ... the recurrence relations,
- ... and a suitable contour deformation was presented.
- We demonstrated the functionality of the algorithm on the process $e^{+} e^{-} \rightarrow$ jets.

Outlook

- LHC physics.


## Thank you for your attention!

Itr: Daniel Götz, Sebastian Becker, Stefan Weinzierl, Christopher Schwan, Christian Reuschle.

## Definition of the soft singularity

LoopFestXI

- Propagator $j$ is soft and
- propagator $j$ corresponds to a gluon and
- the external particles $j$ and $j+1$ are on-shell.

$$
k_{j} \rightarrow 0 \quad \text { and } \quad p_{j}^{2}=0 \quad \text { and } \quad p_{j+1}^{2}=0 \quad \Rightarrow \quad k_{j-1}^{2}=k_{j}^{2}=k_{j+1}^{2}=0
$$



## Derivation of the soft subtraction term

■ For each gluon in the loop we define the soft subtraction function

$$
S_{j, \text { soft }}(\mathfrak{G})=\frac{\lim _{k_{j} \rightarrow 0}\left\{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2} F(\mathfrak{G}, k)\right\}}{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2}}
$$

- The sum of the soft subtraction function over all one-loop diagrams is proportional to the tree-level amplitude $A_{j}^{(0)}$.
- To get the full soft subtraction term we have to sum over all gluons in the loop,

$$
G_{\text {soft }}^{(1)}=i \sum_{j \in I_{g}} \frac{4 p_{j} \cdot p_{j+1}}{k_{j-1}^{2} k_{j}^{2} k_{j+1}^{2}} A_{j}^{(0)}
$$

- The integrated soft subtraction term yields the expected pole-structure.

$$
S_{\epsilon}^{-1} \mu^{2 \epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}} G_{\text {soft }}^{(1)}=-\frac{1}{(4 \pi)^{2}} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \sum_{j \in I_{g}} \frac{2}{\epsilon^{2}}\left(\frac{-2 p_{j} \cdot p_{j+1}}{\mu^{2}}\right)^{-\epsilon} A_{j}^{(0)}+\mathcal{O}(\epsilon) .
$$

## Derivation of the soft subtraction term

- In the soft limit we replace the metric tensor $g_{\mu \nu}$ of propagator $j$ by a polarisation sum and gauge terms.

$$
g_{\mu \nu}=\sum_{\lambda} \epsilon_{\lambda}^{\mu}\left(k_{j}, n\right) \epsilon_{-\lambda}^{\nu}\left(k_{j}, n\right)-2 \frac{k_{j}^{\mu} n^{\nu}-k_{j}^{\nu} n^{\mu}}{2 k_{j} \cdot n}
$$

where $n^{\mu}$ is a light like reference vector.


## Definition of the collinear singularity

- Propagator $j-1$ is collinear to propagator $j$ and
- propagator $j$ or propagator $j-1$ corresponds to a gluon and
- the external particle $j$ is massless and on-shell.

$$
k_{j-1} \| k_{j} \quad \text { and } \quad m_{j}=0 \quad \text { and } \quad p_{j}^{2}=0 \Rightarrow k_{j-1}^{2}=k_{j}^{2}=0
$$



## Derivation of the collinear subtraction term

- For each gluon in the loop we define the collinear subtraction function

$$
S_{j, \text { coll }}(\mathfrak{G})=\frac{\lim _{k_{j-1} \| k_{j}}\left\{k_{j-1}^{2} k_{j}^{2} F(\mathfrak{G}, k)\right\}}{k_{j-1}^{2} k_{j}^{2}}-\text { soft double counting }
$$

- The sum of the collinear subtraction function over all one-loop diagrams is proportional to the tree level amplitude $A_{j}^{(0)}$.
- We have to sum over all gluons in the loop,

$$
\begin{gathered}
G_{\text {coll }}^{(1)}=i \sum_{j \in I_{g}}(-2)\left(\frac{S_{j} g_{u v}\left(k_{j-1}^{2}, k_{j}^{2}\right)}{k_{j-1}^{2} k_{j}^{2}}+\frac{S_{j+1} g_{u v}\left(k_{j}^{2}, k_{j+1}^{2}\right)}{k_{j}^{2} k_{j+1}^{2}}\right) A_{j}^{(0)} \\
S_{q}=1, S_{g}=\frac{1}{2}, \lim _{k_{j-1} \| k_{j}} g_{U V}\left(k_{j-1}^{2}, k_{j}^{2}\right)=1, \quad \lim _{k \rightarrow \infty} g_{U V}\left(k_{j-1}^{2}, k_{j}^{2}\right)=\mathcal{O}\left(\frac{1}{k}\right) .
\end{gathered}
$$

