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The Matrix Element Method (MEM) 

• All measurements of SM parameters and searches for new physics rely on 
matrix elements at some level. 

• The Matrix element contains the maximal amount of theoretical information 
available (for the hard scattering process).

• The goal of the MEM is to perform a measurement using the matrix element 
to create a probability distribution function. 

• Then this can be used to build a Likelihood for the model (Omega) under 
investigation. 

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
A given collision will result in the production of a colour neutral final state (represented here by
four leptons in red) which nearly balance in the transverse plane. This is shown on the left hand
side. The resulting imbalance (X, in blue) represents the remaining event which is not modeled in
the Born Matrix Element. We apply a boost such that X is at rest in the transverse plane, the
remaining longitudinal and energy components are absorbed into the colliding partons.

initial state partons. We postpone the treatment of final state jets at NLO to a future

publication. The results we discuss in this paper have been implemented into a publicly

available program NLOME which is based upon MCFM [7].

This paper proceeds as follows, in section ?? we discuss the generation of the NLO

phase space needed to evaluate a NLO matrix element within the MEM framework, we

then discuss the MEM in detail in section ??. In section 4 we validate the code using

MCFM [7] and Pythia [? ]. Sections 5 and 6 provide explicit examples of the method of

current phenomenological interest. Finally in section 7 we draw our conclusions.

2. The Matrix Element Methods at LO, at NLO and in Data

The Matrix Element Method (MEM) uses a theoretical model to predict a likelihood that a

given event x is described by a theoretical model Ω. The probability measure of observing

event x given the theory model Ω is then defined as

P(x|Ω) =
1

σΩ

∫
dx1dx2 dΦ(y)

f(x1)f(x2)

x1x2s
|MΩ(y)|2W (x,y) . (2.1)

Here W (x,y) represents the experimental transfer function which models the probability

density that an experimental event (or set of events) y is measured in the detector as phase

space point (or set of points) x with a normalization
∫
dxW (x,y) = 1. The integration

is over the parton density functions f(x) and the over the phase space Φ(y). SΩ(y) is the

scattering probability for a given model Ω. σΩ is the total cross section (evaluated at a

center of mass energy =
√
s), ensuring that the overall normalisation of the probability

distribution is equal to one.

The MEM then uses this probability density function P(x|Ω) to construct a likelihood

function L relating the data set x to the model Ω.

L(x|Ω) = f(N)
∏

i=1,N

P(xi|Ω). (2.2)
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This paper proceeds as follows. In section 2 we first introduce the MEM at LO and

discuss its use in experimental analyses. Section 3 explains our extension of the MEM to

NLO and discusses the generation of unweighted NLO events. In section 4 we validate

the code using MCFM [30–33] and Pythia [34]. Section 5 is devoted to an application

of immediate phenomenological interest, namely the search for a Higgs boson in the ZZ!

decay channel to four leptons. Finally in section 6 we draw our conclusions. The appendices

describe the generation of the phase space in more detail and discuss the modifications to

the usual dipole subtraction procedure that are required in our approach.

2. The Matrix Element Method at Leading Order

In this section we define the MEM at LO and discuss how it may be used in experimental

analyses.

2.1 Overview of the MEM

We begin by assuming that one wishes to measure a model parameter Ω, using an experi-

mental data set {x} that contains N events xi. One method to determine the best-fit value

of Ω is to construct a probability density function in which each event is weighted by the

LO scattering probability computed with the parameter Ω. The resulting probability den-

sity function associated with a single event x, for a given Ω, can be written schematically

as,

P(x|Ω) =
1

σLO
Ω

∫
dxadxb dy

∑

ij

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,y)W (x,y) . (2.1)

In this equation fi(xa) and fj(xb) represent the parton distribution functions for partons

of flavours i and j possessing momentum fractions xa and xb of their parent hadrons.

Bij
Ω (pa, pb,y) is the LO scattering probability with partons i and j in the initial state. The

hadron collision takes place at a centre of mass energy
√
s while the flux factor entering in

the denominator of Eq. (2.1) is the partonic centre of mass energy squared, sab = xaxbs.

An experimental event x is by definition a detector level event, whilst the scattering

probability is computed theoretically at the level of partons. Therefore in order to correctly

use the scattering probability as a probability density function one must include effects that

model this discrepancy. The transfer function W (x,y) relates a detector level event x to a

particle level event y that can be used to compute the scattering amplitude. This transfer

function, dependent on the specifics of the experimental set-up, takes account of factors

such as limitations on the energy resolution and acceptance of the detector. The transfer

function is constructed such that it is itself a probability density function,

∫
dyW (x,y) = 1 . (2.2)

Finally, the factor σΩ is the total cross section for the process for a specific choice of Ω,

thus ensuring that the probability distribution is properly normalized to unity.
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Pros and cons of the method. 

• Clean separation between theory 
and experimental inputs 

• Utilizes full ME. 

• Many potential applications. 

• Ripe for parallelisation 

Theory input

Experimental input

• Computationally expensive 

• Need for simplifications: 

• Transfer function form

• LO ME elements 
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Theoretical MEM tools. 

• Experimentalists have multiple in-house MEM codes (for top mass etc.) using 
various LO MEs. 

• A nice implementation of the MEM for general BSM scenarios has been 
provided at LO in the Madgraph framework. (Artoisenet, Lemaitre, Maltoni, 
Mattelaer 1007.3300). 

• This has also been extended to include some ISR modeling. (Alwall, Freitas, 
Mattelaer 1010.2263). 

• Would be nice to have the situation where we can have NLO background + 
LO BSM signal 

• Providing the NLO background is the goal of this work! 



Experimental events versus fixed order weights. 

We want to weight an experimental event with a fixed order ME.

Experimental events contain more than the Born final state 
particles, we need to conserve momentum between the 
observed final state AND remain in the frame in which the PDFs 
are calculated (beams along the z-axis).  



Mapping Data to Born 

• Define the sum of all (Born) final state momenta as X. 

• Born phase space point (with beams along z-axis) require. 

• In general this requirement is not satisfied in data!

boost

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
The left hand side depicts a collision that results in the production of a colour neutral final state
(represented here by four leptons in red) that do not balance in the transverse plane. The resulting
imbalance (X , in blue) represents the remaining event which is not modelled in the Born matrix
element. We apply a Lorentz transformation such that X has no components in the transverse
plane, with the remaining longitudinal and energy components absorbed into the colliding partons.

to find the relations,

xa − xb =
2√
s

(
n∑

i=1

pzi

)

, xa + xb =
2√
s

(
n∑

i=1

Ei

)

. (2.7)

However, matching an experimental point p̃ to the LO kinematics (p) is a challenge. In

particular, any event will always contain additional radiation that is not modelled by the

leading order (Born level) matrix element. In order to proceed we shall define a four vector

X, that balances the momenta of the final state particles. This is illustrated schematically

in Fig. 1 and expressed through the equations,

X = −
n∑

i=1

p̃i. (2.8)

The Born matrix elements, with the beam directions consistently along the z-axis, are

only defined for Xx = Xy = 0, i.e. when there is no pT imbalance between the final

state particles1. Therefore, in order to ensure that the experimental event has a well-

defined interpretation as a Born level phase space point we need to remove the transverse

components of X. This can be achieved by applying a Lorentz transformation Λ(X) on

the momenta p̃ in the event to arrive at a frame in which the transverse components of X

are zero,

pµi = Λµ
ν(X) p̃νi with

n∑

i=1

pxi =
n∑

i=1

pyi = 0 . (2.9)

As desired, the phase space point p is now of the correct form to be used in a Born level

matrix element. For a given transformation, the momentum fractions xa and xb are then

related to the transformed momenta p through the relations in Eq. (2.7). However, we note

1Attempting to evaluate a LO matrix element with a phase space point that does not conserve momentum

is ill-defined. The exact weight obtained depends on which kinematic invariants one has chosen to use in

the expression for the matrix element.
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Getting to the MEM frame

• What we can do is to perform a Lorentz transformation on the final state 
particles, (thus preserving all Lorentz invariant quantities). 

