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Introduction

» Many observables in QCD develop poorly behaved
perturbation series in certain limits of phase space.

» Observables then often dominated by radiation collinear to a
light-cone direction, or soft radiation.

» When the collinear and soft radiation virtuality is small but of
the same order, special difficulties arise.



(Not Quite) Back to Back jets

eTe™ — 2j with the event shape Jet Broadening.
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Figure: Jet Broadening Collinear Displacement From Thrust Axis



(Not Quite) Back to Back jets

e=7y '%’"' jet broadening event shape.

Thrust axis t of the event defines directions:
n=1,-t) prt=0
p = (n.p,n.p,Pt)
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Demand e < 1 for dijets.
Relevant on-shell modes must have g; ~ Qe.
Softs ~ Q(e, e, €) and collinears ~ Q(1,€2,e) or ~ Q(€2,1, e)
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Perturbative Expansion

L =log(e)
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In dijet limit, perturbation theory is poorly behaved.



Factorization with SCET

Lscer = [Lacoln + [Lacpla + [Lacp]sort + p-C.
» Use formalism of Soft-Collinear Effective Theory to organize
factorization.
» On-shell external states that can give contribution to the
observable defines modes of theory.
» Effective theory built on each mode having its own (QCD)
Lagrangian. No interactions linking modes at leading power.

(Bauer, Fleming, Luke 2000; Bauer, et al. 2001; Bauer, Pirjol,
Stewart 2002; ...)



Factorization Theorem
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Where the jet and soft functions are defined as:
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Where B, and By, are operators picking out the transverse
momenta being contributed in each hemisphere.



Naive Dim-Reg Calculation

» Bare jet function:

Jn(€n,0) = “Scf(

T
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) I momentum of gluon crossing cut

» Integral ill-defined at z = 0, the soft region.

» Divergence multiplies non-zero e, terms that virtuals cannot
cancel.



Problem of Scales

Factorization in dim-reg: do- = H(u) Jn(1) ® J7(u) ® S(u)

» The u parameter in Dim-Reg is sensitive only to the invariant
mass of the sector.
» Hard function contains u-logarithms of hard scale Q2.

» Low scale functions contains u-logarithms of low scale eQ. e
sets low scale invariant mass.



Problem of Scales

do = H(u) Jn(p) ® Ja(u) ® S(u)
» From fixed order cross-section, there are large double logs to
be resummed.

» Double logs appear in factorized form in each sector, now
dependent on factorization scale u

» u variation of the hard function must cancel in low scale matrix
elements. But hard function will have double logs:

Hu)=1+a Logz(f—f) - .

» Leading u variation is aLog(S—;).

» Must be able to generate such log in low scale matrix
elements. But dim-reg factorizes Q2 scale from the these
matrix elements!



Strategy

» Further factorization must be performed. Low-scale modes
are differentiated only in rapidity, modes must be factorized
accordingly.

» Factorization always introduces new divergences: now in
light-cone integrations.
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Figure: Rapidity Factorization of low scale Modes



Strategy

» Introduce a rapidity regulator to control divergences.

» After appropriate subtractions (zero- or soft-bin), renormalize
these divergences.

» Left over renormalization parameter allows resummation of
logarithms in controlled fashion.



New regulators

To regulate Rapidity divergences, one may use any regulator up to
certain requirements:

>

>

>

Maintains gauge invariance.
Preserves eikonal identities.

Cleanly separates Invariant Mass and Rapidity
Logarithms/Divergences.

Enters each function in universal fashion.

All jet functions appropriately soft-subtracted to disentagle
overlaps.



New regulators

Example regulators where such features can be achieved:

» §-regulator (Chui et al.), eikonal propagators receive small
. 1
Mass. 3% = Fkron

» Titling Wilson lines off the light-cone.
» p-regulator (Chui et al.)



n regulator

» Regulates in a minimal fashion: Operates on gauge invariant
CWESB structures defined by non-abelian exponentiation.

» CWEB minimally divergent: only one overall rapidity
divergence.

» Within a CWEB structure regulate the total ks momentum
flowing between the n and n directions, by multipling integrand
by v ks|", expanded according to the power counting of each
sector.

» At one loop, this reduces to regulating the k3 momentum
flowing onto the wilson line insertion graph.



Jet Function Redux: v Logs

Now with r regulator in place, we look at the laplace transformed
jet function:
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Structure of n divergences

Figure: Factorization of  Divergences

» Combining jet and soft sectors, n divergences and v
dependence cancels.
» Within a sector n divergences exponentiate.

» Pattern of exponentiation follows non-abelian exponentiation
theorems for eikonal processes.

» Treat removal of n divergences with multiplicative
renormalization.



y Renormalization

Now there are renormalization factors Z,, Z, Zs such
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v RG

One can calculate the RG equations as:

d vV
v FR(v i) = yEF" (v )

d r R
u@F (o) = YeF" (vp)

For the case of the jet function at NLO:
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NB: Running in v and u commute.



v RG

nu parameter acts as an effective cutoff in rapidity fluctuations in
each sector. Using evolution equations, one moves fluctuations
into and out of a sector along invariant mass hyperbola.

k+

Figure: RRG along an invariant mass hyperbola.



The Strategy of Running

» u Run hard function down to scale eQ

» v Run soft function up to scale Q
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Figure: Running Strategy



Structure of Resummed Cross-Section

do
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Leading Log variation cancels in the exponent (problem of scales).
All logarithms minimized in all sectors.



Results at NLL

do (nbarn)
dBr Q = 130 GeV
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Figure: Jet Broadening Differential Cross-Section

NLL error bars include geometric mean of v and u variation.



Why RG technique?

The key feature of the renormalization group technique is that it
allows a clean definition of the matrix elements, and how to
exponentiate the large logarithms from the matrix elements.

» Factorize at any common scale v.

» Evolve each matrix element to natural scale.

» Can precise quantify v dependence of cross-section:
cross-section v independent at all orders in perturbation
theory. There is always subleading v dependence at given
resummation order.



Applications

Beyond jet broadening, many applications. Broadly called as “Soft
Recoil Sensitive Observables” (SRSO’s), and provides a universal
formalism for all such processes:

» Transverse Momentum PDF’s

v

Transverse Momentum Fragmentation functions

v

End-point Singularities in exclusive B-decays

v

Double Parton Distribution Functions (Manohar&Waalewijn
2012)

Jet Algorithms (Cheung& Freedman 2012)

\{



Comparison to CSS

Factorization in Rapidities (Collins&Soper 1982) for TM
fragmentation functions.

>

>
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CS equation: Q" 33-F = (G + K)F.

G corresponds to hard double logs, K to infra-red double logs.

Inadequate factorization: hard double logs should only reside
in hard function.

Hard matching coefficient ambiguous as it depends on
rapidity regularization parameter.

Power corrections problematic.



Comparison to CSS

> v equation: vZF = KF.
» G term gone: factorization is complete.

» hard matching coefficient depends on only on u
renormalization scale: factorized in invariant mass and
well-defined independent of rapidity regulator.

» Power Corrections straight forward to implement in EFT
framework.



Conclusion

» Introduced formalism applicable to observables where soft
and collinear radiation with same invariant mass dominate,
and fixed order cross-section contains large double
logarithmic series (SRSO’s).

» Allows for consistent resummation of all large logarithms,
gives universal low scale matrix elements.

» Formalism applicable in wide variety of observables (not
process dependent).

» Organized in SCET framework for conceptual ease of use.



