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Introduction

I Many observables in QCD develop poorly behaved
perturbation series in certain limits of phase space.

I Observables then often dominated by radiation collinear to a
light-cone direction, or soft radiation.

I When the collinear and soft radiation virtuality is small but of
the same order, special difficulties arise.



(Not Quite) Back to Back jets

e+e− → 2j with the event shape Jet Broadening.
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Figure: Jet Broadening Collinear Displacement From Thrust Axis



(Not Quite) Back to Back jets

I e =
∑

i
|~kti |

Q jet broadening event shape.
I Thrust axis t̂ of the event defines directions:

n = (1, t̂) n = (1,−t̂) ~pt .t̂ = 0

p = (n.p, n.p, ~pt )

I Demand e � 1 for dijets.
I Relevant on-shell modes must have ~pt ∼ Qe.
I Softs ∼ Q(e, e, e) and collinears ∼ Q(1, e2, e) or ∼ Q(e2, 1, e)



Perturbative Expansion

L =log(e)

dσ
de

= σ0(1+ αs[c12L2 + c11L + c10] (LO)

+ α2
s[c24L4 + c23L3 + c22L2 + c21L + c20] (NLO)

+ α3
s[c36L6 + c35L5 + c34L4 + c33L3 + ...

LL NLL NLL ′ NNLL

In dijet limit, perturbation theory is poorly behaved.



Factorization with SCET

LSCET = [LQCD ]n + [LQCD ]n̄ + [LQCD ]soft + p.c.
I Use formalism of Soft-Collinear Effective Theory to organize

factorization.
I On-shell external states that can give contribution to the

observable defines modes of theory.
I Effective theory built on each mode having its own (QCD)

Lagrangian. No interactions linking modes at leading power.

(Bauer, Fleming, Luke 2000; Bauer, et al. 2001; Bauer, Pirjol,
Stewart 2002; ...)



Factorization Theorem

dσ
de

= N
∫

dendendesδ(e − en − en − es)∫
d2~pt1

(2π)2

d2~pt2

(2π)2 Jn(en, ~pt1)Jn(en, ~pt2)S(es , ~p1t , ~p2t )

Where the jet and soft functions are defined as:

Jn(en, ~pt2) =
(2π)3

Nc
tr〈0|χ̄n̄δ(n · P̂ − Q)δ(en̄ − ên)δ(P̂⊥ − p2⊥)

n/
2
χn̄ |0〉

Jn(en, ~pt1) =
(2π)3

Nc
tr〈0|

n̄/
2
χnδ(n̄ · P̂ − Q)δ(en − ên̂)δ(P̂⊥ − p1⊥)χ̄n |0〉

S(es , ~p1t , ~p2t ) =
1

Nc
tr〈0|Sn̄S†nδ(�n⊥ + p1⊥)δ(�̄n⊥ + p2⊥)δ(es − ês)SnS†n̄ |0〉

Where �n⊥ and �̄n⊥ are operators picking out the transverse
momenta being contributed in each hemisphere.



Naive Dim-Reg Calculation

I Bare jet function:

Jn(en, 0) =
αsCf

π

(
µ2

Q2e2
n

)ε
(en)−1

∫ 1

0
dz

1 + (1 − z)2

z

z =
n.l
Q

l momentum of gluon crossing cut

I Integral ill-defined at z = 0, the soft region.
I Divergence multiplies non-zero en terms that virtuals cannot

cancel.



Problem of Scales

Factorization in dim-reg: dσ = H(µ) Jn(µ) ⊗ Jn(µ) ⊗ S(µ)

I The µ parameter in Dim-Reg is sensitive only to the invariant
mass of the sector.

I Hard function contains µ-logarithms of hard scale Q2.
I Low scale functions contains µ-logarithms of low scale eQ . e

sets low scale invariant mass.



Problem of Scales

dσ = H(µ) Jn(µ) ⊗ Jn(µ) ⊗ S(µ)

I From fixed order cross-section, there are large double logs to
be resummed.

I Double logs appear in factorized form in each sector, now
dependent on factorization scale µ

I µ variation of the hard function must cancel in low scale matrix
elements. But hard function will have double logs:

H(µ) = 1 + a Log2
(

Q2

µ2

)
+ ...

I Leading µ variation is aLog
(

Q2

µ2

)
.

I Must be able to generate such log in low scale matrix
elements. But dim-reg factorizes Q2 scale from the these
matrix elements!



Strategy
I Further factorization must be performed. Low-scale modes

are differentiated only in rapidity, modes must be factorized
accordingly.