• This transformation is not unique, what I do with the longitudinal component is 
a free choice. 

• Recall that the longitudinal components specify the parton fractions, 

• So in other words, our boosts do not fix xa and xb uniquely only the product. 

boost
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that Eq. (2.9) does not specify a unique transformation. We can define multiple transfor-

mations that result in Xx = Xy = 0 and that yield different longitudinal components of p.

In other words xa and xb are frame-dependent quantities determined by the boost choice

and it is only the product xaxb that is Lorentz invariant. Therefore in order to produce a

sensibly defined weight for each event we must integrate over this unobservable degree of

freedom.

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

σLO
Ω = (2π)4−3n

∫
dxa dxb

n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

pa + pb −
n∑

i=1

pi

)

.(2.10)

Here we have suppressed the dependence of B on the kinematics and the summation over

i and j for clarity. We wish to factorise Eq. (2.10) into two pieces, one representing initial

state production and the other the decay of a heavy object into the final state particles.

To this end we define Q = pa + pb and insert the operator
∫
dQ2 δ(xaxbs−Q2) = 1,

σLO
Ω = (2π)4−3n

∫
dxa dxb dQ

2 δ(xaxbs−Q2)

×
n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

Q−
n∑

m=1

pm

)

. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏

m=1

(
d3pm

2Em

)
δ(4)

(

Q−
n∑

m=1

pm

)

. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.
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More formally......

• One can start with the prediction for the total cross section, 

• Ideally we want to factorize this into production and decay, the data then 
specifies the decay products, we didnt observe the initial state... 

• A fully reconstructed (i.e. no MET) fixes a unique dx which we can use to build 
our MEM pdf. 
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∫
dQ2 δ(xaxbs−Q2) = 1,

σLO
Ω = (2π)4−3n

∫
dxa dxb dQ

2 δ(xaxbs−Q2)

×
n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

Q−
n∑

m=1

pm

)

. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏

m=1

(
d3pm

2Em

)
δ(4)

(

Q−
n∑

m=1

pm

)

. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.
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The LO MEM 

• In the ideal setup (i.e. perfect detector so no transfer functions and a fully 
reconstructed final state) then the LO MEM takes on the following form,

• where the only boost-dependent term is process independent and grouped 
ino the first term (L)  

• We define the LO event by event weight as, 

This factorisation in terms of initial and final state variables is exactly what we require

to build our probability density function for the MEM since the experimental input is always

a final state phase space point x. We can define Eq. (2.1) more formally as,

P(x|Ω) =
1

σLO
Ω

∫
dyLij(sab, xl, xu)Bij

Ω (pa, pb,y)W (x,y) . (2.15)

For a completely inclusive description of the final state, Eqs. (2.14) and (2.15) are suf-

ficient. However, realistic applications require transverse momentum and pseudo-rapidity

cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plabT ) and pseudo-rapidity (ηlab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,iT =

√
saisib
sab

, ηlab,i =
1

2
log

(
x2as

sab

sib
sai

)
. (2.16)

From these equations we see that plab,iT does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ηlab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |ηmax|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal toW (x,y) = δ(x − y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ → 4$ and Z → $+$−. We stress that non-trivial transfer functions do

not pose any conceptual problems for our method and only entail additional integrations.

Taking this simplification and the integration over the longitudinal boost into account,

Eq. (2.15) becomes,

P(x|Ω) =
1

σLO
Ω

Lij(sab, xl, xu)Bij
Ω (pa, pb,x) . (2.17)

The above equation defines the LO probability density function for the MEM. We recall

that Bij
Ω (pa, pb,x) represents the Born Matrix element squared, |Mij,(0)

Ω (pa, pb,x)|2 and that
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that Eq. (2.9) does not specify a unique transformation. We can define multiple transfor-

mations that result in Xx = Xy = 0 and that yield different longitudinal components of p.

In other words xa and xb are frame-dependent quantities determined by the boost choice

and it is only the product xaxb that is Lorentz invariant. Therefore in order to produce a

sensibly defined weight for each event we must integrate over this unobservable degree of

freedom.

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

σLO
Ω = (2π)4−3n

∫
dxa dxb

n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

pa + pb −
n∑

i=1

pi

)

.(2.10)

Here we have suppressed the dependence of B on the kinematics and the summation over

i and j for clarity. We wish to factorise Eq. (2.10) into two pieces, one representing initial

state production and the other the decay of a heavy object into the final state particles.

To this end we define Q = pa + pb and insert the operator
∫
dQ2 δ(xaxbs−Q2) = 1,

σLO
Ω = (2π)4−3n

∫
dxa dxb dQ

2 δ(xaxbs−Q2)

×
n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

Q−
n∑

m=1
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)

. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏
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(
d3pm

2Em

)
δ(4)

(

Q−
n∑

m=1
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)

. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.
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σΩ represents the fiducial cross section, calculated using cuts in the lab frame. We define

the following quantity,

BΩ(x) = Lij(sab, xl, xu)Bij
Ω (pa, pb,x) , (2.18)

and observe from Eq. (2.13) that
∫
dxBΩ(x) = σLO

Ω . We can thus simplify Eq. (2.17) to,

P(x|Ω) =
1

σLO
Ω

BΩ(x). (2.19)

This formalism will prove useful in the following section when we extend the MEM to NLO.

Using the techniques outlined above we have defined a procedure that takes an observed

final state, Q̃+X and relates it to a LO model for the process, pa + pb → Q. Specifically,

given an arbitrary amount of additional radiation we create a phase space point that

recovers the Born kinematics, at the cost of introducing an integration over the longitudinal

degree of freedom.

Clearly this model will be better for events in which the momentum imbalance X is

small, rather than events in which X is kinematically relevant, i.e. in the presence of one

or more additional jets. When additional jets are present one has three options. The first

option is to simply apply the LO model presented above, boosting the jet into the initial

state. Since in general one expects this method to be rather sensitive to the amount of

radiation, i.e. the transverse momentum of the jet, it is prudent to check the validity of

this approach by also considering smaller data sets obtained by applying a jet veto. If there

are sufficient events, restricting the data set by imposing a strict jet veto is preferred since,

by ensuring that no additional hard jets are present, one can be confident that the LO

model works reasonably well. We shall present an example of applying such a jet veto in

section 4. The second option is to use a LO calculation that already contains an additional

jet, i.e. pa + pb → Q + jet +X. In this case the extra radiation is well modelled but the

MEM must be extended to include a systematic treatment of jets. In this paper we will

not consider this option further.

Finally, one may try to systematically improve the MEM in an attempt to model

the additional radiation. This is the approach discussed in Ref. [36], with reference to

initial state radiation. Instead one may incorporate such effects by extending the MEM

to NLO. Since a NLO calculation includes the radiation of one additional parton, a first

approximation of the effects of further radiation is made at this order. In the next section

we will illustrate how this may be achieved within the MEM framework.

3. The Matrix Element Method at Next-to-Leading Order

In this section we define the MEM at NLO and, as a by-product, discuss how one may

generate unweighted events at NLO.

