Singlet-Doublet Dark Matter WIMPs in Light of Recent Experimental Results

Jack Kearney

MCTP

May 8, 2012

Based on:

arXiv:1109.2604 with Tim Cohen, Aaron Pierce and Dave Tucker-Smith arXiv:1202.0284 with Aaron Pierce

Jack Kearney (MCTP)

Singlet-Doublet Dark Matter

May 8, 2012 1 / 20

Motivation

999

イロト イロト イヨト イヨト

Weakly-Interacting Massive Particles (WIMPs) with thermal history give approximately the correct dark matter relic density.

$$\Omega_{\rm DM} h^2 \sim \mathcal{O}(0.1)$$
 (1)

Promising from phenomenological standpoint – interact with SM particles, so may be observed experimentally:

- Direct detection.
- Indirect detection.
- ③ Colliders.

Recent Experimental Results

1 New limits on σ_{SI} from XENON100.

[arXiv:1104.2549]

- ② New information on the electroweak sector from LHC:
 - 115 GeV $\lesssim m_h \lesssim$ 130 GeV.
 - Potential signal at $m_h \approx 125$ GeV.

ATLAS [arXiv:1202.1408]

CMS [arXiv:1202.1488]

3 Seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) and other data on large scale structure:

$$\Omega_{\rm DM} h^2 = 0.1123 \pm 0.0035 \tag{2}$$

Image: A match a ma

[arXiv:1001.4538]

Jack Kearney (MCTP)

Lack of (unequivocal) signal thus far constrains the viability of strictly weakly-interacting dark matter – that is, dark matter whose interactions and annihilations are controlled by the electroweak (W, Z, Higgs) bosons.

Goal: To investigate the extent to which weakly-interacting dark matter remains an attractive scenario in light of recent experimental results, using the minimal singlet-doublet dark matter model.

Cohen, Pierce, JK, Tucker-Smith [arXiv:1109.2604]

This talk will focus on the fermionic singlet-doublet model – paper also includes investigation of scalar singlet-doublet model.

イロト イロト イヨト 一支

The Singlet-Doublet Model

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

Extension to the Standard Model consisting of:

- Gauge singlet fermion N.
- Vector-like pair of fermionic electroweak doublets

$$D = \begin{pmatrix} \nu \\ E \end{pmatrix}, \qquad D^{c} = \begin{pmatrix} -E^{c} \\ \nu^{c} \end{pmatrix}$$
(3)

with hypercharges $-\frac{1}{2}$ and $+\frac{1}{2}$ respectively.

- ℤ₂ symmetry under which SM fields are even and non-SM fields are odd – ensures stability of lightest new field (ν₁).
- Interactions and mass terms:

$$\Delta \mathcal{L} = -\lambda DHN - \lambda' \tilde{H} D^c N - M_D DD^c - \frac{1}{2} M_N N^2 + \text{ h.c.}$$
 (4)

SU(2) indices contracted with ϵ^{ij} , $\tilde{H} \equiv i\sigma^2 H$.

SUSY analog: Bino-Higgsino dark matter with $M_2 \rightarrow \infty$.

Jack Kearney (MCTP)

イロト イヨト イヨト イ

An appealing model

Minimal model that can be compatible with experimental constraints.

- **Minimal:** dark matter interacts only with bosons of electroweak theory.
- Compatible with experimental constraints: generates Majorana dark matter, avoiding large σ_{SI} exhibited by Dirac dark matter.
- Mixing arises naturally from renormalizable operators: no need for higher order terms suppressed by new physics scale etc.

Previous studies of other features of this model include:

Arkani-Hamed, Dimopolous, Kachru [arXiv:0501082] Mahbubani, Senatore [arXiv:0510064] D'Eramo [arXiv:0705.4493] Enberg, Fox, Hall, Papaioannou, Papucci [arXiv:0706.0918]

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Phenomenology: Annihilation and DM-Nucleon Scattering

Jack Kearney (MCTP)

Singlet-Doublet Dark Matter

May 8, 2012 9 / 20

Technical Details

900

イロト イロト イヨト イヨト

Parameter Scans

- Implemented model in micrOmegas.
- Perform parameter scans over ranges

• 0 GeV
$$\leq M_N \leq$$
 800 GeV,
• 80 GeV $\leq M_D \leq$ 2 TeV,
• $-2 \leq \lambda \leq 2$,
• $0 \leq \lambda' \leq 2$,

subject to requirements that

• 40 GeV
$$\leq m_{\nu_1} \leq$$
 500 GeV,
• 0.1053 $\leq \Omega h^2 \leq$ 0.1193 ($\pm 2\sigma$ range),
• $-0.07 \leq \Delta T \leq 0.21$.