I Factorization always introduces new divergences: now in
light-cone integrations.
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Figure: Rapidity Factorization of low scale Modes



Strategy

I Introduce a rapidity regulator to control divergences.
I After appropriate subtractions (zero- or soft-bin), renormalize

these divergences.
I Left over renormalization parameter allows resummation of

logarithms in controlled fashion.



New regulators

To regulate Rapidity divergences, one may use any regulator up to
certain requirements:
I Maintains gauge invariance.
I Preserves eikonal identities.
I Cleanly separates Invariant Mass and Rapidity

Logarithms/Divergences.
I Enters each function in universal fashion.
I All jet functions appropriately soft-subtracted to disentagle

overlaps.



New regulators

Example regulators where such features can be achieved:
I δ-regulator (Chui et al.), eikonal propagators receive small

mass: 1
n̄.k →

1
n̄.k+δn̄

I Titling Wilson lines off the light-cone.
I η-regulator (Chui et al.)



η regulator

I Regulates in a minimal fashion: Operates on gauge invariant
CWEB structures defined by non-abelian exponentiation.

I CWEB minimally divergent: only one overall rapidity
divergence.

I Within a CWEB structure regulate the total k3 momentum
flowing between the n and n̄ directions, by multipling integrand
by ν−η|k3|

η, expanded according to the power counting of each
sector.

I At one loop, this reduces to regulating the k3 momentum
flowing onto the wilson line insertion graph.



Jet Function Redux: ν Logs

Now with η regulator in place, we look at the laplace transformed
jet function:

Jn(τ, 0) = −
αsCf

π

(
µ2τ2

Q2

)ε
Γ(−2ε)

∫ 1

0
dz(z + 2

(
ν

Q

)η 1 − z
z1+η

)

=
αsCf

π

(
µ2τ2

Q2

)ε
Γ(−2ε)

(
2
η

)
−
αsCf

π

3
4ε
−
αsCf

2πε
Log

(
ν2

Q2

)
−
αsCf

2π
Log

(
ν2

Q2

)
Log

(
µ2τ2

Q2

)
−
αsCf

π

3
4

Log
(
µ2τ2

Q2

)



Structure of η divergences

Figure: Factorization of η Divergences

I Combining jet and soft sectors, η divergences and ν
dependence cancels.

I Within a sector η divergences exponentiate.
I Pattern of exponentiation follows non-abelian exponentiation

theorems for eikonal processes.
I Treat removal of η divergences with multiplicative

renormalization.



ν Renormalization

Now there are renormalization factors Zn,Zn,Zs such

JB
n (τ, b1)JB

n (τ, b2)SB(τ, b1, b2) =(
Zn(ν, µ)JR

n (τ, b1, ν, µ)
) (

Zn(ν, µ)JR
n (τ, b2, ν, µ)

)(
Zs(ν, µ)SR(τ, b1, b2, ν, µ)

)
Where

Zn(ν, µ)Zn(ν, µ)Zs(ν, µ) = Z−1
H (µ)

Zn(ν, µ) = 1 +
αsCf

π

(
µ2τ2

Q2

)ε
Γ(−2ε)

(
2
η

)
−
αsCf

π

3
4ε
−
αsCf

2πε
Log

(
ν2

Q2

)



ν RG

One can calculate the RG equations as:

ν
d
dν

FR(ν, µ) = γνFFR(ν, µ)

µ
d

dµ
FR(ν, µ) = γ

µ
FFR(ν, µ)

For the case of the jet function at NLO:

γνJ =
αsCf

π
Log

(
µ2τ2

Q2

)
, γ

µ
J =

αsCf

π
Log

(
ν2

Q2

)
+

3αsCf

2π

NB: Running in ν and µ commute.



ν RG
nu parameter acts as an effective cutoff in rapidity fluctuations in
each sector. Using evolution equations, one moves fluctuations
into and out of a sector along invariant mass hyperbola.
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Figure: RRG along an invariant mass hyperbola.



The Strategy of Running

I µ Run hard function down to scale eQ
I ν Run soft function up to scale Q

µ

ν
jetsoft

hard

VS(ν, νS ;µ)

νS ∼ M ν ∼ Q

µ ∼ M

UH(µ, µH)

µH ∼ Q

Figure: Running Strategy



Structure of Resummed Cross-Section

dσ
de

= H U ⊗ Jn ⊗ Jn̄ ⊗ S

U = Exp
[
Γ(αS)L2 − 2Γ(αS)LL̃ + ...

