Jet Production Measurements with ATLAS

Trisha Farooque

University of Toronto on behalf of the ATLAS Collaboration

> Phenomenology 2012,7th-9th May, 2012, University of Pittsburgh

Introduction

- Jet production at LHC
 - Process with dominant cross-section
 - Test of pQCD
 - New physics searches
- Recent results on 2010 data
 - Jet substructure measurements
- 2011 data
 - Extended kinematic reach
 - High pile-up environment

High mass (2.6 TeV) dijet event

Jet Reconstruction and Calibration

4

Jet Calibration Performance

Dijet Mass Cross-section

- 2011 data: \mathfrak{L} = 4.8 fb-1
- Cross-section binned in y* (rapidity difference in COM frame)
- Probe of NLO pQCD and PDFs
- Event selection:
 - >=1 primary vertex
 - event quality cuts
 - P_{T,j1}>100 GeV, P_{T,j2}>50 GeV
 - |y|<4.4, y*<2.5

jet P_T, energy corrected for pile-up
Uncertainties:

•JES, calorimeter resolution,

reconstruction efficiency, pile-up

Kinematic Reach: 260 GeV < m_{12} < 4.6 TeV

ATLAS-CONF-2011-021

Dijet Mass Cross-section

Ratio wrt. NLOJET++

Overall agreement with NLO pQCD within errors
Some tension at high m₁₂ and large y* (up to 40%)

Jet Mass and Substructure

- 2010 Dataset *L* = 35 pb-1
- Jet selection
 - Anti-k_T R=1.0, Cambridge-Aachen R=1.2
 - P_T> 200 GeV, |y|<2.0
- Event Selection
 - exactly 1 primary vertex (no pile-up)
 - event quality cuts remove events with non-collision jets
- Uncertainties
 - •Jet energy scale, jet mass scale, resolution
 - In-situ constraints from track-jet studies
- Comparison to QCD Monte Carlo
 - Distribution shape reproduced by Pythia
 - Jet mass overestimated by Herwig++

Jet Mass Measurements 4

7

Jet Mass and Substructure

More Jet Substructure

More Jet Substructure

Pile-up Corrections for Jet ATLAS-CONF-2012-044 Substructure

arXiv:1203.4606

• Data-driven "**complementary cone**" corrections for individual observables (arXiv:1101.3002) Jet grooming by "Splitting and Filtering"
(Phys. Rev. Lett. 100, 242001 (2008))

Published Results with 2010 Data

- Inclusive jet and dijet production cross-sections
 arXiv:1112.6297
- B-jet and bbbar-dijet production cross sections
 - Eur. Phys. J. C71 (2011) 1846
- Measurement of charm meson production
 - Phys. Rev. D85 (2012) 052005
- Properties of jets measured from tracks
 - Phys. Rev. D84 (2011) 054001
- Dijet azimuthal decorrelation
 - Phys. Rev. Lett. 106 (2011) 172002
- Study of jet shapes
 - Phys. Rev. D83 (2011) 052003
- Multi-jet production cross section
 - Eur. Phys. J. C71 (2011) 1763

Conclusions

- Presented measurements of
 - Jet production cross-section
 - Jet substructure
- New kinematic reaches explored in 2011 data
 - Challenging running conditions, high pile-up
- 2010 data was used for first measurement of many substructure observables
 - Test of QCD
 - Useful for boosted particle searches in 2011 and 2012 data

Additional Material

Jets in the Presence of Pile-up (I)

15

Jets in the Presence of Pile-up (II)

Inclusive Jet Production Cross-section

- 2010 data: *S* = 37 pb-1
- Cross-section binned in jet rapidity y
- Probe of NLO pQCD and PDFs
- Event selection:
 - >=1 primary vertex
 - event quality cuts
 - At least one jet with P_T>20 GeV
 - |y|<4.4
- Uncertainties:

•JES, calorimeter resolution, reconstruction efficiency, pile-up

Kinematic Reach: 20 GeV < P_T < 1.5 TeV

Inclusive Jet Production Cross-section

Ratio wrt. NLOJET++

Ratio wrt. CT10

ATLAS-CONF-2012-021

Dijet Mass Cross-section

• Variation of cross-section with level of pile-up within ~7%

Correction factor for non-perturbative effects of hadronisation and UE modeling
Close to unity for high dijet mass

