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Next-to-Leading Order in QCD 

• Precision QCD requires at least NLO 

 

• QCD at LO is not quantitative: large dependence on 
unphysical renormalization and factorization scales 

• NLO: reduced dependence, first quantitative prediction 
 

• Applications to Multi-Jet Processes: 
 Measurements of Standard-Model distributions & cross sections 

Kemal Ozeren’s talk  

 Estimating backgrounds in Searches 

• Having a Mulitple-Jet NLO calculation is the minimal entry 
fee, but it’s not the end of the story 



On-Shell Revolution & BLACKHAT 

High-multiplicity parton & parton + vector-boson one-loop 
amplitudes using 

Unitarity  applied numerically, 

Efficient trees from BCFW & Berends—Giele recursion, as well 
as explicit solutions to BCFW recursion relations in N=4 SUSY 
(Dixon, Henn, Plefka, Schuster) 

BLACKHAT 

• Numerical implementation of on-shell methods for one-loop 
amplitudes 

• Automated implementation  industrialization 

• C++ library: organization of amplitudes, integral basis, spinor products, 
residue extraction via contour integrals, tree ingredients, caching 

• Do algebra numerically, analysis symbolically (“analytically”) 

• SHERPA for real subtraction, real emission, phase-space integration, 
and (optionally) analysis 

NLO 
Revolution 



• Lots of revolutionaries roaming the world 
– BlackHat 

– CutTools+HELAC-NLO: Ossola, Papadopoulos, Pittau, Actis, 
Bevilacqua, Czakon, Draggiotis, Garzelli, van Hameren, 
Mastrolia, Worek & their clients 

– Rocket: Ellis, Giele, Kunszt, Lazopoulos, Melnikov, Zanderighi 

– Samurai: Mastrolia, Ossola, Reiter, & Tramontano 

– NGluon: Badger, Biedermann, & Uwer 

– MadLoop: Hirschi, Frederix, Frixione, Garzelli, Maltoni, & Pittau 

– Giele, Kunszt, Stavenga, Winter 

• Ongoing analytic work 
– Almeida, Britto, Feng & Mirabella 



Dark-Matter Searches 

• … in the context of the MSSM 

 

 

 

 

• Z        accompanied by jets   missing ET + jets 
important background 

 

• Data-driven estimate suggested & pursued by CMS 

 Estimate from W production 

 Estimate from photon production – no    , higher rates 



• Experimenters don’t care about theory predictions for 
the ratio – though they ought to 

 

• What they really want are uncertainty estimates 

 

• We’ll provide both 



Predicting MET+Jets from γ+Jets 

• Define search variables:  
– |MET|  |−∑ET| for all jets with pT > 30 & || < 5 

– Ht
jets  corresponding to jets with pT > 50 &  || < 2.5 

 

• Looking in tails of distributions, force vector pT to large 
values 
– Hard cuts: control region 13% of signal, search regions 11 and 5.5% 

 Control Ht
jets  > 300, |MET| > 150; signals Ht

jets  > 300, |MET| > 250 & Ht
jets > 

500, |MET| > 150 

– Harder cuts: control region 5.8%, search regions 0.06 to 0.7% 

 Control Ht
jets > 350, |MET| > 200; signals Ht

jets > 500, |MET| > 350; & Ht
jets > 

800, |MET| > 150; & Ht
jets > 200, |MET| > 500 

 



Measuring Photons 

• Need a theoretical definition 

• Must isolate photons from surrounding hadronic 
radiation: lots of photons inside jets 

• But can’t isolate too stringently: not infrared safe 

 

• Experiments use cones, with limit on absolute or 
fractional hadronic ET inside the cone 

• Requires fragmentation function contribution 
– Additional theoretical headache 

– Fragmentation function contribution must be extracted from 
data; not that well-known; no error sets available 



• Frixione cone has a radially-dependent ET limit 

•                                                     with  

 

• Eliminates fragmentation function contribution because 
limit  0 at the center 

• But  0 slowly enough to stay infrared safe 

 

• We use the Frixione cone for theoretical calculations ( = 
0.025, 0 = 0.3, n = 2; theoretical predictions are not very 
sensitive to these numbers) 

 



How Much Error Do We Introduce by 

Using the ‘Wrong’ Cone? 

• Almost None 

• In the high-pT region, difference between two 
predictions is expected to be less than 1% 

 

• Additional jets not expected to alter this conclusion 

 

• Also supported by LO-matched parton-shower 
calculation 



V+3 Jet Cross Sections 

Search 

Search 

Search 

Search 

Search 

Control 

Control 

Search 

Search 

Control 

Three different theoretical predictions: noticeable corrections from 
LO to NLO & ME+PS to NLO; don’t expect absolute normalization 
to be correct 
Scale variation shrinks from LO to NLO 
 
Let’s look at various ratios, also vs V+2 jet cross sections, where 
LONLO shows bigger shift 



How Should We Estimate the 

Uncertainty in the Ratio? 

