Assisting LHC Searches Using BLACKHAT & SHERPA

David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BLACKHAT Collaboration

Z. Bern, L. Dixon, Fernando Febres Cordero, Stefan Höche, Harald Ita, DAK, Daniel Maître, Kemal Ozeren

[1106.1423 & work in progress; 0907.1984 & 1103.5445]

LoopFest XI, Pittsburgh May 10, 2012

Next-to-Leading Order in QCD

- Precision QCD requires at least NLO
- QCD at LO is not quantitative: large dependence on unphysical renormalization and factorization scales
- NLO: reduced dependence, first quantitative prediction
- Applications to Multi-Jet Processes:
 - ➤ Measurements of Standard-Model distributions & cross sections

⇒ Kemal Ozeren's talk

- Estimating backgrounds in Searches
- Having a Mulitple-Jet NLO calculation is the minimal entry fee, but it's not the end of the story

On-Shell Revolution & BLACKHAT

High-multiplica partor ector-boson one-loop amplitudes using

Unitarity applied nu

Efficient trees from Revolution becursion, as well as explicit solutions (Dixon, Henn, Ple)

- Numerical implementation of on-shell methods is one-loop amplitudes
- Automated implementation ⇒ industrialization
- C++ library: organization of amplitudes, integral basis, spinor products, residue extraction via contour integrals, tree ingredients, caching
- Do algebra numerically, analysis symbolically ("analytically")
- SHERPA for real subtraction, real emission, phase-space integration, and (optionally) analysis

- Lots of revolutionaries roaming the world
 - BlackHat
 - CutTools+HELAC-NLO: Ossola, Papadopoulos, Pittau, Actis, Bevilacqua, Czakon, Draggiotis, Garzelli, van Hameren, Mastrolia, Worek & their clients
 - Rocket: Ellis, Giele, Kunszt, Lazopoulos, Melnikov, Zanderighi
 - Samurai: Mastrolia, Ossola, Reiter, & Tramontano
 - NGluon: Badger, Biedermann, & Uwer
 - MadLoop: Hirschi, Frederix, Frixione, Garzelli, Maltoni, & Pittau
 - Giele, Kunszt, Stavenga, Winter
- Ongoing analytic work
 - Almeida, Britto, Feng & Mirabella

Dark-Matter Searches

• ... in the context of the MSSM

- $Z \rightarrow \nu \bar{\nu}$ accompanied by jets \Rightarrow missing ET + jets important background
- Data-driven estimate suggested & pursued by CMS
- Estimate from W production
- \triangleright Estimate from photon production no $t\bar{t}$, higher rates

- Experimenters don't care about theory predictions for the ratio – though they ought to
- What they really want are uncertainty estimates
- We'll provide both

Predicting MET+Jets from γ +Jets

- Define search variables:
 - $|\text{MET}| = |-\sum E_T|$ for all jets with $p_T > 30 \& |\eta| < 5$
 - H_t^{jets} corresponding to jets with $p_T > 50 \& |\eta| < 2.5$
- Looking in tails of distributions, force vector p_T to large values
 - Hard cuts: control region 13% of signal, search regions 11 and 5.5% Control $H_t^{\text{jets}} > 300$, |MET| > 150; signals $H_t^{\text{jets}} > 300$, |MET| > 250 & $H_t^{\text{jets}} > 500$, |MET| > 150
 - Harder cuts: control region 5.8%, search regions 0.06 to 0.7% Control $H_t^{\text{jets}} > 350$, |MET| > 200; signals $H_t^{\text{jets}} > 500$, |MET| > 350; & $H_t^{\text{jets}} > 800$, |MET| > 150; & $H_t^{\text{jets}} > 200$, |MET| > 500

Measuring Photons

- Need a theoretical definition
- Must isolate photons from surrounding hadronic radiation: lots of photons inside jets
- But can't isolate too stringently: not infrared safe
- Experiments use cones, with limit on absolute or fractional hadronic E_T inside the cone
- Requires fragmentation function contribution
 - Additional theoretical headache
 - Fragmentation function contribution must be extracted from data; not that well-known; no error sets available

