LoopFest XI

$t\overline{t} + jet$ production: QCD corrections in production and decay

Markus Schulze

$t\bar{t} + jet(s)$ t t + γ t t + Z $t\bar{t} + H$ t t + W

t t + jet(s)

The study of associated top quark pair production marks the post-Tevatron era in top quark physics

t t + H t t + W

I. Background to Higgs search in VBF

II. Background to many New Physics searches

 $\tilde{g}\tilde{q} \rightarrow \tilde{q}qq\tilde{\chi}_2^0 \rightarrow qqq\chi_1^-\mu^+\tilde{\chi}_1^0 \rightarrow qqqe^-\tilde{\chi}_1^0\mu^+\tilde{\chi}_1^0$

2 OS leptons + 3jets + MET

II. Background to many New Physics searches

Baryon number violating top couplings

signal and background differ only by missing energy

III. Standard Candle

Transverse momentum of the ttbar pair

DZero and CDF (prelim.)

III. Standard Candle

Measurement of top quark differential cross sections CMS, February 2012

III. Standard Candle

Measurement of ttbar production with a veto on additional central jet activity

ATLAS, March 2012

Predictions at NLO QCD

$$pp \rightarrow t\bar{t} + jet$$

Stable top quarks:

2007 [Dittmaier,Uwer,Weinzierl]2010 [Bevilacqua,Czakon,Papadopoulos,Worek]

Top quark decays

at LO QCD: 2010 [Melnikov,M.S] at NLO QCD: 2012 [Melnikov,Scharf,M.S]

Parton showered:

2011 [Kardos,Papadopolous,Trocsanyi]2011 [Alioli,Moch,Uwer]

NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders K.Melnikov, M.S. Nucl.Phys.B840 (2010)

Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays K.Melnikov, A. Scharf, M.S. Phys.Rev.D85 (2012)

Framework

$$pp \to t\bar{t} + \text{jet} \to b\bar{b} \ \ell^- \ell^+ \ \bar{\nu}\nu + \text{jet}$$

at NLO QCD

Features:

- **decays of top quarks:** *realistic final state, acceptances*
- spin correlations:

kinematic distributions

• radiative top quark decays: changes normalization and shapes

• NLO corrections in production & decay:

reduced scale uncertainty, models soft / collinear and large angle emission exact to $\mathcal{O}(\alpha_s)$

Approximations:

• largely off-shell top quarks, W's:

neglect non-resonant corrections

- \Rightarrow apply narrow-width approximation valid up to $\mathcal{O}(\Gamma_t/m_t)$
- neglect shower effects and higher order threshold corrections

Production process

- Virtual corrections: Generalized *D*-dimensional unitarity + OPP [Ellis,Giele,Kunszt,Melnikov] [Ossola,Papadopoulus,Pittau]
- Real corrections: Berends-Giele recursion relations, Dipole subtraction with α-cutoff parameters [Catani,Dittmaier,Seymour,Trocsanyi]

Production process

- Virtual corrections: Generalized *D*-dimensional unitarity + OPP [Ellis,Giele,Kunszt,Melnikov] [Ossola,Papadopoulus,Pittau]
- Real corrections: Berends-Giele recursion relations, Dipole subtraction with α-cutoff parameter [Catani,Dittmaier,Seymour,Trocsanyi]
- Partonic processes:

 $\bar{q}q \to \bar{t}t \; (\bar{q}q + \bar{q}'q') \quad qg \to \bar{t}t \; q \; g_{\text{decay}}$ $qq \rightarrow \bar{t}t q$ $gg \rightarrow \bar{t}t \ g \ g$ $\bar{q}g \to \bar{t}t \ \bar{q} \ g_{\text{decay}}$ $ar{q} g
ightarrow ar{t} t \ ar{q}$ $\bar{q}q \rightarrow \bar{t}t \ g \ g$ $q\bar{q}' \rightarrow \bar{t}t \ q\bar{q}'$ $gg \to \bar{t}t \ g$ $gg \to \bar{t}t \ g \ g_{\text{decay}}$ $gg \to \bar{t}t \ q\bar{q} \qquad qq' \to \bar{t}t \ qq'$ $\bar{q}q \rightarrow \bar{t}t \ g \ g_{\text{decay}}$ $\bar{q}q \to \bar{t}t \ g \qquad qg \to \bar{t}t \ q \ g \qquad \bar{q}\bar{q}' \to \bar{t}t \ \bar{q}\bar{q}'$ $gg \to \bar{t}t \ g_{\rm decay} \ g_{\rm decay}$ $qq \rightarrow \bar{t}t \ qq$ $\bar{q}q \rightarrow \bar{t}t \ g_{\text{decay}}$ $\bar{q}q \rightarrow \bar{t}t \ g_{\text{decay}} \ g_{\text{decay}}$ $\bar{q}\bar{q} \to \bar{t}t \ \bar{q}\bar{q}$

- $gg
 ightarrow ar{t}t \ q_{
 m decay} \ ar{q}_{
 m decay}$
- $\bar{q}q \rightarrow \bar{t}t \ q_{\text{decay}} \ \bar{q}_{\text{decay}}$

Top quark decays

$$\bar{u}(p_t) \rightarrow \bar{\tilde{u}}(p_t) = \mathcal{M}(t \rightarrow b\ell^+ \nu) \frac{\mathrm{i}(p_t + m_t)}{\sqrt{2m_t \Gamma_t}}$$
$$|\mathcal{M}|^2 = |\bar{\tilde{u}}(p_t) \, \tilde{\mathcal{M}}(gg \rightarrow \bar{t}tg) \, \tilde{v}(p_{\bar{t}})|^2 + \mathcal{O}(\frac{\Gamma_t}{m_t})$$

Basic idea:

- retains all spin correlations
- allows straightforward implementation of NLO corrections

Quality of narrow-width approximation:

- formal suppression ~ $\mathcal{O}(\Gamma_t/m_t)$ requires full $\int dm_t...$ acceptance cuts constrain this integration but not too violently
- dedicated study of off-shell effects in tt̄ → W⁺W⁻bb̄ show O(1%) effects; in some corners of phase space 10-20% [Denner,Dittmaier,Kallweit,Pozzorini,Schulze]

Top quark decays

Virtual corrections:

traditional techniques (P-V integral reduction)

Real corrections:

need to derive new subtraction terms, decay kinematics (1→n) cannot be handled with standard Catani *et al.* dipoles

- *final-final*: borrow from Catani *et al.*
- *initial-final*: only soft singularity \rightarrow absorb into *f*-*i* dipole
- *final-initial*: NEW, following construction of [Ellis,Campbell,Tramontano] (single top)
- ⇒ complete set of dipoles for any decay process (including *alpha* cut-off parameter)

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

$$\sigma \stackrel{\text{LO}}{=} \sigma_{t\bar{t}+\text{jet}} \mathcal{B}_{t\bar{t}} + \sigma_{t\bar{t}} \mathcal{B}_{t\bar{t}+\text{jet}}$$

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

 $\mathcal{B}_{t\bar{t}+\text{jet}} = \mathcal{B}_{t+\text{jet}} \, \mathcal{B}_{\bar{t}} + \mathcal{B}_t \, \mathcal{B}_{\bar{t}+\text{jet}}$

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

$$\sigma \stackrel{\text{NLO}}{=} \sigma_{t\bar{t}+\text{jet}} \mathcal{B}_{t\bar{t}} + \sigma_{t\bar{t}} \mathcal{B}_{t\bar{t}+\text{jet}} + \sigma_{t\bar{t}+2\text{jet}} \mathcal{B}_{t\bar{t}} + \sigma_{t\bar{t}} \mathcal{B}_{t\bar{t}+2\text{jet}} + \sigma_{t\bar{t}+\text{jet}} \mathcal{B}_{t\bar{t}+\text{jet}}$$