• Only truly honest way within fixed order is comparing to 
NNLO – but that’s a ways off 

 

• Scale variation is typically used as a proxy 

 

• But here, [correlated] scale variations in the ratio are tiny, 
< 0.5% 
– Good, because it makes the prediction more robust 

– But means that the scale variation clearly underestimates the 
remaining uncertainties 

 

• Need a second theoretical calculation: parton shower 
matched to LO matrix elements (ME+PS), using SHERPA 
& CKKW-style matching 



How Stable is the Fixed-Order 

Prediction? 

• We’re exploring high-pT
V regions: look at jet-production 

ratios 

 

 

 

• With hard cuts, the V+3/V+2 ratios rise well above 0.5, and 
towards 1 

• NLO corrections to this ratio are large because of 
relaxation of kinematic constraints on V+2 configurations 

• One may hope that these effects cancel out in Z/ ratios 

• Importance of yet-higher order corrections can be tested 
experimentally through +3/+2 ratios 



Peering into the ME+PS Calculation 

• Can’t use off-the-shelf SHERPA 

 

• Important to ensure that treatment of Z and  is same in 
matched shower 

 

• Matching in SHERPA requires CKKW-type clustering of 
matrix element configurations back to shower initiators 
– For massive bosons, helicity information to do this exactly isn’t 

available 

– Code clusters neutrinos on same footing as other decay products, 
leading to a bias in treatment of radiation for pT < MZ 

• Use custom version with Z decay products preclustered  

 

 



Z/ Ratios in Search Regions 

• Last year, assessed estimate & uncertainty using Z+2/+2 
ratio 

• Here, extend it to Z+3/+3 ratio 

 

 

 

 

• NLO prediction is extremely stable (<4.5%) under 
addition of one jet 

• LO & ME+PS vary by up to 10% 



Electroweak Sudakovs & Real 

Corrections 

• In addition to QCD corrections, there are electroweak 
corrections arising from exchange of virtual EW bosons, 
or real emissions of them 

• Detailed calculation of virtual corrections is supposed to 
be straightforward in SCET formalism 

• Estimates based on Maina, Moretti, Ross & Kuhn, 
Kulesza, Pozzorini & Schulze suggest 5–15% corrections 
for hard to hardest cuts 

• Estimate of leading EW real-emission corrections (W 
emission producing the jet pair) suggests corrections are 
small (3–4%) 



QCD Uncertainty Estimates 

 

 

 

 

 

 

 

• In agreement with earlier analysis suggesting 10% 



•  qg dominant initial state at the LHC  ET-dependent 
rate difference because of u(x)/d(x) distribution difference 

 

• But that’s not the whole story 

 

W+3 jets at the LHC: W+/W− Ratio 



• Polarization of low-pT, longitudinal, Ws is textbook material 
(Ellis, Stirling & Webber)  dilution in charged-lepton rapidity 
distribution asymmetry at Tevatron 

• This is different! Ws are also polarized at high pT  ET 
dependence of e+/e− ratio and missing ET in W+/W− at LHC 
[0907.1984,1103.5445] 
– Present at LO 

– Present for fewer jets too: universality 

– Very insensitive to NLO corrections 

– Insensitive to cuts at large pT
W 

 

• Useful for distinguishing “prompt” Ws from daughter Ws 
in top decay! 

• Measurements by CMS and Atlas 

W Polarization 



CMS W Polarization Measurement 
• Use lepton projection variable 

 and maximum likelihood fit to determine fL − fR, f0 

 

 

 

 

 

 

 

 

 

 

 

 

Combined (e−,−): fL − fR  = 0.226  0.031 (stat.)  0.050 (syst.) 

Combined (e+,+): fL − fR  = 0.300  0.031 (stat.)  0.034 (syst.) 

1104.3829 



Atlas Measurement 

• Fit templates to angular distribution projected onto 
transverse plane 

 

 

 

 

 

 

 

• Transverse polarization agrees nicely between different 
codes… longitudinal doesn’t  



Polarization of  Non-Prompt W 

Stirling & Vryonidou 

Differs widely for different processes 

 

 

 

 

 

 

 

Example: W+ from top decay (top rest & lab frames) 



Summary 

• On-shell methods are maturing into the method of 
choice for QCD calculations for colliders 

 

• Applications to LHC searches 
– Data-driven estimates of backgrounds to MET+jets in CMS susy 

search 

– Developing W polarization as a tool 

 