3.1 Going beyond LO: Defining NLO on an event by event basis

The goal of this sub-section is to illustrate how to extend the MEM to NLO in perturba-

tion theory. However this is not a simple task since in a normal NLO calculation virtual
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The complication of cuts!

• Cross sections and events are defined in the lab frame, we want to perform our 
calculation in the MEM frame => Need a map for fiducial cuts. 

• This is defined by

• Note pT is defined in terms of invariants, rapidity is boost dependent. In fact cuts 
on rapidity actually fix the upper and lower bounds on the boost integration, 

This factorisation in terms of initial and final state variables is exactly what we require

to build our probability density function for the MEM since the experimental input is always

a final state phase space point x. We can define Eq. (2.1) more formally as,

P(x|Ω) =
1

σLO
Ω

∫
dyLij(sab, xl, xu)Bij

Ω (pa, pb,y)W (x,y) . (2.15)

For a completely inclusive description of the final state, Eqs. (2.14) and (2.15) are suf-

ficient. However, realistic applications require transverse momentum and pseudo-rapidity

cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plabT ) and pseudo-rapidity (ηlab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,iT =

√
saisib
sab

, ηlab,i =
1

2
log

(
x2as

sab

sib
sai

)
. (2.16)

From these equations we see that plab,iT does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ηlab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |ηmax|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal toW (x,y) = δ(x − y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ → 4$ and Z → $+$−. We stress that non-trivial transfer functions do

not pose any conceptual problems for our method and only entail additional integrations.

Taking this simplification and the integration over the longitudinal boost into account,

Eq. (2.15) becomes,

P(x|Ω) =
1

σLO
Ω

Lij(sab, xl, xu)Bij
Ω (pa, pb,x) . (2.17)

The above equation defines the LO probability density function for the MEM. We recall

that Bij
Ω (pa, pb,x) represents the Born Matrix element squared, |Mij,(0)

Ω (pa, pb,x)|2 and that
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that Eq. (2.9) does not specify a unique transformation. We can define multiple transfor-

mations that result in Xx = Xy = 0 and that yield different longitudinal components of p.

In other words xa and xb are frame-dependent quantities determined by the boost choice

and it is only the product xaxb that is Lorentz invariant. Therefore in order to produce a

sensibly defined weight for each event we must integrate over this unobservable degree of

freedom.

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

σLO
Ω = (2π)4−3n

∫
dxa dxb

n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

pa + pb −
n∑

i=1

pi

)

.(2.10)

Here we have suppressed the dependence of B on the kinematics and the summation over

i and j for clarity. We wish to factorise Eq. (2.10) into two pieces, one representing initial

state production and the other the decay of a heavy object into the final state particles.

To this end we define Q = pa + pb and insert the operator
∫
dQ2 δ(xaxbs−Q2) = 1,

σLO
Ω = (2π)4−3n

∫
dxa dxb dQ

2 δ(xaxbs−Q2)

×
n∏

m=1

(
d3pm

2Em

)
fi(xa)fj(xb)

xaxbs
Bij
Ω δ(4)

(

Q−
n∑

m=1

pm

)

. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2π)4−3ndQ2
n∏

m=1

(
d3pm

2Em

)
δ(4)

(

Q−
n∑

m=1

pm

)

. (2.12)

Using this definition we see that,

σLO
Ω =

∫
dxa dxb dx δ(xaxbs−Q2)

fi(xa)fj(xb)

xaxbs
Bij
Ω (pa, pb,x) .

=

∫
dxLij(Q

2, xl, xu)Bij
Ω (pa, pb,x). (2.13)

This separation is convenient since Bij
Ω (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

∫
dxadxb

fi(xa)fj(xb)

xaxbs
δ(xaxbs− sab)

=

∫ xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.
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=
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Insane in the MEM frame. 

Figure 3: Comparison between MCFM (LO and NLO) and Pythia in different frames. On the left
hand side p!

T
is plotted in the MEM frame, whilst on the right hand side the lab frame equivalent

is plotted. Predictions are normalised by the total cross section (or number of events in the Pythia
case).

4.2 Validating the MEM: measuring mZ

In the previous sub-section we have used MCFM, representing a traditional approach to

NLO calculations, to generate lab frame events that are then transformed into the MEM

frame. As described in the previous section, for the the extension of the MEM method to

NLO it is easiest to work directly in the MEM frame. We have modified MCFM accordingly

to incorporate the phase space generator and approach described in the previous section.

In addition to the implementation of the FBPS, the code has been constructed such that

a NLO weight can be ascribed to an individual event in the MEM frame.

A simple test of our implementation of the MEM at LO and NLO is its application to

the measurement of the mass of the Z boson at the 7 TeV LHC. To this end we generate

O(5000) events using Pythia that satisfy the following lab frame requirements,

p!T > 15 GeV , |η!| < 2.5 , 80 GeV < m!+!− < 100 GeV. (4.5)

We use Pythia since it is a completely independent code to MCFM and as such is also

independent of our new method for generating the NLO weights. In addition, Pythia output

is at the particle level, including shower, hadronisation and underlying event models. We

note that in Pythia we have turned off both the mass of the leptons and QED radiation,

– 15 –

• We look at lab frame pT, 

• and MEM frame pT 

• Using MCFM  and Pythia 

• Clearly the MEM has 
some very nice features! 

This factorisation in terms of initial and final state variables is exactly what we require

to build our probability density function for the MEM since the experimental input is always

a final state phase space point x. We can define Eq. (2.1) more formally as,

P(x|Ω) =
1

σLO
Ω

∫
dyLij(sab, xl, xu)Bij

Ω (pa, pb,y)W (x,y) . (2.15)

For a completely inclusive description of the final state, Eqs. (2.14) and (2.15) are suf-

ficient. However, realistic applications require transverse momentum and pseudo-rapidity

cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plabT ) and pseudo-rapidity (ηlab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,iT =

√
saisib
sab

, ηlab,i =
1

2
log

(
x2as

sab

sib
sai

)
. (2.16)

From these equations we see that plab,iT does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ηlab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |ηmax|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal toW (x,y) = δ(x − y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ → 4$ and Z → $+$−. We stress that non-trivial transfer functions do

not pose any conceptual problems for our method and only entail additional integrations.

Taking this simplification and the integration over the longitudinal boost into account,

Eq. (2.15) becomes,

P(x|Ω) =
1

σLO
Ω

Lij(sab, xl, xu)Bij
Ω (pa, pb,x) . (2.17)

The above equation defines the LO probability density function for the MEM. We recall

that Bij
Ω (pa, pb,x) represents the Born Matrix element squared, |Mij,(0)

Ω (pa, pb,x)|2 and that

– 7 –

These definitions would be useful for more complicated processes that include jets or that

require the application of an isolation procedure. We will also consider the MEM frame

transverse momentum, which is defined in a more familiar way,

pMEM,i
T =

√
(pxi )

2 + (pyi )
2 , (4.3)

where, of course, the four-vector pµ is explicitly in the MEM frame. The MEM frame has

no unique definition of pseudo-rapidity for a given event, since there are multiple frames

connected by longitudinal boosts.

We now wish to study the behaviour of different quantities in the lab and MEM frames.

We apply very loose cuts, namely we only require that the leptons lie in the invariant mass

window,

80 GeV < m!+!− < 100 GeV . (4.4)

We generate LO and NLO parton level events using MCFM and more exclusive particle-

level dilepton events using Pythia. In Fig. 2 we compare the results from the lab and MEM

frames for the quantities plabT , pMEM
T and m!!.