- Frixione cone has a radially-dependent ET limit
- $\sum_{p} E_{\mathrm{T}p} \Theta(\delta R_{p\gamma}) \le E(\delta)$ with $E(\delta) = E_{\mathrm{T}}^{\gamma} \epsilon \left(\frac{1 \cos \delta}{1 \cos \delta_0}\right)^n$
- Eliminates fragmentation function contribution because limit → 0 at the center
- But \rightarrow 0 slowly enough to stay infrared safe
- We use the Frixione cone for theoretical calculations (ϵ = 0.025, δ_0 = 0.3, n = 2; theoretical predictions are not very sensitive to these numbers)

How Much Error Do We Introduce by Using the 'Wrong' Cone?

- Almost No
- In the high prediction
- Additional
- Also support calculation

V+3 Jet Cross Sections

	Set	Prediction	Z + 3-jet		$\gamma + 3$ -jet	_	Set	Prediction	Z + 2-jet	$\gamma + 2$ -jet		
Search		LO	$0.200(0.001)_{-0.0}^{+0.1}$.05)64	$0.856(0.002)^{+0.446}_{-0.273}$	0		LO	$0.512(0.001)^{+0.188}_{-0.128}$	$2.050(0.00)_{-0.508}^{+0.745}$		
Search	1	ME+PS	0.157(0.001)		0.772(0.009)		2	ME+PS	0.432(0.002)	1.930(0.02)		
Search		NLO	$0.184(0.002)_{-0.0}^{+0.0}$	$0.184(0.002)^{+0.006}_{-0.022}$				NLO	$0.540(0.002)^{+0.020}_{-0.048}$	$2.370(0.02)^{+0.186}_{-0.256}$		
		LO	$\begin{array}{c} 0.179(0.000)^{+0.095}_{-0.058} \\ \hline 0.160(0.002) \end{array}$		$0.913(0.002)^{+0.479}_{-0.292}$			LO	$0.200(0.000)^{+0.075}_{-0.051}$	$0.933(0.001)^{+0.346}_{-0.235}$		
Search Control	2	ME+PS			0.844(0.009)			ME+PS	0.236(0.002)	1.140(0.01)		
Control		NLO	$0.171(0.002)_{-0.0}^{+0.0}$	008 022	$0.871(0.008)^{+0.038}_{-0.107}$]-,[NLO	$0.266(0.001)^{+0.035}_{-0.036}$	$1.340(0.01)^{+0.207}_{-0.196}$		
Cantual		LO	$0.664(0.001)_{-0.2}^{+0.3}$	346 211	$3.460(0.01)_{-1.090}^{+1.780}$	₹ = [LO	$1.230(0.00)^{+0.445}_{-0.304}$	$5.780(0.00)^{+2.050}_{-1.410}$		
Control	3	ME+PS	$0.533(0.006) \\ 0.616(0.005)^{+0.020}_{-0.074}$		3.090(0.04)		3	ME+PS	1.160(0.01)	6.120(0.04)		
		NLO			$3.220(0.02)^{+0.105}_{-0.376}$			NLO	$1.410(0.00)^{+0.091}_{-0.144}$	$7.290(0.03)_{-0.876}^{+0.782}$		
Search	5 ME+PS 0.0284(0.0003)					0.124(0.002)						
	Three different the oretical predicti						0.133(0.002)+0.007 0.833000ticeable corrections from					
Search	LO to NLO & ME+PS TO NLO 10002 + 0.00175 (0.0001) + 0.0012 + 0.001											
	to	to be correct										
Search		LO 0.00273(0						$7(0.0001)^{+0.0059}_{-0.0035}$				
Jearch	Scale variation shripts from 0[2400 to NL000(0.0002) NL0 0.00269(0.00005) +0.00027 0.0104(0.0002) +0.0008											
					[[-130200(0100003)=0.00043]	3.5.	- 3 - (3	7-0.0016				

Let's look at various ratios, also vs V+2 jet cross sections, where LO→NLO shows bigger shift

How Should We Estimate the Uncertainty in the Ratio?