]
L = Log

Q2

µ2

L̃ = Log
e2Q2

µ2

µ ∼ eQ

Leading Log variation cancels in the exponent (problem of scales).
All logarithms minimized in all sectors.



Results at NLL 4
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FIG. 3. Total Jet Broadening at 130 GeV.

using

H(s; µ) = H(s; µ0) UH(s; µ0, µ) (13)

where up to NLL UH can be found in [12], and H(s, µ0) =
1 to the order we are working.

The results we have presented so far are for the angu-
larity at a = 1, which is related to the total jet broad-
ening BT via e = 2BT . We will present cross-sections
for total jet broadening here and compare with the data.
For NLO singular cross-section we get

d�

dBT
= �0

↵s(µ)CF

⇡ BT
(�3 � 4 log BT ) (14)

where �0 is the Born cross-section. This result is in agree-
ment with ref. [8]. For the re-summed cross-section up
to NLL order we have

d�

dBT
=

�0

BT

UH(Q2, µQ, µ)

�(2!s)e2�E!s

✓
QBT

µ

◆2!s

. (15)

In Fig. 3 we have plotted the theory cross section and
the data [13]. We see that given the large error bars
the agreement with the data is reasonable. However, the
NNLL calculation will reduce the theory errors consid-
erably. We have not included the theory errors due to
power corrections. In the small BT region these are non-
perturbative and scale as ⇤QCD/(BT Q) and can be ex-
pected to be of order 20-30%. In the tail region there
are corrections of order BT relative to the singular con-
tributions. The disagreement at intermediate values of
BT , where fixed order calculations su�ce, is expected,
since logs will not dominate in this region and NLL re-
sults leave o↵ order one contributions. This region will
be correctly reproduced in the NNLL calculation. There-
fore, by systematically improving this result by includ-
ing higher order corrections in ↵s, power corrections and
non-perturbative correction, this result can be used for

precision ↵s determination. Such an analysis using thrust
was done in [12].

Finally, we wish to point out that the rapidity renor-
malization group can be utilized in multiple other set-
tings where rapidity divergences arise. Generically, this
will occur whenever kinematically soft radiation has in-
variant mass of the same order as the collinear radiation,
as in cases where one measures the pT of the final state.
Such observables will be discussed in more detail in [14].
Furthermore, it would be interesting to utilize our ra-
pidity renormalization group in the context of exclusive
processes where it has been shown rapidity factorization
sheds light on end point singularities in integrals over
light-cone distribution functions [4].
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Figure: Jet Broadening Differential Cross-Section

NLL error bars include geometric mean of ν and µ variation.



Why RG technique?

The key feature of the renormalization group technique is that it
allows a clean definition of the matrix elements, and how to
exponentiate the large logarithms from the matrix elements.
I Factorize at any common scale ν.
I Evolve each matrix element to natural scale.
I Can precise quantify ν dependence of cross-section:

cross-section ν independent at all orders in perturbation
theory. There is always subleading ν dependence at given
resummation order.



Applications

Beyond jet broadening, many applications. Broadly called as “Soft
Recoil Sensitive Observables” (SRSO’s), and provides a universal
formalism for all such processes:
I Transverse Momentum PDF’s
I Transverse Momentum Fragmentation functions
I End-point Singularities in exclusive B-decays
I Double Parton Distribution Functions (Manohar&Waalewijn

2012)
I Jet Algorithms (Cheung& Freedman 2012)



Comparison to CSS

Factorization in Rapidities (Collins&Soper 1982) for TM
fragmentation functions.
I CS equation: Q− d

dQ−F = (G + K)F .
I G corresponds to hard double logs, K to infra-red double logs.
I Inadequate factorization: hard double logs should only reside

in hard function.
I Hard matching coefficient ambiguous as it depends on

rapidity regularization parameter.
I Power corrections problematic.



Comparison to CSS

I ν equation: ν d
dνF = K F .

I G term gone: factorization is complete.
I hard matching coefficient depends on only on µ

renormalization scale: factorized in invariant mass and
well-defined independent of rapidity regulator.

I Power Corrections straight forward to implement in EFT
framework.



Conclusion

I Introduced formalism applicable to observables where soft
and collinear radiation with same invariant mass dominate,
and fixed order cross-section contains large double
logarithmic series (SRSO’s).

I Allows for consistent resummation of all large logarithms,
gives universal low scale matrix elements.

I Formalism applicable in wide variety of observables (not
process dependent).

I Organized in SCET framework for conceptual ease of use.