In Fig. 2(a) we see that, as is necessary, the invariant mass of the lepton pairs is

identical in both frames. A more interesting quantity is the frame-dependent pT of the

positively charged lepton, !+, shown in Fig. 2(b). At LO (parton level) the two quantities

are the same because for pure LO results the final state has zero net transverse momentum

and thus the MEM and lab frames are identical. As soon as this simple picture is broken

the two frames are no longer the same and the pT distributions differ. This is apparent in

both the showered and NLO results. For the NLO and shower predictions it is possible,

by radiating additional particles, for a lepton to have lab-frame pT greater than mZ/2. At

LO this is not kinematically accessible, modulo small width effects. This is demonstrated

in the lab frame pT predictions for the NLO and showered results, shown in Fig. 2(b), that

produce a high pT tail. The MEM frame, however, requires that the event be boosted back

to a Born topology. As such, the high pT region is not present in this frame. Since the

overall normalisation is fixed by the total cross section these events are manifested at lower

values of pT , with the region around mZ/2 showing a considerable enhancement relative

to the lab frame.

In Fig. 3 we directly compare the different theoretical predictions – at LO, NLO and

using Pythia – in both the lab and MEM frames. It is clear that the predictions in

the MEM frame are very similar with respect to each other, with both LO and Pythia

predicting a slightly softer spectrum relative to NLO. We note that the shape differences

between NLO and the other predictions is consistently of order 10% or less. In the lab

frame, however, there are significant differences between the predictions, in particular in

the region pT > mZ/2. From this discussion we conclude that the MEM frame possesses

some very nice features. In particular the differences with respect to the LO prediction

(from either shower or NLO) are consistent with naive estimates of higher order QCD

effects, suggesting good perturbative control. The main reason for the convergence is that,

in the MEM frame, kinematic ranges of observables are not extended beyond their LO
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NLO parton level

• At NLO in perturbation theory one 
has to deal with divergences 

• Virtual diagrams contain UV and IR 
divergences which typically manifest 
themselves as poles an analytic. 

• Real diagrams contain an emission 
of an additional parton. Although 4 
dimensional they develop singular 
regions in phase space when the 
extra parton is unresolved. 

At Born level cross sections are simple to calculate

σLO =

∫

m

dσLO

At NLO divergences develop independently in real and virtual contributions

σNLO =

∫

m
dσLO +

∫

m
dσV +

∫

m+1
dσR

To deal with these and produce a NLO monte carlo program we use the dipole subtraction

method

σNLO =

∫

m

dσLO +

∫

m

[dσV +

∫

1
dσA]ε=0 +

∫

m+1
[(dσR)ε=0 − (dσA)ε=0]

1. Introduction

The current plan for the LHC calls for running in both 2011 and 2012. Running in 2011

is at a centre of mass energy at
√

s = 7 TeV, with a baseline expectation of 1 fb−1 per

experiment and a good chance that greater luminosity will be accumulated. At the end of

the 2012 run it is likely that data samples in excess of 5 fb−1 will have been accumulated

by both of the general purpose detectors. Data samples of this size will (at the very least)

allow detailed studies of the production of pairs of vector bosons.

It therefore seems opportune to provide up-to-date predictions for the production of

all pairs of vector bosons, specifically for the LHC operating at 7 TeV. This extends the

previous implementation of di-boson production in MCFM [1] which was focussed primar-

ily on the Tevatron. Moreover, we also consider the production of final states that contain

real photons. This requires the inclusion of fragmentation contributions in order to address

the issue of isolation in an experimental context. In addition, we have also included the

contribution of the gluon–gluon initial state to a number of processes. These finite correc-

tions are formally of higher order but can be of phenomenological relevance at the LHC

where the gluon flux is substantial.

A review of the current experimental status of vector pair boson production, primarily

from the Tevatron, can be found in ref. [2]. The production of pairs of vector bosons

is crucial both in order to check the gauge structure of the Standard Model (SM) and

in the search for new physics. This is because production of vector boson pairs and the

associated particles from their decay, enter as irreducible backgrounds for many Higgs and

new physics searches. The observationally most promising decays of the Higgs boson are

to two photons (for a light Higgs), two W ’s which decay leptonically or two Z’s. Clearly

vector boson pair production is an irreducible background in these searches. Processes with

leptons and missing energy are typical signatures of many new physics models, of which

supersymmetry is a classic example. Again, knowledge of SM processes which possess

multiple leptons and missing energy is crucial in the quest to discover or rule out these

models.

In Fig. 1 we show the rates for various electroweak processes at energies between
√

s = 7

and 14 TeV. This figure serves both as a road-map to this paper and as an indication of
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MEM at NLO

• Naively one might expect the MEM to be impossible at NLO. 

• This is because NLO calculations include two sorts of contributions which live 
in different phase spaces. 

• The virtual (loop) diagrams can easily be incorporated into the method, since 
they share the same phase space as the Born. 

• The issue lies in the generation of the real phase space, which contain one 
extra parton. We need to define a map for these to a Born topology. 



MEM at NLO 

• Our goal is to define the NLO cross section in terms of a single identified Born 
final state. 

• Where R and V represent the real and virtual pieces. 

• The above can be used to define unique NLO weights for an exclusive event. 

• V can be defined similarly to the Born since they share a phase space. 

• The real pieces are more tricky, one way to accomplish our goal is to use a 
forward branching phase space generator.  1106.5045 (Giele, Stavenga, Winter). 
and Walter’s talk. 

and bremsstrahlung events live in separate phase spaces, their only communication being

through a regularising subtraction scheme. Instead of following this procedure, we need to

reorganise the calculation such that it can provide a NLO weight for a given Born event,

with the sum over the event weights recovering the usual NLO cross section. To do this we

begin by assuming that our event has been rendered in the MEM frame using the procedure

described in the previous section. We note however that the procedure we will outline in

this section is not useful solely for extending the MEM to NLO. We are creating a method

for producing a NLO cross section from a series of Born phase space points, a procedure

that may have broader applications than are presented here.

Given the phase space point x = p1, . . . , pn where the final state momenta are those

of the identified final state particles, we can define the NLO corrections by,

dσNLO
Ω (x)

dx
= RΩ(x) + VΩ(x) . (3.1)

This follows the usual separation of the NLO calculation into two pieces, each of which

is associated with a different phase space. We stress though that here the separation has

been performed for a fixed Born phase space point, x. The definition of the term associated

with the virtual corrections is straightforward since it is defined in the same phase space

as the Born contribution. Explicitly, we can define VΩ(x) as,

VΩ(x) = Lij(sab, xl, xu)

(
Bij
Ω (pa, pb,x) + V ij

Ω (pa, pb,x)

)

+
2∑

m=0

∫
dz

(
Dm(z,x) ⊗ Lm(z, sab, xl, xu)

)

ij

Bij
Ω (pa, pb,x). (3.2)

Here the first term represents the combination of the Born matrix element Bij
Ω and the

one-loop Born interference term VΩ = 2Re|M(0)∗
Ω M (1)

Ω | (where the dependence on the

initial state partons has been suppressed). This is coupled to the same boost function,

Lij as was defined at LO. In our approach we have followed the NLO implementation of

MCFM and used the dipole subtraction procedure of Catani and Seymour [37] to handle

the singularities in the virtual and real calculations. The final term in Eq. (3.2) contains the

integrated subtraction terms, Da, introduced in this formalism. Since we are considering

initial state singularities the integrated dipoles depend on a convolution variable z. This

variable is convoluted with the boost function to create three structures,

L0 = L, L1 =

∫ xu

xl

dxa
fi(xa/z)fj(sab/(sxa))

zsxasab
, L2 =

∫ xu

xl

dxa
fi(xa)fj(sab/(zsxa))

zsxasab
.