- The integrated collinear subtraction terms yields the expected pole structure:

$$
S_{\epsilon}^{-1} \mu^{2 \epsilon} \int \frac{d^{D} k}{(2 \pi)^{D}} G_{c o l l}^{(1)}=-\frac{1}{(4 \pi)^{2}} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \sum_{j \in I_{g}}\left(S_{j}+S_{j+1}\right)\left(\frac{\mu_{U V}^{2}}{\mu^{2}}\right)^{-\epsilon} \frac{2}{\epsilon} A_{j}^{(0)}+\mathcal{O}(\epsilon)
$$

## Derivation of the collinear subtraction term

- Only diagrams with collinear $q \rightarrow q g$ or $g \rightarrow g g$ splitting lead to a divergence after integration.
- As an example, the $q \rightarrow q g$ splitting.


The sum of the left side is almost gauge invariant, only the self energies of external legs are missing.

- The self-energy insertions on the external lines introduce a spurious $1 / p_{j}^{2}$-singularity. We define $p_{j}=k_{j-1}-k_{j}$ slightly off shell by introducing the Sudakov parametrisation.

$$
k_{j-1}=x p+k_{\perp}-\frac{k_{\perp}^{2}}{x} \frac{n}{(2 p \cdot n)}, \quad-k_{j}=(1-x) p-k_{\perp}-\frac{k_{\perp}^{2}}{(1-x)} \frac{n}{(2 p \cdot n)} .
$$

- The singular parts of the self-energies are proportional to

$$
P_{q \rightarrow q g}^{\text {long }}=-\frac{2}{2 k_{j-1} \cdot k_{j}}\left(-\frac{2}{1-x}+2\right) \not p
$$

- The terms with $2 /(1-x)$ correspond to the soft singularities.


## Contour deformation for massive QCD

- We define the massive propagator

$$
D_{i}=\left(k-q_{i}\right)^{2}-m_{i}^{2}
$$

and deform the loop-momenta into the complex plane

$$
\tilde{k}=k+i \kappa(k)
$$

- We make the Ansatz for the deformation vector

$$
\kappa=-\sum_{i \leq j} c_{i j}\left(k-v\left(k, q_{i}, q_{j}\right)\right)
$$

with the vectors $v \in \mathbb{R}^{4}$ and the coefficient $c_{i j} \in[0,1]$.

- The imaginary part of the propagator reads with this Ansatz:

$$
\operatorname{Im}\left(\tilde{D}_{l}\right)=-2 \sum_{i \leq j} c_{i j}\left(k-q_{l}\right) \cdot(k-v)
$$

- To avoid a wrong sign of the imaginary part the coefficients $c_{i j}$ have to fulfil the condition

$$
\left\{D_{l}=0 \quad \text { and }-\left(k-q_{l}\right) \cdot(k-v)<0\right\} \Rightarrow c_{i j}=0
$$

## Contour deformation for massive QCD

- We define

$$
c_{i j}=\prod_{l=1}^{n} \max \left\{h_{\delta}\left(k-q_{l}, m_{l}^{2}\right), h_{\theta}\left(k-q_{l}, k-v\right)\right\}
$$

with the smooth functions $h_{\delta}$ and $h_{\theta}$ :

$$
\begin{aligned}
D_{l}=0 & \Rightarrow \quad h_{\delta}\left(k-q_{l}, m_{l}^{2}\right)=0 \\
-\left(k-q_{l}\right) \cdot(k-v)<0 & \Rightarrow \quad h_{\theta}\left(k-q_{l}, k-v\right)=0
\end{aligned}
$$

- In detail

$$
h_{\delta}\left(u, m^{2}\right)=\left\{\begin{array}{cll}
\frac{\left(\left|u^{0}\right|-\sqrt{\vec{u}^{2}+m^{2}}\right)^{2}}{\left(\left|u^{0}\right|-\sqrt{\vec{u}^{2}+m^{2}}\right)^{2}+M_{1}^{2}} & : & m^{2}>0 \\
\frac{\left(\sqrt{\left(u^{0}\right)^{2}-m^{2}}-|\vec{u}|\right)^{2}}{\left(\sqrt{\left(u^{0}\right)^{2}-m^{2}}-|\vec{u}|\right)^{2}+M_{1}^{2}} & : & m^{2}<0
\end{array}\right.
$$

With $M_{1}$ a parameter depending on the typical energy scale of the process.