- Only truly honest way within fixed order is comparing to NNLO – but that's a ways off
- Scale variation is typically used as a proxy
- But here, [correlated] scale variations in the ratio are tiny, < 0.5%
 - Good, because it makes the prediction more robust
 - But means that the scale variation clearly underestimates the remaining uncertainties
- Need a second theoretical calculation: parton shower matched to LO matrix elements (ME+PS), using SHERPA & CKKW-style matching

How Stable is the Fixed-Order Prediction?

Peering into the ME+PS Calculation

- Can't use off-the-shelf SHERPA
- Important to ensure that treatment of Z and γ is same in matched shower
- Matching in SHERPA requires CKKW-type clustering of matrix element configurations back to shower initiators
 - For massive bosons, helicity information to do this exactly isn't available
 - Code clusters neutrinos on same footing as other decay products, leading to a bias in treatment of radiation for $pT < M_Z$
- Use custom version with Z decay products preclustered

Z/γ Ratios in Search Regions

Last year, as ratio

Here, exten

_			. • .			1	7,2/2,2
	Set	Prediction	$Z + 3$ -jet/ $\gamma + 3$ -jet	$Z + 2$ -jet/ $\gamma + 2$ -jet	ratio	ising	$Z+2/\gamma+2$
1		LO	0.233(0.001)	0.250(0.000)	0.933(0.004)		
	1	ME+PS	0.204(0.003)	0.224(0.002)	0.913(0.020)		
		NLO	0.226(0.003)	0.228(0.002)	0.992(0.020)		
2		LO	0.196(0.001)	0.215(0.000)	0.914(0.004)		
	2	ME+PS	0.190(0.003)	0.207(0.002)	0.916(0.020)		
		NLO	0.196(0.003)	0.199(0.001)	0.986(0.010)		
		LO	0.192(0.001)	0.213(0.000)	0.899(0.003)		
3	3	ME+PS	0.173(0.003)	0.190(0.001)	0.908(0.020)		
		NLO	0.191(0.002)	0.193(0.001)	0.990(0.010)		

- NLO prediction is extremely stable (<4.5%) under addition of one jet
- LO & ME+PS vary by up to 10%

Electroweak Sudakovs & Real Corrections

- In addition to QCD corrections, there are electroweak corrections arising from exchange of virtual EW bosons, or real emissions of them
- Detailed calculation of virtual corrections is supposed to be straightforward in SCET formalism
- Estimates based on Maina, Moretti, Ross & Kuhn, Kulesza, Pozzorini & Schulze suggest 5–15% corrections for hard to hardest cuts
- Estimate of leading EW real-emission corrections (W emission producing the jet pair) suggests corrections are small (3–4%)

QCD Uncertainty Estimates

Set Source	1	Pre	limi	náry	5	6	7
perturbative	0.0981	0.0320	0.0952	0.0980	0.0292	0.0431	0.0571
PDF	0.0400	0.0400	0.0400	0.0400	0.0400	0.0400	0.0400
photon-cone	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
total	0.106	0.0522	0.104	0.106	0.0505	0.0597	0.0704

• In agreement with earlier analysis suggesting 10%

W+3 jets at the LHC: W⁺/W⁻ Ratio

W/ Dalasination

CMS W Polarization Measurement

• Use lepton projection variable $L_P = \frac{\vec{p}_{\mathrm{T}}(\ell) \cdot \vec{p}_{\mathrm{T}}(W)}{|\vec{p}_{\mathrm{T}}(W)|^2}$ and maximum likelihood fit to determine $f_L - f_R$, f_0

Combined (e^-, μ^-) : $f_L - f_R = 0.226 \pm 0.031$ (stat.) ± 0.050 (syst.) Combined (e^+, μ^+) : $f_L - f_R = 0.300 \pm 0.031$ (stat.) ± 0.034 (syst.)

Atlas Measurement

 Fit templates to angular distribution projected onto transverse plane

 Transverse polarization agrees nicely between different codes... longitudinal doesn't

Polarization of Non-Prompt W

Stirling & Vryonidou

Differs widely for different processes

Example: W+ from top decay (top rest & lab frames)

Summary

- On-shell methods are maturing into the method of choice for QCD calculations for colliders
- Applications to LHC searches
 - Data-driven estimates of backgrounds to MET+jets in CMS susy search
 - Developing W polarization as a tool