(3.3)

In Eq. (3.2) the sum over these convolutions is given by m.

Using Eq. (3.2) we are able to define an event by event finite weight associated with

the Born plus virtual contributions. Our remaining task is thus to define RΩ(x) such that

there is no double counting of events. In other words we must ensure that the integration

of Eq. (3.1) results in the total NLO cross section (σNLO
Ω ). One way to ensure this is to
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The FBPS Generator (c.f. Walter’s talk) 

• Mathematically we need to factorize the real phase space into the following, 

• Then Q is identified with the observed final state, from this we derive the form of the FBPS 
integration 

• We then explicitly integrate out these quantities for each event. 
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use a forward branching phase space generator (FBPS) [38] to construct the real phase

space. Starting from the Born phase space point, p̂a+ p̂b → Q the FBPS generates the real

radiation by branching one of the initial state momenta to produce the real phase space

point pa+ pb → Q+ pr. In the following we will use the hatted notation to indicate a Born

phase space point, whilst the un-hatted momenta represent the real phase space point.

The phase space generator needs to integrate out all initial state radiation within the

constraints of fixed momenta of the identified final state particles (and, if required, the jet

veto). We show in Appendix A that this can be achieved using a FBPS generator defined

by,

dΦ(pa + pb → Q+ pr) = dΦ(p̂a + p̂b → Q)× dΦFBPS(pa, pb, pr)× θveto , (3.4)

where θveto (optionally) vetoes events that generate an additional jet. At NLO the jet veto

cut is simply,

θveto(pr) = θ
[
plabT (pr) < pmin

T (jet)
]
, (3.5)

where plabT (pr) is the laboratory frame transverse momentum (calculated using Eq. (2.16)).

Note the initial state brancher is necessarily an antenna brancher since it ensures that the

initial state partons remain massless. The form of the FBPS generator, in terms of the

kinematic variables pa, pb and pr, is,

dΦFBPS(pa, pb, pr) =
1

(2π)3

(
ŝab
sab

)
d tard trbdφ , (3.6)

where txy = (px − py)2 and dφ is a rotational degree of freedom about the z-axis. The

explicit construction of the momenta pa, pb and pr in terms of the integration variables

is detailed in Appendix A. The phase space weight corrects the flux factor due to the

resulting emission of an extra parton.

Finally, we observe that the forward brancher must by necessity change the initial state

momenta. This means that for bremsstrahlung events the values of plabT will depend on the

branching momentum pr. Thus although the four momenta of the final state particles are

fixed in the MEM frame the value of the plabT observable changes dynamically. In other

words a single event with fixed MEM frame four momenta corresponds to a range of plabT

values. Using the FBPS we can now explicitly define RΩ(x) as,

RΩ(x) =

∫
dΦFBPS(pa, pb, pr)

(
Lij(sab, xl, xu)Rij

Ω(pa, pb,x, pr)

−
∑

m

Lij(sab, x
m
l , xmu )Dm(pa, pb, pr)Bij

Ω (p̂a, p̂b,x)

)
. (3.7)

In the above we note that the boost integral is defined for a given branching, since each

branching generates a new sab. The quantity Rij
Ω(pa, pb,x, pr) = |M (0)

Ω (pa, pb,x, pr)|2 is the

Born level matrix element with one additional parton. Finally, D(pa, pb, pr)Bij
Ω (p̂a, p̂b,x)

represents the subtraction terms that cancel the soft and collinear divergences which occur

when pr is unresolved. A couple of observations are in order in regards to the dipole

pieces. We note that, since the dipoles must provide a pointwise cancellation, the boost

function inherits the same sab as in the real boost function. However the underlying Born
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The MEM at NLO. 

• We now have everything we need to define the MEM at NLO, 

• Note that the real and virtual are both defined for the observed Born topology x. 
Recall (from Walter’s talk)... 

matrix element must be evaluated using the original Born ŝab in order to have a one-to-

one correspondence with Eq. (3.2). This also fixes the integration limits, xml and xmu in

Eq. (3.7). We discuss the exact modifications to the usual dipole subtraction scheme in

Appendix B.

We are now in a position to build our scattering probability accurate to NLO, based

on the quantities VΩ(x) and RΩ(x) that we have defined in Eqs. (3.2) and (3.7) above. The

NLO probability density function associated with the event x is,

P(x|Ω) =
1

σNLO
Ω

(
VΩ(x) +RΩ(x)

)
. (3.8)

This equation defines the MEM at NLO.

3.2 Generating unweighted events at NLO

A welcome by-product of the method outlined in the previous sub-section is its ability to

generate unweighted events at NLO. In this section we outline how this is possible and in

later sections we will use the technique to generate samples of unweighted events that can

be used to test the MEM.

Our starting point is Eq. (3.1), in which we explicitly separated the NLO calculation

into real and virtual contributions. We define the inclusive phase space spanned by the

Born processes as Φ, which we can separate into two regions. Region I is the part of the

inclusive phase space, Φ, that is populated by the LO calculation under the lab frame cuts.

Region II is the remaining part of the inclusive phase space, in which the LO calculation

does not contribute.

We focus first on region I. Since the LO contribution is non-zero we can write a point

by point K-factor as follows,

KI(x) =
dσNLO

dx

(
dσLO

dx

)
−1

=
VΩ(x) +RΩ(x)

BΩ(x)
. (3.9)

This quantity is not positive definite since one can construct phase space points for which

KI(x) < 0. However, these correspond to regions in which the NLO calculation is un-

physical. More specifically, it is possible to choose a renormalisation scale such that the

differential cross section becomes negative. Typically this occurs because the choice of

renomalisation scale is widely separated from the typical scale of the event. In general if

a sensible scale choice is used then KI(x) > 0. In order to ensure that KI(x) > 0 it is

sufficient to check that the NLO differential cross section is positive in all observables. One

can then create weighted NLO events in this region by generating a Born phase space point

and recording both the Born weight, BΩ(x) and the K-factor, KI(x) for that point (as well

as the phase space weight associated with x). If the calculation is completely inclusive, i.e.

no cuts are applied and region II is empty, then an unweighted NLO sample can easily be

obtained by unweighting the combination of KI(x), BΩ(x) and the phase space weight.
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and bremsstrahlung events live in separate phase spaces, their only communication being

through a regularising subtraction scheme. Instead of following this procedure, we need to

reorganise the calculation such that it can provide a NLO weight for a given Born event,

with the sum over the event weights recovering the usual NLO cross section. To do this we

begin by assuming that our event has been rendered in the MEM frame using the procedure

described in the previous section. We note however that the procedure we will outline in

this section is not useful solely for extending the MEM to NLO. We are creating a method

for producing a NLO cross section from a series of Born phase space points, a procedure

that may have broader applications than are presented here.