- Take $m_h = 125$ GeV.
- Note that micrOmegas does not include 3-body final states, so results slightly off near W^+W^- and $t\bar{t}$ thresholds. Also, does not include loop contributions to scattering, so $\sigma_{\rm SI} \lesssim 10^{-10}$ pb should be take as demonstrative and not exact similar caveats hold for $\sigma_{\rm SD}$.

Jack Kearney (MCTP)

May 8, 2012 11 / 20

Indirect Detection via Solar Neutrinos

- Annihilation of WIMPs captured in Sun can produce detectable ν .
- Signal depends on annihilation branching ratios.
- Performed general analysis of neutrino flux from different annihilation final states, with focus on key 3-body final states details can be found in arXiv:1202.0284 (with Aaron Pierce).

• 3-body final states can have significant effect on limits near threshold.

• Used results to determine indirect detection limits for Singlet-Doublet model.

Results

J	acl	< ł	Kear	ney	(M	С٦	ΓP))
---	-----	-----	------	-----	---	---	----	-----	---

May 8, 2012 13 / 20

≡ ∽ < (~

イロト イロト イヨト イヨト

Figure: Limits shown are current XENON100 [arXiv:1104.2549] (solid), and projected XENON1T [arXiv:0902.4253] (dashed).

May 8, 2012 14 / 20

against m_{ν_1}

Figure: Limits shown from SIMPLE [arXiv:1106.3014] $(m_{\nu_1} \leq m_W)$, SUPER-K [arXiv:0404025] $(m_W \leq m_{\nu_1} \leq m_t)$, ICECUBE (hard) [arXiv:0902.2460] $(m_{\nu_1} \geq m_t)$. Also shown are derived limits from arXiv:1202.0284.

May 8, 2012 15 / 20

$\sigma_{\sf SI}$ against $\sigma_{\sf SD}^{(p)}$ (high mass region, $m_{\nu_1} \ge 85$ GeV)

Figure: Blue (light gray) \equiv (excluded) points with 85 GeV $\leq m_{\nu_1} \leq$ 160 GeV. Green (dark gray) \equiv (excluded) points with $m_{\nu_1} \geq$ 175 GeV.

$\sigma_{\sf SI}$ against $\sigma_{\sf SD}^{(p)}$ (low mass region, $m_{ u_1} \leq$ 70 GeV)

Figure: Red (gray) \equiv (excluded) points with $m_{\nu_1} \leq$ 70 GeV.

May 8, 2012 17 / 20

Conclusions

Ξ May 8, 2012 18 / 20

996

《曰》 《聞》 《臣》 《臣》

- Majority of parameter space should be probed in near future by combination of direct and indirect detection experiments.
- Majorana dark matter whose thermal relic abundance and neutrino signals are both controlled by annihilation via an s-channel Z boson is excluded for 70 GeV $\lesssim m_{\rm DM} \lesssim m_W$.
- Singlet-Doublet model severely constrained for $m_W \lesssim m_{
 u_1} \lesssim m_t$.
- Limited remaining options for avoiding direct and indirect detection bounds
 - 1 $m_{\nu_1} \approx M_D$ or $m_{\nu_1} \approx m_{\nu_2}$ such that relic density can be set by coannihilation while dark matter-nucleon scattering is small.
 - 2 $m_{\nu_1} \leq m_t \Rightarrow m_{\nu_1} \approx \frac{m_h}{2}$ or $m_{\nu_1} \approx \frac{m_z}{2}$: proximity of dark matter mass to Higgs or Z pole allows right relic density to be achieved with very small coupling, reducing dark matter-nucleon scattering.
 - ③ m_{ν1} ≥ m_t: Relic density set by annihilation via an s-channel Z boson. Should be probed in near future, notably by DeepCore.

May 8, 2012 19 / 20

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Thank you!

Ξ May 8, 2012 20 / 20

900

< ロ ト < 団 ト < 三 ト < 三 ト</p>