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

$$\sigma \stackrel{\text{NLO}}{=} \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \left(\sigma_{t\bar{t}+1j}^{\text{virt}} + \sigma_{t\bar{t}+2j}^{\text{real}}\right) \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \left(\mathcal{B}_{t\bar{t}+1j}^{\text{virt}} + \mathcal{B}_{t\bar{t}+2j}^{\text{real}}\right) + \sigma_{t\bar{t}+1j}^{\text{real}} \mathcal{B}_{t\bar{t}+1j}^{\text{real}} + \sigma_{t\bar{t}}^{\text{virt}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{virt}}$$

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

$$\sigma \stackrel{\text{NLO}}{=} \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \left(\sigma_{t\bar{t}+1j}^{\text{virt}} + \sigma_{t\bar{t}+2j}^{\text{real}}\right) \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \mathcal{B}_{t\bar{t}+1j}^{\text{virt}} + \mathcal{B}_{t\bar{t}+2j}^{\text{real}}\right) + \sigma_{t\bar{t}+1j}^{\text{real}} \mathcal{B}_{t\bar{t}+1j}^{\text{real}} + \sigma_{t\bar{t}}^{\text{virt}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{virt}}$$

"production"

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

$$\sigma \stackrel{\text{NLO}}{=} \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \left(\sigma_{t\bar{t}+1j}^{\text{virt}} + \sigma_{t\bar{t}+2j}^{\text{real}}\right) \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \left(\mathcal{B}_{t\bar{t}+1j}^{\text{virt}} + \mathcal{B}_{t\bar{t}+2j}^{\text{real}}\right) + \sigma_{t\bar{t}+1j}^{\text{real}} \mathcal{B}_{t\bar{t}+1j}^{\text{real}} + \sigma_{t\bar{t}}^{\text{virt}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{virt}}$$

"decay"

Narrow width approximation separates production from decay process

→ we can distinguish QCD corrections in production and decay as well as jet radiation in production and in decay

$$\sigma \stackrel{\text{NLO}}{=} \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \left(\sigma_{t\bar{t}+1j}^{\text{virt}} + \sigma_{t\bar{t}+2j}^{\text{real}}\right) \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}}^{\text{LO}} \left(\mathcal{B}_{t\bar{t}+1j}^{\text{virt}} + \mathcal{B}_{t\bar{t}+2j}^{\text{real}}\right) + \sigma_{t\bar{t}+1j}^{\text{real}} \mathcal{B}_{t\bar{t}+1j}^{\text{real}} + \sigma_{t\bar{t}}^{\text{virt}} \mathcal{B}_{t\bar{t}+1j}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{virt}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{virt}} + \sigma_{t\bar{t}+1j}^{\text{LO}} \mathcal{B}_{t\bar{t}}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}} + \sigma_{t\bar{t}+1j}^{\text{LO}}$$

"mixed"

LHC 7 TeV

$$pp \to t\bar{t} + \text{jet} \to b\bar{b} \ \ell^- \ell^+ \ \bar{\nu}\nu + \text{jet}$$

$$p_{
m T}^{
m jet} > 25~{
m GeV} \qquad |y^{
m jet}| < 2.5$$
 $p_{
m T}^{\ell} > 25~{
m GeV} \qquad |y^{\ell}| < 2.5$
 $p_{
m T}^{
m miss} > 50~{
m GeV} \qquad \Delta R(j,j) > 0.4$
 $\mu_{
m R} = \mu_{
m F} = m_t$

$$m_t = 172 \text{ GeV}$$

$$\sigma_{t\bar{t}+jet}^{LO} = 350.3 \text{ fb} = 316.9(\text{prod}) + 33.4(\text{decay}) \text{ fb} \\ \swarrow \times 1.02 \\ \sigma_{t\bar{t}+jet}^{\text{NLO}} = 288 \text{ fb} = 323(\text{prod}) + 40.5(\text{decay}) - 75.5(\text{mixed}) \text{ fb}$$