Jet Substructure Definitions

• k_t splitting scale

- \bullet Recluster constituents with k_t algorithm
- $Vd_{12} = min(P_{T,j1}, P_{T,j2}) \times \delta R_{j1,j2}$

• N-subjettiness

 \bullet Recluster constituents with k_t algorithm requiring N subjets

•
$$\tau_{N} = (1/d_{0}) \Sigma_{k} P_{T,k} x \min(\delta R_{1,k}, \delta R_{2,k}, ..., \delta R_{N,k})$$

• $d0 = \Sigma_k P_{T,k}R$

• Mass

- Invariant mass of jet constituents
- $M^2 = \Sigma_i (E_i)^2 \Sigma_i (p_i)^2$

• Width

- W = $(\Sigma_i P_{T,i}R_i)/(\Sigma_i P_{T,i})$
- $P_{T,i} = P_T$ of ith constituent relative to beam axis

• Angularity

- $\tau_a = (1/M) \ge \Sigma_i E_i \sin^a \theta i (1 \cos \theta_i)^{1-a}$
- $\theta_i\text{=}\text{angle}$ of i^{th} constituent relative to jet axis

• Planar Flow

- $I_E^{kl} = (1/M) \times \Sigma_i E_i (P_{i,k}/E_i)(P_{i,l}/E_i)$
- $Pf = 4 \times det(I_E)/Tr(I_E)^2$
- $P_{i,k} = k^{th}$ component of constituent transverse momentum relative to jet axis
- Eccentricity
 - $\mathcal{E} = 1 v_{min}/v_{max}$

• $v_{min}(v_{max})$ = minimum (maximum) energy-weighted variance of constituent positions along principal axes

Jet Substructure

•Systematic uncertainties on each observable

- Constrained with track jets
- Combined with systematic uncertainty on track jet

More Jet Substructure

• Breakdown of systematic uncertainties on highest populated bin of each observable

Observable	Monte	Monte Carlo			Detector effects					Pileup corrections		
	PER	H++	RW	η_{pos}	ϕ_{pos}	CES+	CES-	Dead M.	$Fit_{\pm 1\sigma}$	$Fit_{-1\sigma}$	Scale	
Ant $i - k_t R = 0.6$: % contributions												
Mass	2.3	15.0	-13	-1.4	-1.4	3.7	-45	-1.5	-0.6	-2.2	-	
Width	10.6	-0.4	4.7	4.7	4.7	5.8	4.7	4.8	4.5	5.0	-	
Eccentricity	0.6	-4.4	-0.9	-1.0	-0.9	0.6	-3.6	-1.5	-1.0	-0.4	-	
Angularity	-2.4	8.7	-2.5	-2.7	-2.4	-2.7	0.5	-1.5	-	-	-	
Anti-k, R = L0: % contributions												
Mass	-4.4	-6.5	-2.8	-6.2	6.1	1.7	-6.0	-4.2	-3.0	-2.7	-1.0	
Width	5.7	8.8	3.4	3.2	3.4	6.3	0.2	3.5	3.2	3.7	3.9	
Eccentricity	7.8	-9.7	1.1	2.3	2.4	-0.5	4.3	2.2	-2.2	4.2	-3.3	
Planar flow	-7.2	-3.9	6.2	5.7	5.9	6.1	2.6	4.1	-	-	-	

Pile-up Corrections for Jet Substructure

ATLAS-CONF-2012-044

• Data-driven "complementary cone" corrections

- Clusters in transverse cone in dijet events added to leadingjet
- Shift in jet observable calculated and parametrised as function of the observable
- Binned in mass and P_{T} of jet
- Corrections can be scaled according to jet area

∆Mass [GeV]

230 23 Mass [GeV]

Jet Grooming

- Jets groomed by "splitting and filtering"
 - Preserve only hard, symmetric splittings inside the jet
 - Recluster constituents with Rparameter R_{filt} = 0.3 to find n new subjets
 - Redefine jet as sum of subjet four-momenta
- Aims to retain jet constituents associated with heavy particle decay
- Reduced sensitivity to underlying event and pile-up