- The second function is given by

$$
h_{\theta}(u, v)=h_{\delta}\left(\frac{u+v}{2}, \frac{(u-v)^{2}}{4}\right) \theta(-u \cdot v)
$$

- To understand this function we rewrite the scalar product.

$$
\left(k-q_{j}\right) \cdot(k-v)=\left(k-\frac{v+q_{j}}{2}\right)^{2}-\left(\frac{v-q_{j}}{2}\right)^{2}
$$

- This looks again like a massive propagator.
- The forbidden region is the interior of the mass shells.


Figure: Region in the loop momenta space were $-(k-v) \cdot\left(k-q_{i}\right)<0$;

- The deformation vector $\kappa$ is a smooth function in the loop momenta and never yields to a wrong imaginary part.
- One have to ensure that for every singular surface a vector $v\left(k, q_{i}, q_{j}\right)$ exists such we deform correctly.
- The vector $-(k-v)$ deforms correctly if the vector $v$ lies inside the surface.



## Mapping of the variables for $l_{\text {int }}$

```
LoopFest
    XI
```

```
- The variables \((\rho, \zeta, \theta, \phi)\) we generate as follows:
\[
\begin{aligned}
\rho & =\ln \left(1+\frac{\mu_{0}}{|p|} \tan \frac{\pi}{2} u_{0}\right) \\
\zeta & =\pi u_{1} \\
\theta & = \begin{cases}\arccos \left[(1+\epsilon)\left(\frac{1+\epsilon}{\epsilon}\right)^{-2 u_{2}}-\epsilon\right] & 0 \leq u_{2}<\frac{1}{2}, \\
\arccos \left[\epsilon-(1+\epsilon)\left(\frac{1+\epsilon}{\epsilon}\right)^{-2\left(1-u_{2}\right)}\right] & \frac{1}{2} \leq u_{2} \leq 1,\end{cases} \\
\phi & =2 \pi u_{3}
\end{aligned}
\]
with \(\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in[0,1]\) random numbers and
\[
\epsilon=\sinh \rho \sin \zeta
\]
```


## Contour deformation and mapping for $l_{\text {ext }}$

- In $I_{\text {ext }}$ only the $U V$ propagator, $\bar{k}-\mu_{U V}^{2}$ appear.
- The contour deformation is rather simple.

$$
k=\tilde{k}+\imath \kappa, \quad \kappa^{\mu}=g_{\mu \nu}\left(\tilde{k}^{\nu}-Q^{\nu}\right)
$$

- We have

$$
\bar{k}^{2}-\mu_{U V}^{2}=2 \imath(\tilde{k}-Q) \circ(\tilde{k}-Q)-\mu_{U V}^{2}
$$

- The sampling for $\bar{k}_{\text {real }}=\tilde{k}-Q$ is

$$
\bar{k}_{\text {real }}=k_{E}\left(\begin{array}{c}
\cos \zeta \\
\sin \zeta \sin \theta \sin \phi \\
\sin \zeta \sin \theta \cos \phi \\
\sin \zeta \cos \theta
\end{array}\right), \quad \begin{aligned}
k_{E} & =\mu_{1} \sqrt{\tan \frac{\pi}{2} u_{0}} \\
\zeta & =\arccos \left(1-2 u_{1}\right) \\
\theta & =\arccos \left(1-2 u_{2}\right) \\
\phi & =2 \pi u_{3}
\end{aligned}
$$

with $u_{0}, u_{1}, u_{2}, u_{3} \in[0,1]$ random numbers.

## Off-shell recurrence relations(one-loop)

- We cut a gluon line by using $\sum_{l=0}^{3} \epsilon_{l}^{\mu} \epsilon_{l}^{\nu}=g^{\mu \nu}$.

+ diagrams with four gluon vertices
- The recursion starts with $n=0$ i.e. no external gluon is left at the r.h.s and is given by $-\frac{\tau \epsilon_{\nu}^{\nu}}{k_{n+1}^{2}}$.
- Ghost loops are calculated similarly and closed fermion loops do not appear in the leading colour approximation.


## Splitting in $I_{\text {ext }}$ and $I_{\text {int }}$

- We define the function

$$
f_{U V}(k)=\prod_{j=1}^{n} \frac{k_{j}^{2}-m_{j}^{2}}{\bar{k}^{2}-\mu_{U V}^{2}}
$$

- We spilt the integration into an exterior and an interior region, $I=l_{\text {ext }}+l_{\text {int }}$, with

$$
\begin{aligned}
& I_{\text {ext }}=\int \frac{d^{4} k}{(2 \pi)^{4}} f_{U V}(k) \frac{N(k)}{\prod_{j=1}^{n}\left(k_{j}^{2}-m_{j}^{2}\right)} \\
& I_{\text {int }}=\int \frac{d^{4} k}{(2 \pi)^{4}}\left(1-f_{U V}(k)\right) \frac{N(k)}{\prod_{j=1}^{n}\left(k_{j}^{2}-m_{j}^{2}\right)}
\end{aligned}
$$

- The pole structure of $l_{\text {ext }}$ is very simple.
- We can choose $Q$ in $\bar{k}=k-Q$ such that $\left(1-f_{U V}(k)\right)$ drops off with an extra power of $1 /|k|$ for $k \rightarrow \infty$.
- Because $f_{U V}$ is a meromorphic ${ }^{1}$ function we can choose different integration contours for $l_{\text {ext }}$ and $I_{\text {int }}$.