⇒ QCD corrections and radiation in top decays can have a significant effect on the shapes (observable dependent)

Comparison with parton showered calculation by

[Kardos, Papadopoulos, Trcosanyi]

(not a tuned comparison)

Tevatron, semi-lept. channel

1.) Normalization

NLO in production + POWHEG BOX: full NLO: $\sigma^{\text{NLO+Herwig}} = 49 \text{ fb}$ $\sigma^{\text{NLO+Pythia}} = 48 \text{ fb}$ $\sigma^{\text{full NLO}} = 78.9 \text{fb} = 47.7 \text{(prod)}$ + 36.7 (decay) - 5.5 (mix) fb

Per construction, a parton shower conserves the production probability.

Comparison with parton showered calculation by

[Kardos, Papadopoulos, Trcosanyi]

(not a tuned comparison)

Tevatron, semi-lept. channel

Comparison with parton showered calculation by

[Kardos, Papadopoulos, Trcosanyi]

(not a tuned comparison)

Tevatron, semi-lept. channel

2.) Shape

Forward-Backward Asymmetry (Tevatron)

$$A = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_{\rm LO}^{tt} = 0\% \qquad A_{\rm NLO}^{tt} = +5\% \qquad [K\"uhn, Rodrigo]$$

$$A_{\rm LO}^{t\bar{t}+jet} = -8\% \qquad A_{\rm NLO}^{t\bar{t}+jet} = -2\% \qquad [Dittmaier, Weinzierl, Uwer]$$

Forward-Backward Asymmetry (Tevatron)

$$A = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_{\rm LO}^{t\bar{t}} = 0\% \qquad \qquad A_{\rm NLO}^{t\bar{t}} = +5\% \qquad \qquad [{\rm K\ddot{u}hn, Rodrigo}]$$

$$A_{\rm LO}^{t\bar{t}+\rm jet} = -8\%$$

$$A_{\rm NLO}^{t\bar{t}+\rm jet} = -2\%$$

[Dittmaier,Weinzierl,Uwer] [Melnikov,Schulze]

$$A_{\rm LO}^{t\bar{t}+\gamma} = -17\%$$

 $A_{\rm LO}^{t\bar{t}+2{\rm jet}}=-10\%$

$$A_{\rm NLO}^{t\bar{t}+\gamma} = -11\%$$

[Duan,Ma,Zhang,Han,Guo,Wang] [Melnikov,Scharf,Schulze]

$$A_{\rm NLO}^{tt+2\rm jet} = -5\%$$

17 . 0. 1

[Bevilacqua,Czakon,Papadopoulos,Worek]

Forward-Backward Asymmetry (Tevatron)

Is it possible to understand this seemingly universal shift of +5% ? [Melnikov,M.S.]

LO QCD:

 $\sigma_+ - \sigma_- \sim \log(m_t/p_{\mathrm{T}}^{\mathrm{jet}}) \, \sigma_A$ soft singularity

Forward-Backward Asymmetry (Tevatron)

Is it possible to understand this seemingly universal shift of +5%? [Melnikov,M.S.]

Forward-Backward Asymmetry (Tevatron)

Is it possible to understand this seemingly universal shift of +5%? [Melnikov,M.S.]

double log enhanced

 $A_{
m NLO}^{tar{t}+
m jet} = A_{
m LO}^{tar{t}+
m jet} + A_{
m NLO}^{tar{t}}$

with $A_{\text{NLO}}^{t\bar{t}} = +5\%$ and $\lim_{p_{\text{T}}^{\text{jet}} \to 0} A_{\text{NLO}}^{t\bar{t}+\text{jet}} = A_{\text{NLO}}^{t\bar{t}}$

- ttb+jet is an important background for many New Physics searches and allows QCD studies at the LHC
- We have a flexible program to calculate NLO QCD corrections and jet radiation in production and decay
- Effects of corrections and radiation in decay can be significant

We are looking forward to comparisons with measurements