Given the phase space point x = p1, . . . , pn where the final state momenta are those

of the identified final state particles, we can define the NLO corrections by,

dσNLO
Ω (x)

dx
= RΩ(x) + VΩ(x) . (3.1)

This follows the usual separation of the NLO calculation into two pieces, each of which

is associated with a different phase space. We stress though that here the separation has

been performed for a fixed Born phase space point, x. The definition of the term associated

with the virtual corrections is straightforward since it is defined in the same phase space

as the Born contribution. Explicitly, we can define VΩ(x) as,

VΩ(x) = Lij(sab, xl, xu)

(
Bij
Ω (pa, pb,x) + V ij

Ω (pa, pb,x)

)

+
2∑

m=0

∫
dz

(
Dm(z,x) ⊗ Lm(z, sab, xl, xu)

)

ij

Bij
Ω (pa, pb,x). (3.2)

Here the first term represents the combination of the Born matrix element Bij
Ω and the

one-loop Born interference term VΩ = 2Re|M(0)∗
Ω M (1)

Ω | (where the dependence on the

initial state partons has been suppressed). This is coupled to the same boost function,

Lij as was defined at LO. In our approach we have followed the NLO implementation of

MCFM and used the dipole subtraction procedure of Catani and Seymour [37] to handle

the singularities in the virtual and real calculations. The final term in Eq. (3.2) contains the

integrated subtraction terms, Da, introduced in this formalism. Since we are considering

initial state singularities the integrated dipoles depend on a convolution variable z. This

variable is convoluted with the boost function to create three structures,

L0 = L, L1 =

∫ xu

xl

dxa
fi(xa/z)fj(sab/(sxa))

zsxasab
, L2 =

∫ xu

xl

dxa
fi(xa)fj(sab/(zsxa))

zsxasab
.

(3.3)

In Eq. (3.2) the sum over these convolutions is given by m.

Using Eq. (3.2) we are able to define an event by event finite weight associated with

the Born plus virtual contributions. Our remaining task is thus to define RΩ(x) such that

there is no double counting of events. In other words we must ensure that the integration

of Eq. (3.1) results in the total NLO cross section (σNLO
Ω ). One way to ensure this is to
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Example : measuring the mass of the Z boson

Figure 4: Log-likelihoods obtained by a MEM analysis at LO (black) and NLO (red) for the
measurement of mZ at the LHC using Pythia data. Errors represent MC integration uncertainty.

both of which ensure our transfer function assumptions remain valid. In Fig. 4 we present

the likelihoods as a function of mZ for the completely inclusive case (i.e. the full data set).

As expected we observe a parabolic function around the best fit mass. Error bars represent

the Monte Carlo integration uncertainty and statistical uncertainties can be inferred by

using Eq. (2.4). We observe that the truth value (mZ = 91.1876 GeV) easily lies within

the 1-σ band of our best fit values,

LO: mZ = 91.170 ± 0.025 GeV NLO: mZ = 91.174 ± 0.025 GeV . (4.6)

The power of the MEM is also illustrated here, since with a data set of O(0.1) fb−1 we are

able to perform a measurement of the Z mass to within 25 MeV (modulo transfer function

uncertainties). It is not surprising that the NLO and LO results are very close to one

another since we have already observed that, for this process, the NLO and LO kinematics

are very similar in the MEM frame.

The results presented in Fig. 4 are for the full sample that includes events in which there

is a significant amount of showered radiation. Since there is no model of this additional

radiation in the LO MEM, one may worry that the measured value of mZ depends on the

amount of this additional radiation. We therefore present the results of a study of this

effect in Fig. 5, where we have performed the mass measurement for a variety of cuts on

the transverse momentum of the dilepton (Z) system, p!!T . By varying the maximum value

of this quantity for events in our sample, we are limiting the amount of additional radiation

(i.e. showering) present in the event. Since this veto represents an additional cut on the

data, the size of the data sample shrinks as the maximum p!!T is reduced. For this reason the
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Figure 3: Comparison between MCFM (LO and NLO) and Pythia in different frames. On the left
hand side p!

T
is plotted in the MEM frame, whilst on the right hand side the lab frame equivalent

is plotted. Predictions are normalised by the total cross section (or number of events in the Pythia
case).

4.2 Validating the MEM: measuring mZ

In the previous sub-section we have used MCFM, representing a traditional approach to

NLO calculations, to generate lab frame events that are then transformed into the MEM

frame. As described in the previous section, for the the extension of the MEM method to

NLO it is easiest to work directly in the MEM frame. We have modified MCFM accordingly

to incorporate the phase space generator and approach described in the previous section.

In addition to the implementation of the FBPS, the code has been constructed such that

a NLO weight can be ascribed to an individual event in the MEM frame.

A simple test of our implementation of the MEM at LO and NLO is its application to

the measurement of the mass of the Z boson at the 7 TeV LHC. To this end we generate

O(5000) events using Pythia that satisfy the following lab frame requirements,

p!T > 15 GeV , |η!| < 2.5 , 80 GeV < m!+!− < 100 GeV. (4.5)

We use Pythia since it is a completely independent code to MCFM and as such is also

independent of our new method for generating the NLO weights. In addition, Pythia output

is at the particle level, including shower, hadronisation and underlying event models. We

note that in Pythia we have turned off both the mass of the leptons and QED radiation,
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Generate 5000 events 
with Pythia and try to 
measure the Z mass. 

Figure 4: Log-likelihoods obtained by a MEM analysis at LO (black) and NLO (red) for the
measurement of mZ at the LHC using Pythia data. Errors represent MC integration uncertainty.
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the 1-σ band of our best fit values,

LO: mZ = 91.170 ± 0.025 GeV NLO: mZ = 91.174 ± 0.025 GeV . (4.6)

The power of the MEM is also illustrated here, since with a data set of O(0.1) fb−1 we are

able to perform a measurement of the Z mass to within 25 MeV (modulo transfer function

uncertainties). It is not surprising that the NLO and LO results are very close to one

another since we have already observed that, for this process, the NLO and LO kinematics

are very similar in the MEM frame.

The results presented in Fig. 4 are for the full sample that includes events in which there

is a significant amount of showered radiation. Since there is no model of this additional

radiation in the LO MEM, one may worry that the measured value of mZ depends on the

amount of this additional radiation. We therefore present the results of a study of this

effect in Fig. 5, where we have performed the mass measurement for a variety of cuts on

the transverse momentum of the dilepton (Z) system, p!!T . By varying the maximum value

of this quantity for events in our sample, we are limiting the amount of additional radiation

(i.e. showering) present in the event. Since this veto represents an additional cut on the

data, the size of the data sample shrinks as the maximum p!!T is reduced. For this reason the
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Figure 4: Log-likelihoods obtained by a MEM analysis at LO (black) and NLO (red) for the
measurement of mZ at the LHC using Pythia data. Errors represent MC integration uncertainty.

both of which ensure our transfer function assumptions remain valid. In Fig. 4 we present

the likelihoods as a function of mZ for the completely inclusive case (i.e. the full data set).

As expected we observe a parabolic function around the best fit mass. Error bars represent

the Monte Carlo integration uncertainty and statistical uncertainties can be inferred by

using Eq. (2.4). We observe that the truth value (mZ = 91.1876 GeV) easily lies within

the 1-σ band of our best fit values,

LO: mZ = 91.170 ± 0.025 GeV NLO: mZ = 91.174 ± 0.025 GeV . (4.6)

The power of the MEM is also illustrated here, since with a data set of O(0.1) fb−1 we are

able to perform a measurement of the Z mass to within 25 MeV (modulo transfer function

uncertainties). It is not surprising that the NLO and LO results are very close to one

another since we have already observed that, for this process, the NLO and LO kinematics

are very similar in the MEM frame.

The results presented in Fig. 4 are for the full sample that includes events in which there

is a significant amount of showered radiation. Since there is no model of this additional

radiation in the LO MEM, one may worry that the measured value of mZ depends on the

amount of this additional radiation. We therefore present the results of a study of this

effect in Fig. 5, where we have performed the mass measurement for a variety of cuts on

the transverse momentum of the dilepton (Z) system, p!!T . By varying the maximum value

of this quantity for events in our sample, we are limiting the amount of additional radiation

(i.e. showering) present in the event. Since this veto represents an additional cut on the

data, the size of the data sample shrinks as the maximum p!!T is reduced. For this reason the

– 16 –

We know NLO 
corrections are very 
small (saw almost 
identical MEM frame 
kinematics). 