[^0]
## The mapping of $l_{\text {int }}$

- The collinear regions are defined by the line segments $k=q_{i}+x p_{i+1}$ and are important for the numerics.
- We split the original integral into several channels, such that for each line segment corresponds to a separate channel.
- $w_{i}$ not a holomorphic function; We have to use the same contour in each channel.

$$
I=\sum_{i=1}^{n} \int \frac{d^{4} k}{(2 \pi)^{4}} w_{i}(k) f(k), \quad w_{i} \geq 0, \quad \sum_{i=1}^{n} w_{i}=1
$$

- The weights $w_{i}$ defined by

$$
w_{i}=\frac{\left(\frac{1}{\left|\left(k-q_{i}\right)^{2} \|\left(k-q_{i+1}\right)^{2}\right|}\right)^{2}}{\sum_{j=1}^{n}\left(\frac{1}{\left\|\left(k-q_{j}\right)^{2}\right\|\left(k-q_{j+1}\right)^{2} \mid}\right)^{2}}
$$

- The weights have the properties that

$$
\begin{aligned}
& w_{i}=1 \text { if } k=q_{i}+x p_{i+1} \\
& w_{i}=0 \text { if } k=q_{j}+x p_{j+1} \quad \text { if } i \neq j
\end{aligned}
$$

## The mapping of $l_{\text {int }}$

- By choose the mapping for a given channel wisely one can improve the numerical performance of the Monte Carlo.
- First we write an external momenta in spherical coordinates.

$$
p_{i}=\left\|p_{i}\right\|_{e u c} R_{3}^{(i)} \cdot R_{2}^{(i)} \cdot R_{1}^{(i)} \cdot \hat{e}_{0}, \quad \hat{e}_{0}=(1,0,0,0)
$$

- The mapping for the $i$ th channel is given by

$$
k=q_{i}+\frac{\left\|p_{i+1}\right\|_{e u c}}{2} R_{3}^{(i+1)} \cdot R_{2}^{(i+1)} \cdot R_{1}^{(i+1)} \cdot\left(\begin{array}{c}
\cosh \rho \cos \zeta+1 \\
\sinh \rho \sin \zeta \cos \theta \\
\sinh \rho \sin \zeta \sin \theta \cos \phi \\
\sinh \rho \sin \zeta \sin \theta \sin \phi
\end{array}\right)
$$

- with

$$
\rho \in[0, \infty), \quad \zeta \in[0, \pi], \quad \theta \in[0, \pi], \quad \phi \in[0,2 \pi] .
$$

The mapping of $l_{\text {int }}$

- Here we introduced elliptic coordinates.(Picture from Wikipedia)

- For $\rho=0$ the loop momentum is on the critical line segment,

$$
k=q_{i}+\underbrace{\frac{1}{2}(1+\cos \zeta)}_{\in[0,1]} p_{i+1}
$$

- This improves the Monte Carlo, because the VEGAS algorithm can offer significant improvements only as far as the integrand's characteristic regions are aligned with the coordinate axes.
- We evaluate the integrand at $\phi$ and $(\phi+\pi) \bmod (2 \pi)$, and at $\theta$ and $\pi-\theta$ to average out periodic behaviour of the integrand.


## Improved UV-subtraction

- We observed large oscillations in the UV region whenever an external invariant approaches the jet resolution parameter.
- The leading contribution in the UV limit is of the order $1 /|k|^{5}$.
- To improve the situation we subtracting out the order $1 /|k|^{5}$ and $1 /|k|^{6}$ terms in the propagator- and three-particle vertex corrections.
- We also modify the IR subtraction terms such that they fall off like $1 /|k|^{7}$.
- We evaluate the integrand always at the point $\bar{k}$ and $-\bar{k}$ together. Terms which scale with an odd power of $|k|$ in the $U V$ region drop out.


[^0]:    ${ }^{1}$ Wikipedia:In complex analysis, a meromorphic function on an open subset $D$ of the complex plane is a function that is holomorphic on all $D$ except a set of isolated points, which are potes for the function.