What about the extra radiation??

Figure 5: Reconstructed Z mass as a function of the upper bound on the transverse momentum
of the dilepton system, p!!

T
. Errors represent the 1σ deviation from the central value. Note that

both LO and NLO calculations are performed at the same values of the cut, p!!
T
. In the plot the

NLO points have been moved slightly to the right for clarity.

statistical uncertainty increases at low p!!T , as is apparent from the uncertainties shown in

the figure. For this observable it is clear that both the dependence on the boost and on the

higher order corrections is small. The relative independence of the results from the amount

of shower radiation allowed in the events illustrates that the boost method has worked well

for this observable. This is encouraging but should not be taken as a general rule for all

observables. The boost changes the parton fractions xa and xb and thus observables that

are sensitive to such changes will become dependent on the amount of additional radiation

in the event. In cases where imposing a jet veto is desirable, the boost (in)dependence

should be checked by performing the measurement with a desired veto, and recalculating

the observable with a tighter veto upon the same data set. If the two results agree within

statistical errors then one is reassured that the shower is playing a minimal role. One may

expect that, given its improved modeling of additional radiation, that the NLO results will

be less sensitive to the additional radiation.

5. The Higgs Boson search in the channel H → ZZ → 4!

A convenient example in which to test our MEM implementation at LO and NLO is

the Higgs search at the LHC. One of the cleanest search channels is the process H →
ZZ → 4" [39, 40] since the final state can be fully reconstructed in the detector and the

SM backgrounds are small. With full control of the final state, with no sizeable missing

transverse momentum or jet activity expected, this channel is a natural candidate for a
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Example: Setting Limits on the Higgs 

• A more interesting example is to 
use the MEM to constrain the 
Higgs 

• We generate ~ 250 ZZ->4l 
unweighted NLO events. 

• The background spectrum contains 
everything in MCFM (e.g. gg->ZZ, 
singly resonant Z..). 

have large K-factors associated with higher order corrections. In this instance this is also

true of the continuum background. The size of the gluon flux at the LHC also results in the

gg-initiated contributions contributing at the order of 10% of the total. Since MCFM [32]

includes all these effects and is known to model the shape of the four lepton invariant

mass distribution reasonably well [39], we expect that a NLO parton level simulation

should give a reasonably realistic description of the most important features of actual four

lepton events. We use the procedure outlined at the end of section 3 to directly generate

NLO unweighted events in the MEM frame, where each of these events has the kinematic

structure of a Born phase space point. We note that some of these events possess leptons

with, for instance, pMEM,!4
T < 5 GeV. Since, at LO, pMEM

T = plabT these events cannot

pass the fiducial cuts in the LO analysis and as such are not included in the calculation

of the likelihood. However, at NLO, the transverse momentum is not identical in the two

frames, pMEM
T != plabT . Therefore a value of pMEM

T < 5 GeV can correspond to a real

radiation contribution with plabT > 5 GeV. As a result such events are included in the NLO

likelihood calculation. Therefore there can be a different number of events in the LO and

NLO data samples. This is a reflection of the fact that the NLO calculation exhibits a

richer kinematical structure than the LO one.

We generate 253 NLO background events, pp → ZZ → 4!, that pass the cuts given in

Eq. (5.1) and then perform a MEM analysis at both LO and NLO. Due to the issue discussed

above, only 250 of these enter the LO calculation. Our results are shown in Figure 6, where

we present results as log-likelihood differences, log(LB/LS+B). The likelihoods are for a

signal plus background hypothesis for a given Higgs mass (LS+B), and for a hypothesis in

which there is background only (LB). If a Higgs boson at a given mH is more probable

than the background only hypothesis then the resulting difference is negative. However if

the Higgs signal is less favourable than the background only hypothesis then this quantity

is positive. Therefore a larger difference with respect to zero results in a stronger signal

or more stringent limits. Since our sample was generated without a Higgs boson signal

(and no chance fluctuations mimicking a signal) we observe that the difference is always

positive. We can then proceed to set limits at the 1- and 2-σ levels by requiring that

log(LB/LS+B) > 1/2 and log(LB/LS+B) > 2 respectively. With these definitions we find

the following 95% confidence exclusion range at LO,

LO MEM exclusion: 120 GeV < mH < 380 GeV , (5.2)

while the NLO MEM provides the more stringent exclusion limit,

NLO MEM exclusion: 100 GeV < mH < 430 GeV . (5.3)

Although these limits are an interesting example of the MEM at LO and NLO, we remind

the reader that they should not be taken too literally. In particular we have not modified

the selection cuts as a function of mH , for instance to use more efficient cuts in the heavy

Higgs region that better maximise the signal/background ratio. In that scenario one would

be better able to discriminate between signal and background and the presence (or lack) of

Higgs signal events would result in stronger limits (or greater significance of a discovery).
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Figure 6: The log-likelihood difference for background only and signal plus background, for a
Higgs boson search in the channel, H → ZZ! → 4 leptons. Positive values of the difference indicate
that the background-only hypothesis is more likely than the signal plus background one. The blue
and magenta lines represent the 1- and 2-σ limits respectively.

In section 5.5 we will present a more detailed study, involving the generation of many

pseudo-experiments, in order to investigate the true potential for setting limits on the

Higgs boson mass by using the MEM at LO and NLO. We also note that in this section

we are using NLO data and therefore the fact that NLO gives stronger limits is hardly

surprising. However under the assumption that the data is better modelled by a NLO

prediction than a LO one, we can infer that the NLO MEM might give better results than

its LO counterpart.

5.3 Results in the presence of a Higgs boson with mH = 125 GeV

We now consider the case in which the SM Higgs exists and has a mass mH = 125 GeV.

We use the same background events and cuts as in the previous section and include in

addition three Higgs signal events that are generated from an unweighted NLO sample.

For this mass the SM Higgs is a very narrow resonance, ΓH = 0.417 × 10−2 GeV,

and as a result the MEM might be expected to measure the mass very precisely even

with only a few events. This is indeed what we observe in our results, shown in Fig. 7.

The curves, both at LO and NLO, exhibit a very sharp valley at mH = 125 because each

unweighted signal event has almost exactly the same mass due to the tiny width. A handful

of events clustered at a single mass, in this casemH = 125 GeV, is clearly a very significant

feature. In this example one signal event has pMEM,!4
T = 3.8 GeV and, as already discussed,

therefore fails the cuts in the LO MEM analysis. However, the remaining 3 leptons in this
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Example: Heavy Higgs. 

• Inject a signal at 
425 using the 
same 
background 
sample as the 
previous slide. 

• Can measure the 
Higgs mass to 
within a few % 
with a handful of 
events! 

Figure 8: Log likelihoods for a heavy Higgs boson decaying into four leptons, where we have
injected a signal at mH = 425 GeV.

generate the same number of background-only four lepton events as observed in the 5 fb−1

data set of each LHC experiment. This corresponds to approximately 70 events. Any

given pseudo-experiment will contain a random fluctuation around this central value as

a result of the unweighting procedure. When we generate our background-only samples

each pseudo-experiment has equal weight, regardless of the number of events entering the

sample. Clearly a pseudo-experiment with more events will be able to set better limits and

we have not specifically accounted for this effect. However, since we are mostly interested

in comparing the limits obtained at LO and NLO, this caveat should not greatly affect our

conclusions.

In Fig. 9 we show the distribution of Λ = log (LB/LS+B) for the ensemble of pseudo-

experiments. Since the signal at 200 GeV is relatively strong, a typical pseudo-experiment

– that contains only background events – is able to exclude this hypothesis effectively, i.e.

Λ > 0. We note that, as expected, the NLO MEM typically sets a much stronger exclusion

than at LO (the peak in the LO distribution is in the region Λ ∼ 5, whilst the NLO peak

is at Λ ∼ 9). This is also clear from the summary of exclusion limits that could be set,

presented in Table. 1.

Although it is interesting to examine the differences between the two orders in pertur-

bation theory, we stress that it is not surprising that NLO is able to set stronger limits,

since the event samples in each pseudo-experiment are generated by a NLO calculation.

One might expect that if we had used LO unweighted samples instead, that LO would have

set stronger limits for this Higgs mass. However, since NLO predictions typically provide

a better description of experimental data than LO ones, there is some justification to the
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study of the light Higgs, i.e. by probing its couplings and spin. We leave such a study to

future work.

5.4 Results in the presence of a Higgs boson with mH = 425 GeV

Finally we consider the case of a heavier Higgs boson (mH = 425 GeV), that is consequently

much broader, ΓH = 37.6 GeV. Although not currently favoured experimentally this is still

an interesting example for two reasons. Firstly the large width, compared to the case of a

light Higgs just discussed, illustrates the behaviour of the MEM in the presence of a broad

resonance. Secondly, although the current limits rule out a SM Higgs at approximately

the 2σ level, they do not rule out the possibility that some other (weaker) broad resonance

could be found in the four lepton channel. Since in this example the Higgs boson has a

large width we expect that the likelihood results will be different to the light Higgs example

discussed previously.

We use the same background sample as in the previous examples and introduce four

Higgs signal events that have been generated from an unweighted NLO sample. The

results of a MEM likelihood analysis are presented in Fig. 8. We fit a parabola in the

region 410 GeV < mH < 450 GeV in order to extract a best fit mass. We observe that in

a similar fashion to the mass measurement examples that we have already presented, LO

and NLO analyses return similar best fit masses and uncertainties:

mfit
H (LO) = 428± 14 GeV , mfit

H (NLO) = 427± 14 GeV . (5.4)

However, since the NLO model fits the data better than the LO model the NLO result is

more significant compared to the background-only hypothesis.

A full understanding of the potential of the MEM for measuring heavy resonances that

decay into leptons requires a detailed study involving many pseudo-experiments. Indeed

since the width is so large one may often encounter individual experiments that include

a small number of events with very large invariant mass. We expect this will result in a

large spread of possible errors in the mass measurements. One can only perform a true

comparison of the discriminating power of LO and NLO MEM analyses by investigating

results obtained using an ensemble of pseudo-experiments. It is precisely this issue that

we will investigate in more detail in the next section.

5.5 A study with multiple pseudo experiments

In order to investigate the differences between the MEM at LO and NLO in a more sys-

tematic manner we repeat our analysis with multiple pseudo-experiments. We generate

background-only data samples and study Higgs exclusion for a given Higgs mass hypoth-

esis. We choose to investigate the case mH = 200 GeV since at this value the Higgs cross

section is near its maximum in the four lepton channel. This means that, even with a

smaller data set than in the previous examples, we can extract useful information from an

individual pseudo-experiment.

Our setup is as follows. We generate 960 pseudo-experiments corresponding to un-

weighted NLO events using the tools described in the previous sections. We attempt to

– 22 –



Example: Higgs mass measurements. 

Figure 7: Log likelihoods for a light Higgs boson decaying into four leptons, where we have injected
a signal at mH = 125 GeV. The dashed lines indicate the results obtained when including all 3
signal events at NLO. The dotted line represents the NLO likelihood when the event that fails the
cuts in the LO analysis is omitted.

event have larger transverse momenta, thus allowing real radiation contributions to provide

a contribution to the NLO likelihood. This enhances the differences between LO and NLO

since the overall sample size is so small. In order to quantify the impact of the event that

fails the cuts at LO, we present the NLO results obtained when omitting this event as

a dotted curve in Fig. 7. We observe that the peak value is reduced by about a third,

indicating that although this event fails the LO cuts, it still possesses a non-negligible

weight that the NLO calculation is able to utilise. The remaining large difference between

LO and NLO can be understood by considering the physics in the region aroundm4! ∼ 125

GeV. As a result of our cuts there are very few background events, which means that the

log-likelihood difference is more sensitive to the large signal K-factor than in regions in

which the background is sizeable. In other words, since the K-factor for the background

is also large, regions in which background events occur frequently tend to spoil the NLO

enhancement of the signal in the likelihood difference.

In both LO and NLO cases, the MEM can measure the mass much better than the

expected experimental resolution from the transfer functions. That is, we have stretched

our assumption that W (x,y) = δ(x − y) well beyond its expected validity. Clearly, a

trustworthy assessment of the accuracy of a MEM element approach in this scenario must

be performed using a more sophisticated experimental analysis, which is beyond the scope

of this work. We note that if the transfer functions can be determined sufficiently accurately

(say from Drell-Yan events) then the MEM will most likely provide the best measurement

of the Higgs mass in this channel. In addition the MEM should be very useful in the future
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The MEM can also be used for a light Higgs, however since the width 
is smaller than the lepton resolution, transfer function modeling 
becomes necessary. 



Systematic study of the NLO/LO differences.

Figure 9: Pseudo experiments testing the hypothesis that there is a Higgs boson with mH = 200
GeV. We generate pseudo-experiments which consist only of background and no Higgs signal. As
such the most common outcome is that the signal plus background hypothesis is less likely than
the background only.

Exclusion % LO % NLO

> 1σ 91.1 98.2

> 2σ 77.3 96.1

> 3σ 38.1 90.1

> 4σ 0.521 67.3

> 5σ 0.00 3.75

Table 1: Percentage of pseudo experiments which set limits given by an upper bound on the
confidence level.

claim that the NLO MEM could set stronger limits in such a Higgs search. In addition it is

interesting to note that the likelihoods obtained at the two orders in perturbation theory

are significantly different, regardless of which analysis sets the better limit. Given the large

K-factors associated with these processes, this is not unexpected.

6. Conclusions

The matrix element method is an analysis technique that can be used to determine param-

eters of an underlying physics model by using a set of events that are measured experimen-

tally. The probability that a single event in the set is described by a given model hypothesis

can be computed from a calculation of the scattering probability within that model. Up
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It is interesting to compare LO 
and NLO over a wider range of 
pseudo experiments to 
observe if the differences are 
systematic. 

In our setup NLO consistently 
sets better limits for a Higgs of 
200 GeV. (Not surprising since 
we used NLO data!) 



Conclusions. 

• We have illustrated how the MEM can be theoretically well defined at all 
orders, presented simple examples at NLO of H->4l and Z->ll

• In order to define a fixed order weight for an experimental event one must 
boost to a frame in which the final state is balanced. 

• Since a given boost is not unique, we must integrate over all equivalent 
boosts, the Matrix Element doesn’t care but the PDFs do. 

• Our approach does not change the experimental input (transfer functions).  



Future study 

• Measurement of the top mass at the LHC and Tevatron (flagship application 
of the MEM). 

• Higgs in other channels, associated production, two photons etc. 
Confirming SM properties, BR, spin etc. WW.... 

• Measurement of/Limits on triple anomalous gauge couplings. 

• ..........

We are keen to extend the method to other measurements, in particular.... 

We gladly welcome experimental input! Beta code of NLOME is available, 
first release expected in May/June. BIG Thank you to experimentalists who 
have helped so far!


